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ABSTRACT

Independent Component Analysis (ICA) is a generalization
of Principal Component Analysis that optimizes a linear
transformation to whiten and sparsify a family of source
signals. The computational costs of ICA grow rapidly with
dimensionality, and application to high-dimensional data is
generally achieved by restricting to small windows, violating
the translation-invariant nature of many real-world signals,
and producing blocking artifacts in applications. Here, we
reformulate the ICA problem for transformations computed
through convolution with a bank of filters, and develop a
generalization of the fastICA algorithm for optimizing the
filters over a set of example signals. This results in a sub-
stantial reduction of computational complexity and memory
requirements. When applied to a database of photographic
images, the method yields bandpass oriented filters, whose
responses are sparser than those of orthogonal wavelets or
block DCT, and slightly more heavy-tailed than those of
block ICA, despite fewer model parameters.

Index Terms— independent component analysis, station-
arity, sparsity, convolutional filters, fastICA, filter bank

1. INTRODUCTION

Independent Component Analysis (ICA) refers to a family of
algorithms devised to solve the blind source separation prob-
lem. One observes a set of vectors assumed to arise from
a linear transformation of a set of independent sources with
non-Gaussian marginal densities, and seeks to estimate the
linear mixing matrix from these observations, which may then
be used to estimate the source vector for subsequent observa-
tions. A variety of solutions to this problem may be derived
under different formulations: as a maximum likelihood esti-
mation [1], as a method to maximize information transmis-
sion in a noiseless neural network [2], as a minimization of
mutual information between the “unmixed” outputs [3], or as
a higher-order decorrelation based on the cumulant tensor [4].
Algorithms which are tractable for high dimensional data can
generally be divided into those based on descent of the natural
gradient [5], and those that are variants of the fastICA algo-
rithm [3], which is popular for its computational efficiency.

In practice, ICA has been used to develop optimal decom-
positions for relatively small, fixed-size, data vectors (e.g., the
image intensities within a small rectangular window). This
enables efficient computation, both because the computations
per iteration scale with vector size, and because the training
set size required to avoid overfitting grows super-linearly with
dimensionality. But the statistical properties of many signals
of interest are translation-invariant, and windowing the train-
ing data introduces artificial boundaries. Consequently, signal
values near block boundaries are represented differently than
those near the block center. When used in applications such
as compression or restoration, lack of translation invariance
results in blocking artifacts, a problem well-known to anyone
who has viewed a severely-compressed JPEG image.

Here, we reformulate the ICA problem for transforms
computed through convolution/subsampling with a bank of
filters, a form that has been ubiquitous in signal and image
processing for the past 30 years (e.g., [6], [7]). The convolu-
tional structure allows for substantially fewer model parame-
ters, without imposing an arbitrary subdivision of the signal
into blocks. Similar advantages have been exploited in the
development of convolutional artificial neural networks used
for image classification and recognition [8]. The algorithm
converges quickly to a stable solution, and is significantly
more efficient than the fastICA algorithm. When applied
to photographic images, it yields bandpass oriented filters
that tile the frequency plane, but that are qualitatively differ-
ent than those of traditional filter banks, or those obtained
through blocked PCA or ICA.

2. CONVOLUTIONAL ICA

A common formulation of the ICA problem is in terms of
information-theoretic quantities [2], [3]. We seek an “un-
mixing” matrix ˆ

W , transforming an N -sample observation
vector x so as to minimize the multi-information between its
elements:

ˆ

W = arg min

W

I(Wx), (1)

where

I(y) =

X

i

H(yi)�H(y) (2)
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are multi-information and differential entropy, respectively.
Optimization of entropy-related quantities is notoriously

difficult, and ICA methods typically proceed by introducing
restrictions and simplifications. In particular, the fastICA
method [3] relies on two such simplifications. First, the so-
lution is constrained to the form W = UC

� 1
2

x

, where U is
an orthogonal matrix, C

x

is the covariance of the data, and
C

� 1
2

x

is a whitening matrix.1 As a result, the optimization
problem of (1) becomes:

ˆ

U = arg min

U

I(Uz), (3)

where z = C

� 1
2

x

x is the prewhitened data. Given the orthog-
onality of U , the second term of (2) becomes:

H(UC

� 1
2

x

x) = log |U || {z }
=0

�1

2

log |C
x

| + H(x), (4)

which is independent of U . Thus, the optimization problem
reduces to minimizing the sum of marginal entropies (first
term in (2)). A second simplification facilitates this optimiza-
tion: the marginal entropies are approximated with a more
tractable contrast function such as ˜H(yk) = log cosh(yk),
which seeks heavy-tailed (i.e., sparse) components in the data.

To achieve a transform that respects the assumed station-
arity of the input signal, we constrain the matrix W to a form
corresponding to convolution with a bank of filters. First, we
use a whitening matrix implemented as a convolution with a
zero-phase filter whose Fourier spectrum is the inverse of the
signal spectrum (referred to as Zero-phase Components Anal-

ysis [2]). Furthermore, we assume U is implemented as a
filter bank, and thus is composed of K square D-dimensional
Toeplitz matrices Bk:

⇥
y

T
0 · · · y

T
K�1

⇤T
=

⇥
B

T
0 · · · B

T
K�1

⇤T
z, (5)

where D is the number of stationary dimensions (i.e., 2 for
images) and the output vector y contains the concatenated
subbands, yk(n), each resulting from convolution with an as-
sociated filter bk(n):

yk(n) = (bk ⇤ z)(n). (6)

For K > 1, U will be overcomplete (more rows than
columns), which is incompatible with the orthogonality con-
straint. Here, we consider two ways of resolving the conflict:
relaxing the constraint, and reducing dimensionality by regu-
lar subsampling after the filtering. The derivation of the latter
has to be omitted due to spatial constraints, but we summa-
rize the algorithm at the end of the next section. To relax the
constraint, a natural choice is to require that U is an isometry,

1The multi-information objective can be decomposed into a correlation
and a non-Gaussianity term with equal weights [9, eq. 18]. The whitening
constraint effectively puts a very large weight on the correlation term.

meaning that it preserves distances and angles, and thus has
singular values all equal to one. If U is overcomplete and
isometric, we can always augment it with additional columns
V to form an orthogonal matrix such that

Uz =

h
U V

i 
z

0

�
. (7)

Then,
H(Uz) = log 1�H

⇣⇥
z

T 0
⇤T⌘

.

Note that the second term is negative infinity, reflecting the
fact that vectors arising from an overcomplete linear trans-
form must be confined to a subspace. Nevertheless, both parts
are again independent of U ; hence, the optimization is sepa-
rable into univariate subproblems as in fastICA.

The constraint can be written in terms of the filters as

U

T
U =

X

k

B

T
kBk = 1. (8)

For optimization purposes, we set the size of the observations
equal to the filter support (for images, a

p
N ⇥ pN -sample

window). Compared to ICA, the filters are thus still con-
strained to a finite support, but the structure of the transform
now reflects the fact that the filters must cover the stationary
signal dimensions. If N is chosen large enough, we can ap-
proximate the Toeplitz blocks as circulant blocks. With this,
the constraint can be re-written in the Fourier domain:

8f :

X

k

|˜bk(f)|2 = 1, (9)

where ˜bk(f) = F�
bk(n)

�
are the discrete Fourier transforms

of the filters.

3. ALGORITHM

To find a solution to (3), we follow the same approach as in the
fastICA algorithm [3], alternating between optimizing H(yk)

individually and enforcing the constraints on U , until conver-
gence. However, as U is highly redundant, we avoid working
with it directly, to obtain a faster algorithm.

First, to enforce isometry, we apply the Fourier-domain
constraint (9) by a simple renormalization of the Fourier mag-
nitudes of the filters. To ensure that none of the filters degrade
to zero, we scale the filters to unit energy prior to the normal-
ization. Second, to minimize H(yi) in the objective, we adopt
the fixed-point iteration from [3]. Without loss of generality,
we can ignore all shifted copies of the filter except one, so that
we only need to perform the iteration once for each subband:

bk  bk Ez

�
g0(bTkz)

�� E
z

�
zg(b

T
kz)

�
, (10)

where bk is the filter bk(n) vectorized over its support, and
g and g0 are the first and second derivative of the the contrast
function, respectively. Note that the contrast functions used
in the literature typically assume that kbkk2 = 1. This is



Fig. 1. Complete CICA filter bank, computed for K = 16

and subsampling s = 4 along with the Fourier magnitudes.
The CICA transform consists of a whitening combined with
the filters shown here, whereas inversion of the transform re-
quires filtering and unwhitening.

only the case for complete or undercomplete U , thus renor-
malizing the rows before computing this step is an easy way
of improving convergence.

The filter coefficients can be translated arbitrarily without
affecting the result of the optimization, provided they remain
within the support. However, centering the filters within the
support helps to maximize the accuracy of the circulant ap-
proximation introduced above. This can be done by minimiz-
ing their group delay

dk(n) =

X

f

��˜bk(f)

�� ·
���

@

@f
arg

⇣
˜bk(f)ej2⇡fT

n

⌘���, (11)

where n is a discrete-valued shift index (which is circular in
the filter support). We find that using the principal value of the
complex argument, as well as a simple finite difference ap-
proximation of the gradient, works well in practice. Because
the shift is circular, shifting by too much in one iteration can
result in instabilities. Constraining each shift to a maximum
of one pixel prevents this and ensures a smooth interaction
within the optimization algorithm.

Collecting all the steps, we can summarize each iteration
of the convolutional ICA (CICA) algorithm as follows:

1. Fixed point iteration:

(a) 8k : bk  
�kbkk2

��1
bk

(b) 8k : bk  bk Ez

�
g0(bTkz)

�� E
z

�
zg(b

T
kz)

�

2. Enforce isometry:

(a) 8k : bk  
�kbkk2

��1
bk

(b) 8f :

˜bk(f) ˜bk(f)

�P
k |˜bk(f)|2��

1
2

3. Optimize group delay:

(a) 8k :

ˆ

nk  arg min

n

dk(n) over n 2 {�1, 0, 1}D

(b) 8k,f :

˜bk(f) ˜bk(f) exp(j2⇡fT
ˆ

nk)

If an overcomplete transform is undesired, the algorithm can
be modified to ensure orthogonality of U by regular subsam-
pling. Then, the following steps need to be replaced:

2. (b) 8f such that � 1
2s  fi < 1

2s , construct a matrix
of all aliased frequency bins ˜bk(f +

1
sm), enu-

merating k along the rows and all values of m

along the columns. Set all singular values to one.

3. (a) 8k :

ˆ

nk  arg min

n

dk(n) over n 2 {�s, 0, s}D

where s is the subsampling factor. If we set s =

D
p

K, the
result is a complete filter bank. By choosing arbitrary values
of s and K, the overcompleteness of the transform can be ad-
justed. Analogously, an extension to multiple input channels
is possible, such that, for example, RGB images or stereo-
phonic audio can be handled.

4. EXPERIMENTAL RESULTS

We implemented a stochastic version of the algorithm along
with an analogous implementation of fastICA, evaluating the
expectations in step 1(b) over a new set of random samples in
each iteration. All experiments were performed on a natural
image database [10].

Figure 1 shows all filters bk(n) and their Fourier spectra
for CICA with K = 16 and a subsampling factor of s = 4

in each direction (i.e., U is orthogonal). Unlike traditional
filter banks, the analysis and synthesis filters are not identical
up to a transpose, as they require whitening and unwhiten-
ing, respectively. Note that, like ICA, the algorithm is not
guaranteed to find a global minimum, but we find that results
appear qualitatively similar with different initializations. The
filters are generally nonuniform in angular bandwidth, and
quite broad in their spatial frequency response. Some of the
high frequency filters have near-identical Fourier amplitudes,
and appear as copies of each other shifted by amounts less
than the subsampling factor, suggesting a finer subsampling
grid. At values of K roughly greater than 12, the filters begin
to inhabit multiple scales, although this is difficult to observe
due to their radial broadness. Experiments with larger K and
on RGB data are shown at http://www.cns.nyu.edu/
˜

lcv/cica along with the full source code in the form of
an IPython notebook [11].

It can be misleading to compare the multi-information ob-
jective for linear transforms with different numbers of compo-
nents, especially in the overcomplete case. We avoid the prob-
lem by making comparisons only for complete transforms and
equal numbers of components. We compared a CICA filter
bank with K = 16 filters and subsampling of s = 4, amount-
ing to a total of 256 components over a support of 16 ⇥ 16

pixels, to an ICA matrix using the same support, number of
components, and contrast function. As shown in figure 2,
CICA yields overall slightly smaller values of the contrast
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Fig. 2. Comparison of response sparseness of 16 ⇥ 16 DCT,
Daubechies-4 wavelet, complete ICA (256 filters) and com-
plete CICA (K = 16, s = 4).

�10 �5 0 5 10

yk

100

101

102

103

p̂
(
y k

)
/p

L
a
p
la

ce
(
y k

)

CICA
ICA

Fig. 3. Histograms of the sparsest and least sparse compo-
nents of block ICA (top and bottom border of shaded light
green area) and CICA (borders of dark blue area) relative to a
Laplacian density (black line).

function, despite the fact that the number of trained param-
eters is N/K = 16 times lower than for ICA. This result is
consistent with figure 3, in which the histograms of the spars-
est and least sparse components of ICA vs. CICA are com-
pared. The sparsest of both methods appear similarly heavy-
tailed, whereas the least sparse components of ICA have sig-
nificantly lighter tails. The latter tend to correspond to com-
ponents near the block boundary.

Finally, we compared the computational complexity of
the two algorithms for the complete case. The reduction of
parameters in CICA yields a proportional reduction in mem-
ory requirements. As step 1 of the algorithm is adopted un-
changed from fastICA, the complexity of this part is reduced
by this same factor. The rest of the algorithm is dominated
by the enforcement of the isometry constraint. This requires
O(K) FFT operations of size N , each O(N log N); and
O(N/K) SVD operations of size K ⇥K, each O(K3

). The
complexity is therefore O(KN log N + NK2

). In contrast,
block ICA requires one orthogonalization operation of size
N ⇥ N . Orthogonalization can be achieved either by an
eigenvalue decomposition, by a Gram-Schmidt-like deflation
scheme, or by an iterative scheme [3]. All three methods can
be characterized as O(N3

). We empirically compared the
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Fig. 4. Empirical comparison of CPU timings for steps 2 and
3 (CICA) vs. three methods of orthogonalization.

CPU time spent in one execution of the latter three methods
to the overall CPU time spent executing steps 2 and 3 of the
CICA algorithm for K = 16 and s = 4. As evident from
figure 4, CICA is significantly more efficient than fastICA.

5. CONCLUSION

We have developed CICA, a convolutional formulation of
ICA, which is tailored for data with stationary statistics, and
yields a transform that is structured as a filter bank with ad-
justable overcompleteness, avoiding the artificial blocking
that is typically imposed on ICA solutions. The optimiza-
tion algorithm is analogous to that of fastICA [3], but is
approximately N/K times more efficient (when optimizing a
complete filter bank), where N is the size of the data vectors
and K is the number of subbands. When applied to a database
of natural images, the CICA-optimized filters produce coeffi-
cients with heavier-tailed distributions than those of standard
orthogonal wavelet or block DCT filters, and slightly better
ones than fastICA, despite a reduced parameter space.

Although the use of filter banks is widespread throughout
all branches of signal and image processing, they are gener-
ally not optimized for source statistics, but instead designed
to satisfy a set of desired constraints such as tiling of the
frequency domain, orthogonality, critical sampling, minimal
aliasing, vanishing moments, or efficient cascaded construc-
tion. One exception is the work of Sallee and Olshausen [12],
who optimized the sparsity of a multi-scale filter bank subject
to the subsampling structure of a pre-chosen multi-scale trans-
form (a steerable pyramid [13]). This constraint, however,
resulted in filters that were quite similar to those of the orig-
inal transform. The CICA formulation is more flexible, and
when applied to photographic images, the algorithm yields a
set of oriented bandpass filters that tile the Fourier plane dif-
ferently than those of conventional wavelets or other multi-
scale representations. We are currently exploring how these
solutions, as well as their usefulness in a number of applica-
tions, depend on the choice of constraints (whitening, number
of filters, subsampling factor, contrast function). We believe
that signal-optimized filter banks have the potential to give
substantial improvements across a broad range of image and
signal processing problems.
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