Zahra Kadkhodaie¹ Florentin Guth² Stéphane Mallat^{3,4} Eero P. Simoncelli^{4,5}

¹CDS, New York University, zk38@nyu.edu

²DI, ENS, CNRS, PSL University, Paris, France

³Collège de France, Paris, France

⁴Flatiron Institute, New York, USA

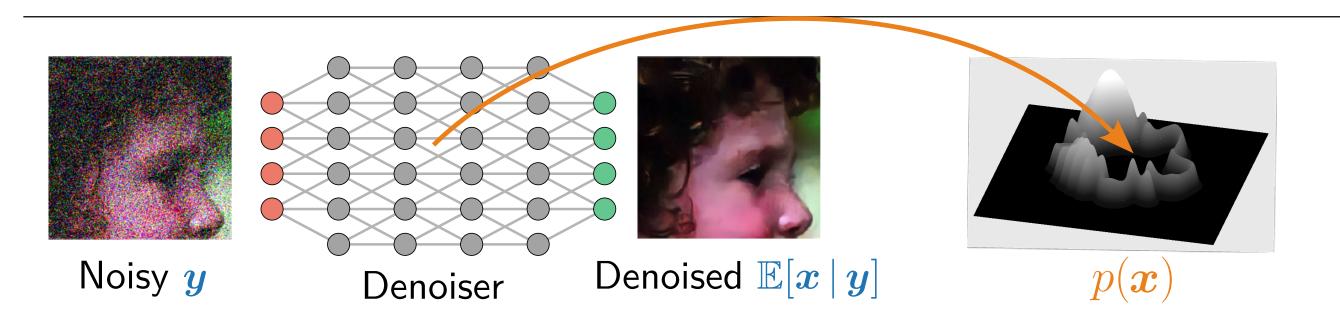
⁵CNS, Courant, and CDS, New York University

(top 25%)

Summary

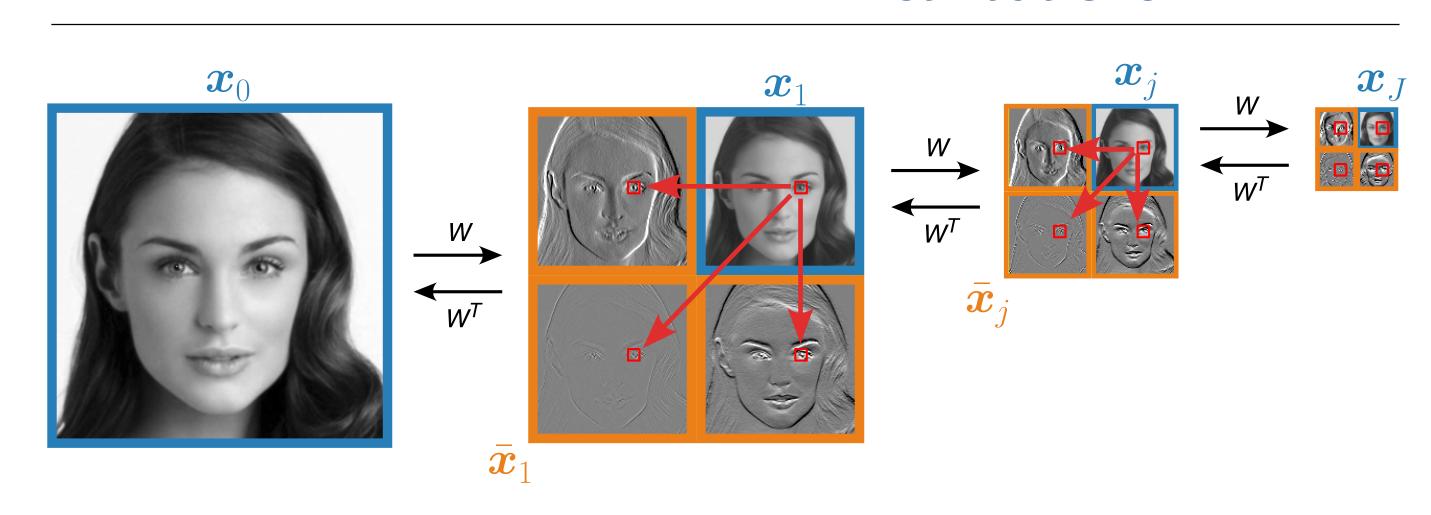
- How do score-based models manage to overcome the curse of dimensionality?
- Networks require global receptive fields to capture global spatial dependencies
- We show that these global dependencies become local after a multiscale factorization of the probability distribution
- We obtain high-resolution denoising, super-resolution, and synthesis results with local conditional networks at each scale

Denoising and Score-Matching



- A denoiser is a tool to learn priors: $\mathbb{E}[\boldsymbol{x} \mid \boldsymbol{y}] = \boldsymbol{y} + \sigma^2 \nabla \log p(\boldsymbol{y})$ (Miyasawa 1961; Tweedie (via Robbins) 1956; Raphan & Simoncelli 2006; Vincent 2011)
- By using $\nabla \log p(y)$, we can synthesize images by doing gradient ascent on the log-probability
- This fails if the denoiser receptive field is smaller than the image size!

Wavelet Conditional Distributions

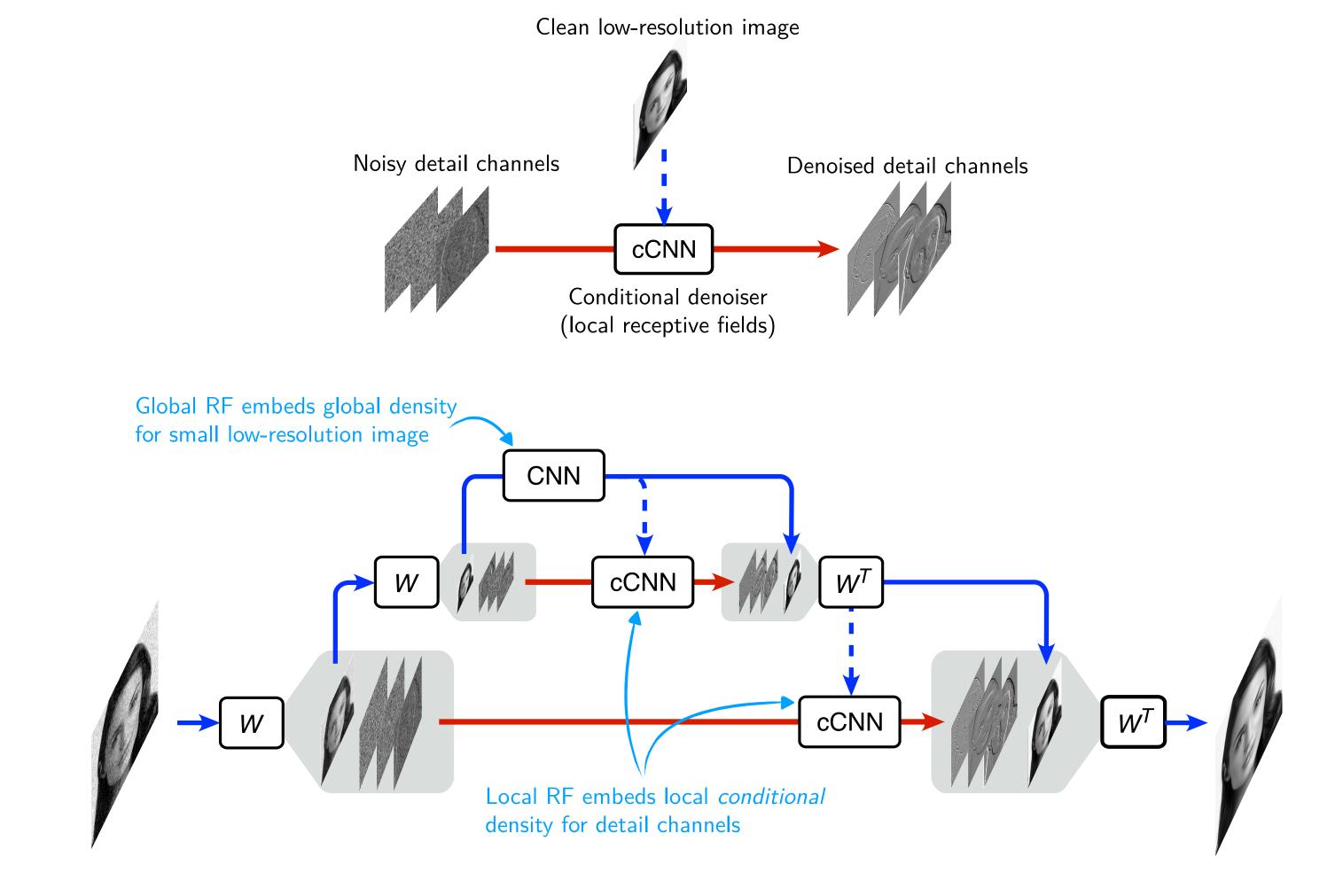


ullet The probability distribution of the entire image $oldsymbol{x}_0$ can be factorized as a product of conditional probabilities at each scale:

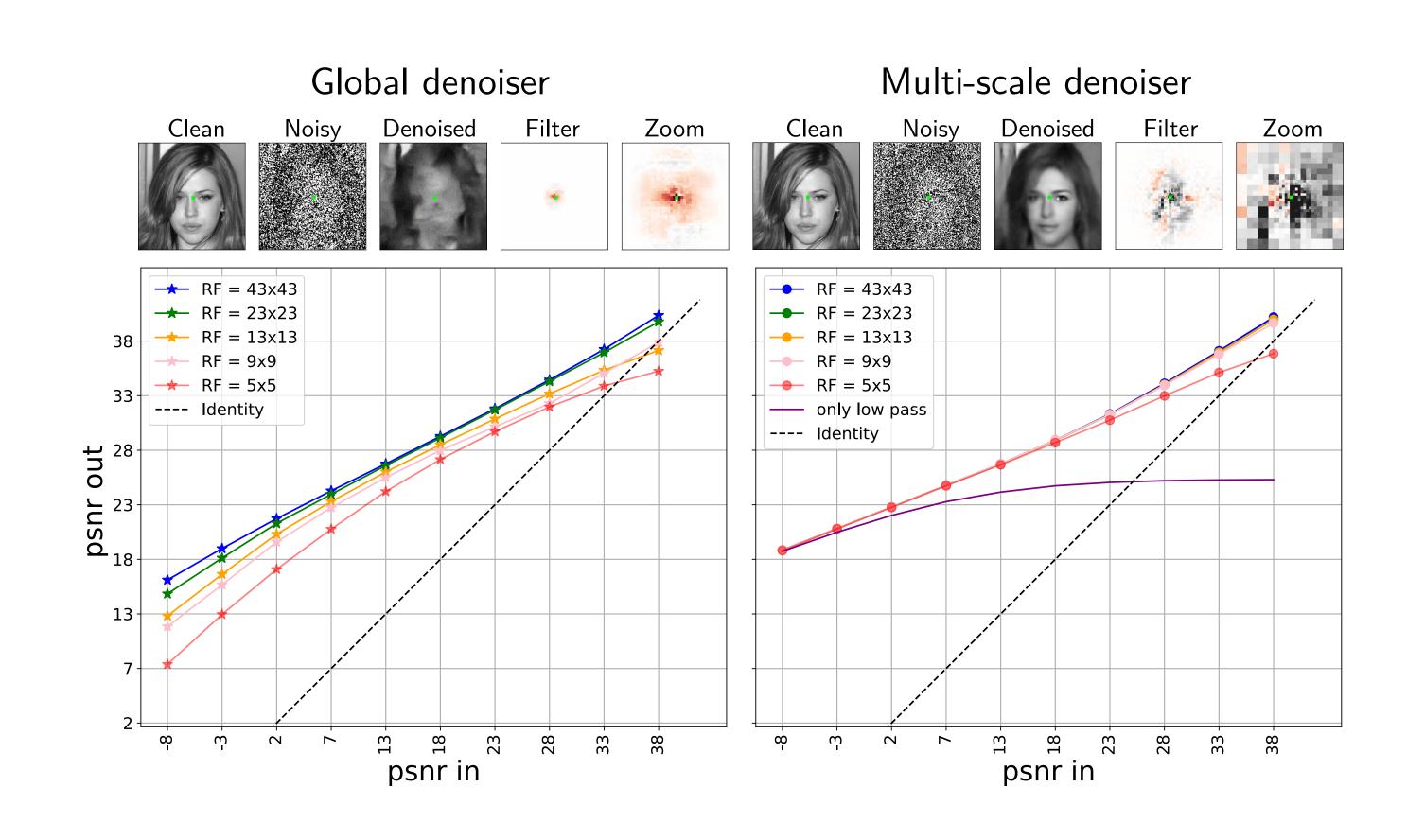
$$p(\mathbf{x}_0) = p(\mathbf{x}_1, \bar{\mathbf{x}}_1) = p(\mathbf{x}_1) p(\bar{\mathbf{x}}_1 | \mathbf{x}_1) = p(\mathbf{x}_J) \prod_{i=1}^{J} p(\bar{\mathbf{x}}_j | \mathbf{x}_j).$$

- This suggests first generating the lowest-resolution image x_J and iteratively increasing the resolution by conditionally generating details $\bar{m{x}}_i$
- **Theorem:** Restricting the receptive fields of the denoisers is equivalent to enforcing a Markov property on $\bar{\boldsymbol{x}}_i$ given \boldsymbol{x}_i

Multi-Scale Local Conditional Denoising

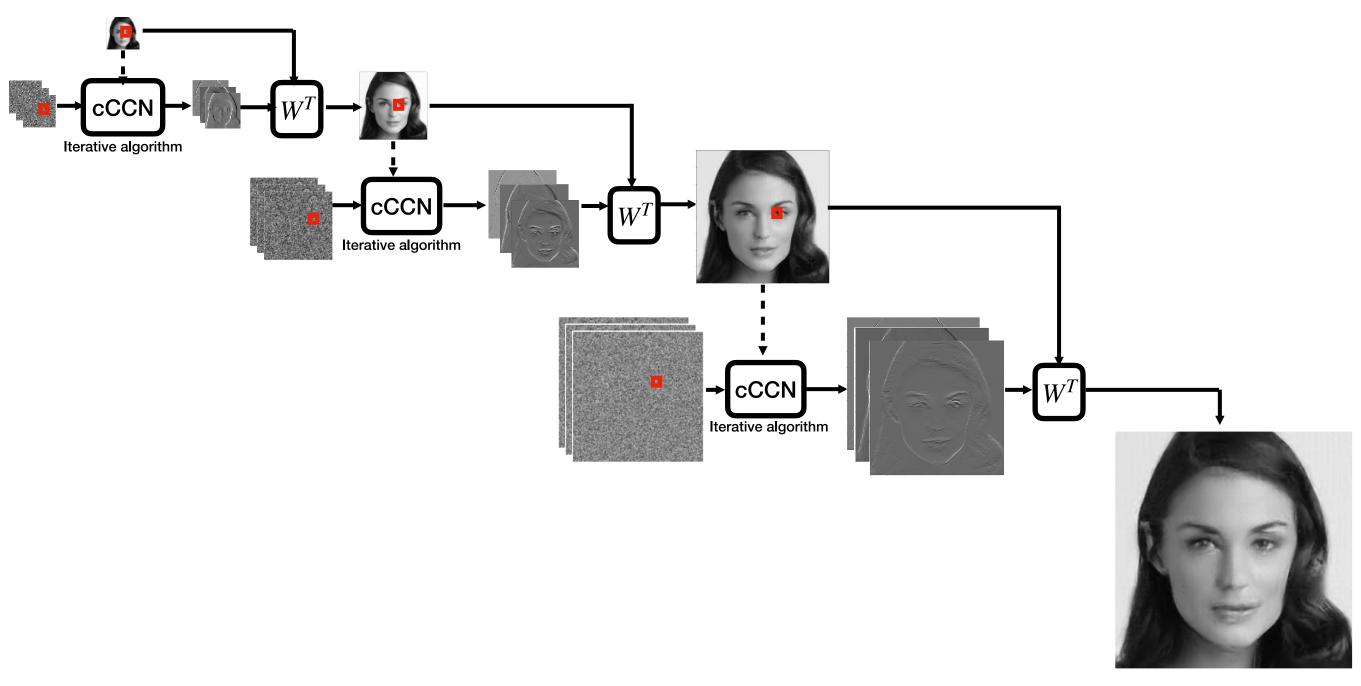


- We evaluate the denoising performance of the conditional denoisers
- Their receptive fields can be reduced to 9×9 without harming performance



PR[AI]RIE

Super-Resolution and Synthesis



- The conditional denoisers can be used to perform super-resolution and image synthesis
- The global structure is captured with a global prior on the small low-pass image

