Pyramids and multiscale representations

Edward H. Adelsont, Eero P. Simoncellif and William T. Freeman

MIT Media Laboratory,

tBrain and Cognitive Sciences Department,

iElectrical Engineering and Computer Science Department
Cambridge, Massachusetts 02139

Introduction

Images are composed of features of many sizes, and there is no particular scale or spatial
frequency that has a special status in natural scenes. Therefore a visual system, whether
natural or artificial, should offer a certain uniformity in the representation and processing of
visual information over multiple scales.

Primate visual systems achieve a multiscale character in two ways. First, in the retina,
there is a continuous variation in the sizes of the receptive fields of ganglion cells, with the size
increasing roughly in proportion to distance from the fovea (and spatial resolution descreasing
accordingly); a similar scaling is reflected in cortex. And second, for a given patch of the visual
field there are numerous cells in striate cortex which are tuned for different bands of spatial
frequency. The decomposition of each part of the image into a set of spatial frequency tuned
responses seems to be critical to vision systems in nature, and has been found to be very useful
in many artificial settings as well.

One approach to understanding the issues that a natural vision system must face is to
build artificial systems and discover the power and limits of different representational schemes.
This paper will present a brief overview of some of the multiscale representations that we
have explored in our laboratory, and will describe some of the lessons we have learned about
representing and using multiscale image information. In this limited space it is impossible to
present much detail, so readers may wish to consult the original sources for further information.

Pyramids

A pyramid is a multiscale representation that is constructed with a recursive method that
leads naturally to self-similarity. The first basic idea is shown in figure 1, which shows a
“Gaussian” pyramid (Burt, 1981; Burt and Adelson, 1983). The original test image is convolved
with a low-pass filter and subsampled by a factor of two; the filter-subsample operation is
repeated recursively to produce the sequence of images shown. Such a pyramid can be useful
for operations that require access to information about low frequencies. The pyramid is also
highly efficient to compute.
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Figure 1: A 4-level gaussian pyramid constructed on a test image.

Figure 2 shows a “Laplacian” pyramid of the same image, in which a bandpass filter is used
rather than a low-pass filter. A Laplacian pyramid is a complete representation of an image,
in the sense that one can perfectly reconstruct the original image given the coefficients in the
pyramid. The reconstruction process is straightforward: one simply interpolates (“expands”)
each image up to the full size of the original image using the correct interpolation filter, and
then sums all of the interpolated images.

Figure 2: A 4-level laplacian pyramid constructed on a test image.

The hierarchical filtering procedures lead to equivalent filters which are illustrated in fig-
ure 3. The equivalent filters used in building the Gaussian pyramid are shown in figure 3(a),
while the equivalent filters used in building the Laplacian pyramid are shown in figure 3(b).

Completeness is a valuable property for a representation in early vision, not because a visual
system needs to literally reconstruct the image from its representation, but rather because
completeness guarantees that no information has been lost, i.e. that if two images are different
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Figure 3: (a) Five example basis functions of a four level Laplacian pyramid,
along with their Fourier transforms. (b) The corresponding inverse (sampling)
functions of the pyramid, with their Fourier transforms. The transforms are
plotted on a linear scale over the range from 0 to .

b)

then their representations are different.

A complete representation can also be used as a method of storing image information, and
the Laplacian pyramid offers an efficient means of storage (Burt and Adelson, 1983). The
image encoding procedure is as follows: first the Laplacian pyramid is constructed; then the
coeflicients in each level are quantized into a fairly small number of bins; then entropy coding
techniques such as Huffman coding are applied to the quantized values. Because the Laplacian
pyramid values tend to cluster around zero, and because the higher frequencies coefficients
tend to have low variance, this technique allows a 256x256 8-bit greyscale image to be stored
with about 1.5 bits per pixel with little degradation in image quality.

What can the research on image data compression tell us about multiscale representations
in biological system? A biological system is not trying to store an image for reconstruction
and display, and cannot use digital techniques such as Huffman coding to gain efficiency.
Nonetheless there are important lessons to be learned. The first task of most image coding
schemes is to find a representation that is robust and is well-matched to scene statistics. The
quantization step noted above leads to random perturbations in the pyramid coefficients, and
these perturbations translate into local contrast errors in the bandpassed images. In spite of the
random perturbations, it is possible to reconstruct the image with little degradation due to the
robust nature of the pyramid. Moreover we find that, from the standpoint of scene statistics,
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one can allow the perturbations to be quite large in the high frequency bands, while one needs
more accuracy in the medium and low frequency bands. For a biological representation this
means that it is possible to get away with noisy neurons without losing very much image
information, and that the representation of the high frequencies can be particularly tolerant
of error.

The efficiency of pyramid representation has relevance in other domains as well. For exam-
ple, many computational operations such as coarse-to-fine motion processing or stereo matching
can be accomplished very efficiently in a pyramid structure. Computational advantages will
also be found in such applications as texture analysis, orientation analysis, and pattern match-
ing. A pyramid typically uses as few coeflicients as are possible at a given scale, and this
reduces both the storage requirements and the number of operations that must be performed
in a given task.

Gabor Functions and Orientation Tuning

Orientation tuning is one of the most salient aspects of the cells found in striate cortex,
and so it would be useful to understand how to build and use oriented multiscale image repre-
sentations. Two-dimensional Gabor functions have been the most popular idealized receptive
field models (e.g. Granlund, 1978; Marcelja, 1980; Daugman, 1985). One difficulty with the
Gabor transform, at least in its original formulation, is that it is highly non-orthogonal. To
understand what this means, we have to discuss some general properties of linear transforms.

A linear transform expresses a given (discrete) signal, f(n), as a sum of a set of basis
functions, bi(n):
f(n) = Ec.-b,-(n)
i

In the familiar case of the Fourier transform, the b;(n)’s are sinusoids. The ¢;’s are the coeffi-
cients indicating the amount of each basis function that must be added in order to synthesize
the original signal.

The value of each coefficient ¢; can be determined by taking a weighted sum of the pixels
in the input signal, i.e. by taking a dot product of the input and a sampling function which
represents a “receptive field.” That is, for the ith coefficient there is a sampling function s;(n)

such that
ci =Y f(n)si(n)

In the case of an orthogonal transform, such as the Fourier transform, the sampling functions
3i(n) and the basis functions b;(n) are identical, so that one detemines the coefficient of a given
sinusoid by computing the dot product of the image with that same sinusoid. But in the case
of non-orthogonal transforms, the sampling and basis functions can be quite different.

The Gabor transform is invertible because its basis functions are linearly independent;
howevever it is not orthogonal and the sampling functions are quite different from the basis
functions. Figure 4 shows the Gabor basis functions, along with their Fourier transforms, and
also the inverse functions. The inverse set is quite poorly behaved and not at all like one
expects to find in a biological system. If one wants to use the Gabor functions as a basis
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set with which to build images, then one must derive the coefficients by applying the inverse
functions, i.e. one would have to use a visual system with these bizarre receptive fields. Or,
if one builds an image representation by applying the receptive fields comprising the Gabor
set, then the resulting coefficients implicitly represent the image as a sum of the unpleasant
inverse functions.

The original Gabor transform has some additional difficulties, one being that it is not self-
similar since all the Gabor functions are windowed by a Gaussian of the same width. Many
of the investigators who have used Gabor functions in their work have devised self-similar,
pyramid-like, approaches.
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Figure 4: (a) Five of the sixteen basis functions of a Gabor filter set, with
their corresponding Fourier transforms. (b) The inverse (sampling) functions
of the Gabor filter set. The transforms are plotted on a linear scale over the
range from 0 to = .

Quadrature Mirror Filter Pyramids and Wavelets

Is it possible to construct a representation that has many of the aspects of a self-similar
Gabor transform, and yet which is orthogonal? The answer is yes, as we will now discuss.

Quadrature mirror filters (QMF’s) are a class of band-pass filters that were described in the
speech domain by Croisier, Esteban and Galand (Croisier et. al., 1976; Esteban and Galand,
1977), and have more recently been applied to the decomposition of images (Vetterli, 1984;
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Woods and O’Neil, 1986; Adelson et al., 1987). Although the filters were originally developed
using signal processing concepts, they can be easily understood in terms of orthogonal linear
transforms (Simoncelli, 1988; Simoncelli and Adelson, 1990b). There has been considerable
theoretical and applied work on QMF’s in recent years, much of which is reviewed in a book
edited by Woods (Woods, 1990). In addition, it has been shown that QMF pyramids are a
discrete orthogonal form of wavelets (Mallat, 1989), and for image representation the terms
“wavelets” and “QMF’s” are sometimes used interchangeably.

Figure 5 shows a self-similar set of QMF’s derived from a basic one that has 9 coefficients.
These filters can be used as a self-similar basis set for an orthogonal pyramid, where the
sampling density of each level is one-half that of the previous level. The result is a pyramid
which is “critically sampled,” i.e. the number of coefficients is equal to the number of pixels
in the original image. The filters are not perfect, in that the reconstructed image will differ
from the original very slightly.

A
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Figure 3: Five of basis functions of a 9-tap QMF /wavelet pyramid transform,
along with their Discrete Time Fourier Transforms.

In addition to offering a self-similar orthogonal basis set, the QMF’s shown in figure 5 are
compact in both space and spatial frequency. Since they are (approximately) orthogonal, the
sampling functions are identical to the basis functions. Filters like these form a promising set
for application to many problems in image processing. Before one can apply them to images,
however, one must extend the one-dimensional functions into two dimensions.

The most straightforward method of two-dimensional generalization involves the separable
application of band-splitting QMF’s. The QMF’s shown in figure 5§ come in pairs, which split
the frequency band into high-pass and low-pass components. In two dimensions, such filters
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can be applied separably in the z- and y- dimensions to produce four filters, which may be
labeled low-low, low-high, high-low, and high-high. The low-high and high-low bands contain
oriented information about vertical and horizontal components of the image. The low-low
band contains low-passed information which can be further decomposed in the next level of
the pyramid. The high-high band contains a mixture of left and right diagonal information.
Figure 6 depicts this decomposition in the frequency domain. The separable decomposition
retains the orthogonality of the one-dimensional transform.

Figure 6: Idealized diagram of the partition of the frequency plane resulting
from a 4-level pyramid cascade of separable 2-band filters. The top plot repre-
sents the frequency spectrum of the original image, with axes ranging from —»
to x. This is divided into four subbands at the next level. On each subsequent
level, the lowpass subband (outlined in bold) is subdivided further.

A QMF pyramid built using filters of the sort described above turns out to be extremely
good for image data compression. Indeed, “subband coders” based on such pyramids are
among the best techniques known for efficient coding and are being widely investigated for
application in image archiving and digital video transmission.

In spite of its simplicity and its success in image coding, the separable approach has some
problems from the standpoint of vision systems. The high-high filter is not nicely oriented,
since it contains equal contributions from the two diagonal orientations. This problem is not
easily remedied; i.e. it is not easy to split the diagonal band into two oriented parts. Therefore
one must seek other approaches in order to achieve orientation specificity in all of the bands.

Simoncelli and Adelson (Adelson et al., 1987, Simoncelli and Adelson, 1990a) have described




10

E. H. Adelson, E. P. Simoncelli & W. T. Freeman

Figure 7: Construction of a 4-level QMF pyramid built on a test image.

a method of constructing QMF pyramids on a hexagonal lattice, in which the basis functions
are all of the same shape and are all well-tuned in orientation and spatial frequency. An
idealized frequency-domain decomposition is shown in figure 9. The actual frequency tuning
of a set of such filters is shown in 10. These filters, like those of the separable pyramid, change
scale by octaves from one level to the next.

The hexagonal QMF pyramid demonstrates that it is possible to capture many desirable
properties in a single representation. It is an orthogonal wavelet transform; it is complete and
is critically sampled, utilizing the same functions for basis functions and sampling functions.
The transform is self-similar: the basis functions are all of the same shape, but appear at
various sizes, positions, and rotations. The basis functions are smoothly overlapping and are
well localized in both space and spatial frequency; they also bear a certain resemblance to the
sort of functions that are used in modeling biological visual systems. One can use the hex
pyramid for some tasks in early vision (Simoncelli and Adelson, 1990a). The hex pyramid
is also a very good structure for image data compression, possibly better than the separable
QMF pyramid mentioned above.

An alternate structure for building hexagonal pyramids, but with non-overlapping filters,
has been described in (Crettez and Simon, 1982) and in (Watson and Ahumada, 1989). The
resulting filters display an unusual blocky structure. Although we have not made a direct
comparison, published results (Watson, 1990) suggest that image coding with these alternate
hex pyramids requires data rate that is 2 to 4 times higher than with our hex pyramid.

Steerable Pyramids

Although the hex QMF pyramid of figure 9 manages to achieve a great many desirable
properties, it does have its limitations. QMF’s violate the Nyquist criterion for sampling, and
are able to provide successful image representation because aliasing from adjacent bands has
opposite sign and therefore cancels during reconstruction. However, there is still aliasing within
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Figure 8: Data compression example using a four-level pyramid. (a) Original
“Lena” image at 256 x 256 pixels. (b) Compressed using 9-tap separable QMF
bank. The pyramid data was compressed to a total of 16384 bits (i.e. total
first-order entropy was 0.25 bit/pixel)

Figure 9: The low-pass and the three oriented high-pass bands of the hexag-
onal pyramid. Note that the high-pass subbands are not mixtures of different
orientations, as in the separable decomposition. This may improve performance
for coding and image analysis applications

Figure 10: The power spectra for a “4-ring” set of hexagonal QMF filters.
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a given band and this expresses itself as a lack of positional invariance in the representation.
The problem can be improved if the QMF’s have sharp-cut frequency responses, but then the
filters lose spatial localization and produce significant “ nngmg artifacts.

In fact, the very properties that tend to characterize good filters for data compression (sharp
frequency cut-offs with flat responses in between) cause problems for image analysis and early
vision applications. For example, in orientation analysis it is necessary that filter responses
be very smooth and without flat regions, in order that the population response to different
orientations should vary continuously as the orientation of the stimulus is varied.

An interesting class of filters that are well suited to orientation analysis are “steerable
filters” (Freeman and Adelson, 1990). A small bank of these filters (say, 4), tuned for different
orientations, can be used to analyze an image. Then if one wishes to know the response of a
filter of arbitrary orientation, one can compute it as a linear combination of the responses of the
original filters. Thus one can derive information about a continuum of possible oriented filters
by the application of only a few. The concept can also be extended to allow steerability in phase
as well as orientation: by applying the correct set of basis filters, with appropriate orientations
and phases, one can synthesize the response of a filter at an arbitrary orientation and phase.
One can also extract local energy measures, find the direction of maximal orientation strength,
and so on, all from the same basic set of measurements.

Figure 11 (a) shows a bank of steerable filters. These particular filters were designed with
one more criterion in mind, namely, that they should be useful for constructing a steerable
pyramid decomposition. Indeed, these particular filters were designed to allow the construction
of a self-inverting decomposition, which is to say that they were designed so that the basis
functions and the sampling functions would be identical. A pyramid can be constructed from
either the even or the odd phase filters.

Since the steerable filters are not orthogonal, the self-inverting property must be enforced
through other means. We use a highly overcomplete set, and design the filters to “tile” in the
frequency domain; i.e. the summed spectral power of the multiple bands and orientations is
forced to be flat. \

Figure 11 shows a steerable pyramid decomposition of a test image (which has been pre-
filtered for reasons that will not be discussed here). The original image is shown in Fig. 11(b);
the various levels and orientations are shown in (c), (d), and (e). Because the filters are
smooth and their outputs are oversampled, the responses shown here are also quite smooth
and well-behaved.

The steerable pyramid is much less efficient than the hex QMF pyramid, both from the
standpoint of representation and computation. However, the filters are well-suited to such
tasks orientation analysis, edge detection, and image enhancement.

Figure 12(a) shows a picture of Einstein, and figure 12(b) shows an orientation analysis
applied to the same image. At each point the orientation of the line segment shows the direction
of maximal orientation strength, and the length of the line segment shows the magnitude. The
orientation and strength were calculated from the outputs of a pair of even and odd phase
steerable filters, similar to the odd phase filters of Figure 11(a) (Freeman and Adelson, 1990)
(cf. Knutsson and Granlund, 1983).
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Figure 11: (a) Basis filters for steerable pyramid. Combinations of the filter
at these four orientations span the space of all rotations of the filter. (b) Test
image. (c) Low-pass image at top of multi-scale pyramid representation of (b).
(d) - (f) Steerable, bandpass coefficients in pyramid representation. A linear
combination of the transform coefficients will synthesize the response of the
analyzing filter at any angle.

Figure 13 shows an example of image enhancement with steerable filters. The original image
is a digital cardiac angiogram-an X-ray of a heart. The orientation was analyzed, and then a
filter was applied along the direction of maximal orientation in order to enhance the oriented
information. A local gain control was then applied to normalize contrast. The result is shown
in Fig. 13. Linear structures, which are the ones of greatest interest here, are greatly enhanced
in visibility.

Conclusions

Multiscale image representations are useful in a wide variety of vision tasks, and pyramids
offer a highly convenient approach to the computation and utilization of multiscale processing.
Research in pyramid image representation has revealed some of the strengths and limitations
of various kinds of representaitons. Laplacian pyramids are complete and are fairly efficient
for image coding, and are useful for front-end processing in various aspects of early vision. Im-
proved coding efficiency can be achieved with QMF pyramids, which are built with orthogonal
basis functions; QMF pyramids lead to discrete orthogonal wavelet transforms. By adopting
a sampling structure based on a hexagonal lattice it is possible to build QMF pyramids in
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(@) (b)

Figure 12: (a) Original image of Einstein. (b) Orientation map of (a).

which all of the basis functions are well-tuned in orientatjon and spatial frequency. We have
recently explored new form of pyramid based on steerable filters, which is less efficient for
coding but is well-suited to such tasks as orientation analysis, edge-detection, and image en-
hancement. The knowledge gained from computational experiments with pyramids may be
helpful in understanding the representational issues faced by biological visual systems.
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