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Summary Multi-Scale Local Conditional Denoising Super-Resolution and Synthesis

* How do score-based models manage to overcome the curse of Clean low-resolution image
dimensionality?

Iterative algorithm

= Networks require global receptive fields to capture global spatial
dependencies
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Iterative algorithm

= We show that these global dependencies become local after a
multiscale factorization of the probability distribution

= We obtain high-resolution denoising, super-resolution, and synthesis

results with local conditional networks at each scale Global RF embeds global density
for small low-resolution image ~ g

Iterative algorithm

Denoising and Score-Matching
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= A denoiser is a tool to learn priors: Elxz |y| =y + o°V log p(y)
(Miyasawa 1961; Tweedie (via Robbins) 1956; Raphan & Simoncelli 2006; Vincent 2011)

« By using V 102 1(7/), we can synthesize images by doing gradient ascent = We evaluate the denoising performance of the conditional denoisers

on the log-probability = Their receptive fields can be reduced to 9 x 9 without harming
performance

= This fails if the denoiser receptive field is smaller than the image size!
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= This suggests first generating the lowest-resolution image a ; and
iteratively increasing the resolution by conditionally generating details x,
) _ i . - - - ™ FLATIRON 5 —
Theorem: Restricting the receptive fields of the denoisers is equivalent q\ NSTITUTE . Q ' R E

to enforcing a Markov property on =, given x,
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