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Abstract

We consider the problem of estimating neural spikes fromaextlular voltage
recordings. Most current methods are based on clusterihgsharequires sub-
stantial human supervision and systematically misharidieporally overlapping
spikes. We formulate the problem as one of statistical erfee, in which the
recorded voltage is a noisy sum of the spike trains of eachomezonvolved with
its associated spike waveform. Joint maximum-a-posteiidAP) estimation of
the waveforms and spikes is then a blind deconvolution prabin which the
coefficients are sparse. We develop a block-coordinateedégrocedure to ap-
proximate the MAP solution, based on our recently develaoppeti nuous basis
pursuit method. We validate our method on simulated data as welladeta
for which ground truth is available via simultaneous ingthdar recordings. In
both cases, our method substantially reduces the numbeissethspikes and
false positives when compared to a standard clusteringitiigg primarily by
recovering overlapping spikes. The method offers a fullpmated alternative to
clustering methods that is less susceptible to systemaiticse

1 Introduction

The identification of individual spikes in extracellulamngcorded voltage traces is a critical step in
the analysis of neural data for much of systems neuroscieBoe or more electrodes are embed-
ded in neural tissue, and the voltage(s) are recorded ascéidarof time, with the intention of
recovering the spiking activity of one or more nearby celisich spike appears with a stereotyped
waveform, whose shape depends on the cell morphology, therfg properties of the medium and
the electrode, and the cell’'s position relative to the etet#. The “spike sorting” problem is that
of identifying distinct cells and their respective spikenéis. This is a difficult statistical inverse
problem, since one typically does not know the number océtie shapes of their waveforms, or
the frequency or temporal dynamics of their spike traing (4¢for a review).

The observed voltage is well-described as a linear supitigmosf the spike waveforms [1, 2, 3, 4],
and thus, the problem bears resemblance to the classiegperemposition problem in signal pro-
cessing and machine learning, where the neural waveforethar“features” and the spike trains
are the “coefficients”, with the additional constraint ttie¢ features are unknown but convolutional,
and the coefficients are mostly zero except for a few that Exgecto one. This sparse blind de-
convolution problem arises in a variety of contexts othemtlspike sorting, including radar [5],
seismology [6], and acoustic processing [7, 8].



Most current approaches to spike sorting (with notable ptors [9, 10]) can be summarized in
three steps ([1, 2]): (1) identify segments of neural agtie.g., by thresholding the voltage), (2)
determine a low-dimensional feature representation fes¢hsegments (e.g., PCA), (3) cluster the
segments in the feature space (eigmeans, mixture of Gaussians). Fig. 1 illustrates a simple
version of this procedure. Segments within the same clastinterpreted as spikes of a single
neuron, whose waveform is estimated by the cluster centiidics method works well in identifying
temporally isolated spikes whose waveforms are easilyngdistshable from background noise and
each other. However it generally fails for segments coirigimore than one spike (either from the
same or different neurons), because these segments de etide to the clusters of any individual
cell [1]. This is illustrated in Figs. 1(b) 1(c), and 1(d). &eal state-of-the-art methods improve
or combine upon one or more of these steps (e.g., [11, 12)emoain susceptible to these errors
because they still rely on clustering. These errors areesyatic, and can have important scientific
consequences. For example, an unresolved question inguéemce is whether the occurrence of
correlated or synchronous spikes carries specializedrrdtion [13, 14]. In order to experimentally
address this question, one needs to record from multipleonsyand to accurately obtain their joint
spiking activity. A method that systematically fails forrmhronous spikes (e.g., by missing them
altogether, or by incorrectly assigning them to anotheraeuwill lead to erroneous conclusions.

Although the limitations of clustering methods have beeavim within the neuroscience commu-
nity for some time [1, 2, 15, 16], they remain ubiquitous. d®téooners have developed a wide
range of manual adjustments to overcome these limitativos) adjusting the electrode position
to isolate a single neuron, to manually performing the elisy for spike identification. However,

previous studies have shown that there is great variabilitpanual sorting results [17], and that
human choices for cluster parameters are often suboptit8hl As such, there is a need for a fully
automated sorting method that avoids these errors. Thid isd@ecoming ever more urgent as the
use of multi-electrode arrays increases ([19]): manuahpater selection for a multi-dimensional
clustering problem becomes more difficult and time-consgnais the number of electrodes grows.

We formulate the spike sorting problem as a Bayesian estmatoblem by incorporating a prior

model for the spikes and assuming a linear-Gaussian modildaecording given the spikes [2, 4].
Although the generative model is simple, inferring the spilknes and waveforms is challenging.
We approximate the most likely spikes and waveform shapendhe recording (i.e. the maximum-
a-posteriori, or MAP solution), by alternating betweenvaag for the spike times while fixing the

waveforms and vice versa. Solving for optimal spike timed amplitudes with fixed waveform

shapes is itself an NP-hard problem, and we employ a novdiadetalled continuous basis pursuit
[20, 21], combined with iterative reweighting techniguesapproximate its solution. We compare
our method with clustering on simulated and real data, destnating substantial reduction in spike
identification errors (both misses and false positivesYi@darly when spikes overlap in the signal.

2 Model of voltage trace

The major deficiency of clustering is that each time segnsmiddeled as a noisy version of a single
centered waveform rather than a noisy superpositiomwfiple, time-shifted waveforms. A simple
generative model for the observed voltage tréi¢e) is summarized as follows:

N K,
V) = DY aniWalt — i) +0(t) )
n=11i=1
{rni}E ~  Poisson Process(\,,) n=1,..,N
{ani} B~ N(1,62) n=1,..,N )

In words, the spikes are a Poisson processes with known fatgsand amplitudes independently
normally distributed about unity. The trace is the sum ofucdutions of the spikes with their re-
spective waveform3V = {W,,(t)}_, along with Gaussian noisg(t) (note: other log-concave
noise distributions can be used). Hekg, is the (Poisson-distributed) number of spikes oftfta

waveform in the signal. Thus, the model accounts for sugmwgad spikes, variability in spike
amplitude, as well as background noise. The model can ebsilgeneralized to multielectrode
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Figure 1: lllustration of clustering on simulated data. Thyeshold/windowing procedure. Peaks are
identified using a threshold (horizontal lines) and wind@se drawn about them (vertical lines) to
identify segments. (b) Plot of the segments projected dwditst two principal components. Color
indicates the output df-means clusteringi{= 3). (c) The top-left plot shows the true waveforms
used in this example. The other plots indicate the wavefavimsse projections are the black points
in (b).(d) Another example of simulated data with a singlghlaisic waveform (not shown). The
projections of the spikes can have a non-Gaussian distiibih PC space. Two clusters arise
because the waveform has two peaks around which the segozanibe centered.

recordings by making/(t) and thelV,,(¢)'s vector-valued, but to simplify notation we assume a
single electrode. Note also that since the model desciiteefutl voltage trace, it does not require a
thresholding/windowing preprocessing stage, which cad te additional artifacts (e.g., Fig 1(d)).
The priors on the spike trains account for the observed biitiain spike amplitudes and aver-
age spike rates with minimal assumptions. We are interéatdte maximum-a-posteriori (MAP)
solution of the waveforms and spike times and amplitudesrgifie observed voltage trabdt):

e me  Pllanh {ru}, WIVIED) -
= argmax  1og(P(V(t){ani}, {ui}, W) +Log(P({ani} {7}, W)
{ani } {Tni}, W

In the following sections, we describe a procedure to agprate this solution.

3 Inference methods
3.1 Obijective function
MAP estimation under the model described in Eq. (2) and Exbdils down to solving:
min 1HV(t)—Za W (t—704) |3 —|—Z M + 1log(27r62) —log(M\n)| (4)
{ani}7{7—ni}~,w 2 - n n n 2,2 - 26721 2 n n

where||Z|s.s = ||X~'/2#|, and¥ is the noise covariance. Direct inference of the paraméseas
highly nonlinear and intractable problem. However, we caketthe problem tractable by using a



linear representation for time-shifted waveforms. Theest such representation uses a dictionary
containing discretely time-shifted copies of the wavefstimemselve$V,, (t —iA)},, ;. We chose

to use a more accurate and efficient dictionary to represmrttriiously time-shifted waveforms in
the context of sparse optimization, which relies on trigoetrically varying coefficients [21]:

N K, N Cp(t —iA) i
Z aniWo(t —Thi) = Z Z ( Un(t —iA) ) AniTn COS(%"Q") (5)
n=1i=1 n=1 i Vo (t —iA) QT sin(Zaife )
N Cp (t - ZA) Tnil
= > > ( Un(t —iA) ) ( Lo ) = (dwi) (1)
n=1 1 n(t - ZA) Tni3

The dictionary®wy contains shifted copies of the functioﬁa( ), Un(t), Vs, (t) that approximate
the space of time-shifted waveforms. The functiéhgt), U, (t), andV (t), as well as the constants
r, andé,, depend on the wavefori?/,, (¢) and are explamed in Fig. 2(b). We can then solve the
following optimization problem:

Tpio > Ty €O8(0n)Tnit, Vn, 1

in F'(, W) such that . 6
1%11\1{/1 ('T7 ) su vV -’If72”-2 + 1‘2”5 < TnTnil, VTLZ ( )

where F(Z, W) = %IIV@) —(@wd)(B)s — > 1og (1~ MA)5(zni1) + (Anl)y ez (i)

n,t

where¢,, ,2(.) is the Gaussian density function.The constraintstdn Eq. (6) ensure that each
triplet (x,,1, Tniz, Tnis) 1S consistent with the mapping defined in Eq. 5, with; being the ampli-
tude andﬁatan (xni3/xni2) being the time-shift associated with the wavefdifi (¢) (see [21]
for a detailed development of this approach). The consrhiegion, denoted by, is convex and
is illustrated as sections of cones in Fig. 2(c). Note thathaee used the Bernoulli discrete-time
process with a spacingy (matching the interpolation dictionary spacing) to appmmate the Poisson
process described in Eq. (2). Even with this linear repriegiem, the problem is not jointly convex
in W andZ, and is not convex i¥ for fixed W. The optimization of Eq. (6) resembles that of [22]
and other sparse-coding objective functions with the feithgy important differences: (1) the dictio-
nary is translation-invariant and interpolates contirmtime-shifts, (2) there is a constraint on the
coefficientsz due to the interpolation, and (3) there is a nonconvex mexguior on the coefficients
to model the spike amplitudes. We propose a block coordideseent procedure to solve Eq. (6).
After initializing W randomly, we iterate the following steps:

1. GivenW, approximately solve fof.
2. Perform a rescaling,,;; < l—J and W, (t) «— z,W,(t) where thez,’s are chosen to

opumaeF({“”} {znWo(t )})

3. Given#, solve forW, constraining|W,,(t)||2 to be less than or equal to its current value.

The first step minimizes successive convex approximatién® and is the most involved of the
three. The second is guaranteed to decrdasend amounts tdV scalar optimizations. The final
step minimizes the first term with respect to the waveformaenkeeping the second term constant,
and amounts to afip-constrained least squares problem (ridge regressionxémabe solved very
efficiently. The following sections provide details of eauftthe steps.

3.2 Solve spikes given waveforms

In this step we wish to minimize the functidn(-, W) while ensuring that the solution lies in the
convex set. However, this function is nonconvex and nonsmooth duedsétond term in Eq. (6).

This especially causes problems when the current estinoht@s are far from the optimal values,

since in this case there are many intermediate amplitudegeka0 and1. To get around this, we

replace each summand in the second term by a relaxation:
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Figure 2: (a) lllustration of the circle approximation inl2 The manifold M of translates of a
function f(t) lies on the hypersphere since translation preserves ndank(lcurve). This can be
locally approximated by a circle (red curve). The approXiorais exact at 3 equally-spaced points
(black dots). (b) Visualization in the plane on which thesthitranslates of (¢) lie. The quantities

r andf can be derived analytically for a fixef{¢) and spacing\. (c) These circle approximations
can be linked together to form a piecewise-circular appr@ation of the entire manifold.

G(xpi1) = —log ((1 - )\HA)/O %e_ = P(y)dy + (AnA)or ez (»Tm‘l)> (7

which replaces the delta function @twith a mixture of exponential distributions. We chose the

parametery to be Gamma-distributed about a fixed small value. We solgeaibproximation using

an iterative reweighting scheme.The weights are initelito be uniformwfg) = Apn, Vn,i. Then

the following updates are iterated computed:

" 1 -
#HD — argmin 2| V(1) — (@w)(1)3 + D wy [wan] (®)
zec i
(t+1)
(1) Gt )
Wi - J}(t+1) (9)

nil

Eq. (8) is a convex optimization that can be solved efficierithe weights are updated so that the
second term in Eq. (8) is exactly the negative log prior philitst of the previous solutior™®. If a
coefficient is0, its weight isco and the corresponding basis function is discarded. Sucbigiing
procedures have been used to optimize a nonconvex funcyi@enderies of convex optimizations
[23, 24, 25]. Although there is no convergence guarantedingehat it works well in practice.

3.3 Solve rescaling factors

The first term of F'(Z, {W,(t)}) does not change by much if one divides the coefficients by
somez,, and multiplies the corresponding waveform by®. The second term does change under
such a rescaling. In order to avoid the solution where theafgamns/coefficients become arbitrarily
large/small, respectively, we perform a rescaling in a sspastep and then optimize the waveform
shapes subject to a fixed norm constraint (described in theseetion). Since the second term
decomposes into terms that are each only dependent on,gnee can independently solve the
following scalar optimizations numerically:

1 Tnil ni
Zp — arg maleog ((1 — A)\n)gef T+ ANy e2 (:cz 1)) n=1,.,N (10)

z2>0

These are essentially maximum likelihood estimates of théedactors given fixed coefficients and
waveform shapes. One then performs the updates:

Lf & is linear inW, there is no change. For our choice®{y, there is a small change of orde(A).



- Vi, j (11)
Zn

Wa(t) — z.Wa(t)  Vn 12)

Tnij

This step is guaranteed not to increase the objective in@gcsilice the first term is held constant
(up to a small error term, see footnote) and the second tenmatancrease.

3.4 Solve waveforms given spikes

Given a set of coefficients, we can optimize waveform shapes by solving:

. 1 - 2
w51V — (@wa)()]; (13)
wherek; is the current norm ofi’;(¢). The constraints ensure that only the waveform shapes ehang
(ideally, we would like the norm to be held fixed, but we relaxd an inequality to retain convexity),
leaving any changes in scale to the previous step. Silger)(¢) is approximately a linear function
of the waveforms, Eq. (13) is a standard ridge regressiobleno. Efficient algorithms exist for
solving this problem in its dual form ([26]). This step is gaateed to decrease the objective in
Eq. (6) since the second term is held constant and the first¢an only decrease.

4 Results

We applied our method to two data sets. The first was simukatedrding to the generative model
described in Eq. (2-1). The second is real data from Harr&.eff18]) consisting of simultaneous

paired intracellular/extracellular recordings. Theauellular recording provides ground truth spikes
for one of the cells in the extracellular recording.

4.1 Simulated data

We obtained three waveforms from retinal recordings madeerChichilnisky lab at the Salk Insti-
tute (shown in Fig. 3(a)). Three Poisson spike trains wemgpdad independently with ratd — p) Ao

with Ay = 10Hz. To introduce a correlation ¢f = % we sampled another Poisson spike train with
rate p)\o and added these spikes (with random jitter) to each of theique three trains. Spike
amplitudes were drawn frotV'(1, 0.12). The spikes were convolved with the waveforms and Gaus-
sian white noise was added (withsix times the smallest waveform amplitude). For clusterthg
original trace was thresholded to identify segments(thestiold was varied in order to see the error
tradeoff). PCA was applied and the leading PC’s explaififg of the total variance were retained.
K-means clustering was then applied (with= 3) in the reduced space.

To reduce computational cost, we applied our method to idisgegments of the trace, which were
split off whenever activity was less th&a for more than half the waveform duration (about 4ms).
The waveforms were initialized randomly aftiy) was Gamma-distributed with me&r0005 and
coefficient of variatior®).25 (in Eq. (7)) for all experiments. The waveforms were allowedhange
in length by adding (removing) padding on the ends on eacétitm if the values exceeded (did not
exceed) 5% of the peak amplitude (similar to [7]). Padding added in increments of 10% of the
current waveform length. Convex optimizations were perfed using th&€&VX package ([27]). The
learned waveforms and spike amplitude distributions aevshin Fig. 3. The amplitude distribu-
tions are well-matched to the generative distribution®\ghin red). To evaluate performance, we
counted missed spikes (relative to the number of true spédmsfalse positives (relative to the num-
ber of predicted spikes) for clustering and our method. Weedathe segment-finding threshold for
clustering, and the amplitude threshold for our algoriththe error tradeoff is shown in Fig. 4(a),
and indicates that our method reduces both types of errors.

To visualize the errors, we chose optimal thresholds foheaethod (yielding the smallest number
of misses and false positives), and then projected all setgnused in clustering onto the first two
principal components. We indicate by dots, open circles, @osses the hits, misses, and false



positives, respectively (with colors indicating the wawef). For the same segments, we illustrate
the behavior of our method in the same space. Note that uclliigtering, our method is allowed to
assign more than one spike to each segment. The visualizatghown in Figures 4(b) and 4(c),
and shows how clustering fails to account for the superiragapikes, while our method eliminates
a large portion of these errors. We found that this improvetmeas robust to the amount of noise
added to the original trace (not shown).
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Figure 3: (a) Three waveforms used in simulations. (b)Yd¢Histograms of the spike amplitudes
learned by our algorithm of the blue,green, and red wavesonespectively. The amplitudes were
converted into unitg by multiplying them by the corresponding waveform ampléadthen divid-
ing by the noise standard deviation. The red line indicdtesgenerative density, corresponding to
a Gaussian with meahand standard deviatidh1.
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Figure 4: (a) Tradeoff of misses and false positives as tgmsat-identification threshold in clus-
tering is varied (blue), and the amplitude threshold for m@thod (red) is varied. Diagonal lines
indicate surfaces with equal total error. (b),(c) Visuatian of spike sorting errors for clustering
(b) and our method (c). Each point is a threshold-crossiggeat in the signal, projected onto the
first two principal components. Dots represent segmentse/icomposite spikes were all correctly
identified, with the color specifying the waveform (see F3¢n)). Open circles and crosses repre-
sent misses and false positives, respectively. The thigdsheere optimized for each method, and
correspond to the enlarged dots in (a).

4.2 Realdata

We used one electrode from the tetrode data in [18] to simplif analysis. The raw trace was high-
pass filtered§00Hz) to remove slow drift. The noise standard deviation waisredged from regions
not exceeding three times the overall standard deviatioe. th¢n repeated the same analysis as
for the simulated data. The resulting waveforms and coefiitsi histograms are shown in Figure 5.
Unlike the simulated example, the spike amplitude distidms are bimodal in nature, despite the
prior amplitude distribution containing only one Gaussiaite first focus on the high-amplitude
groups (2 and 4), both of which are well-separated from tlweiramplitude counterparts (1 and
3), suggesting that an appropriately chosen thresholddyanalvide accurate spike identification for
the ground-truth cell (4). Figure 6(a) confirms this, shaythat our method provides substantial
reduction in misses/false positives. Figures 6(b) and $ifopv that, as before, the majority of this
reduction is accounted for by recovering spikes overlagpiith those of another cell (group 2).
The low-amplitude groups (1 and 3) could arise from backgdocells whose waveforms look like
scaled-down versions of those of the foreground cells 2 aldu$ creating secondary “lumps” in
the amplitude distributions. The projections of the evémtiese groups are labeled in Figures 6(b)



and 6(c), showing that it is unclear whether they arise franig@or one or two background cells. It
is up to the user whether to interpret these badly-isolatedygs as cells.
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Figure 5: (a) Two waveforms learned from CBP. (b),(c) Dimitions of the amplitude values for
the blue and green waveform, respectively. The numbers thibtinct groups of amplitudes that
could be treated as spikes of a single cell. Group 4 corregptmthe ground truth cell. Group 2
corresponds to another foreground cell. Groups 1 and 3/lid@irespond to a mixture of background
cell activity and noise. The groups are labeled in PC-spa&égures 6(b) and 6(c).
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Figure 6: (a) Error tradeoff as in Fig. 4(a). The blue, gresmm] red curves are results fmeans
clustering for different:. (b) lllustration of clustering errors in PC-space, with- 4 and a threshold
corresponding to the large red dot in (a). (c) Errors for owtimed with threshold corresponding
to the large black dot. The numbers show the approximatedittan PC-space of the amplitude
groups demarcated in Figures 5(b) and 5(c).

5 Discussion

We have formulated the spike sorting problem as a maximysosteriori (MAP) estimation prob-
lem, assuming a linear-Gaussian likelihood of the obsetxack given the spikes and a Poisson
process prior on the spikes. Unlike clustering methods,ntloelel explicitly accounts for over-
lapping spikes, translation-invariance, and variabiiityspike amplitudes. Unlike other methods
that handle overlapped spikes (e.g., [10]), our methodljolaarns waveforms and spikes within a
unified framework. We derived an iterative procedure basedlock-coordinate descent to approx-
imate the MAP solution. We showed empirically on simulatathdhat our method outperforms the
standard clustering approach, particularly in the caseipésmposed spikes. We also showed that
our method yields an improvement on a real data set with gtdruth, despite the fact that there
are similar waveform shapes with different amplitudes. Wagority of improvement in this case is
also accounted for by identifying superimposed spikes. ®ethod has only a few parameters that
are stable across a variety of conditions, thus addresageed for an automated method for spike
sorting that is not susceptible to systematic errors.
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