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Abstract

We consider the problem of estimating neural spikes from extracellular voltage
recordings. Most current methods are based on clustering, which requires sub-
stantial human supervision and systematically mishandlestemporally overlapping
spikes. We formulate the problem as one of statistical inference, in which the
recorded voltage is a noisy sum of the spike trains of each neuron convolved with
its associated spike waveform. Joint maximum-a-posteriori (MAP) estimation of
the waveforms and spikes is then a blind deconvolution problem in which the
coefficients are sparse. We develop a block-coordinate descent procedure to ap-
proximate the MAP solution, based on our recently developedcontinuous basis
pursuit method. We validate our method on simulated data as well as real data
for which ground truth is available via simultaneous intracellular recordings. In
both cases, our method substantially reduces the number of missed spikes and
false positives when compared to a standard clustering algorithm, primarily by
recovering overlapping spikes. The method offers a fully automated alternative to
clustering methods that is less susceptible to systematic errors.

1 Introduction

The identification of individual spikes in extracellularlyrecorded voltage traces is a critical step in
the analysis of neural data for much of systems neuroscience. One or more electrodes are embed-
ded in neural tissue, and the voltage(s) are recorded as a function of time, with the intention of
recovering the spiking activity of one or more nearby cells.Each spike appears with a stereotyped
waveform, whose shape depends on the cell morphology, the filtering properties of the medium and
the electrode, and the cell’s position relative to the electrode. The “spike sorting” problem is that
of identifying distinct cells and their respective spike times. This is a difficult statistical inverse
problem, since one typically does not know the number of cells, the shapes of their waveforms, or
the frequency or temporal dynamics of their spike trains (see [1] for a review).

The observed voltage is well-described as a linear superposition of the spike waveforms [1, 2, 3, 4],
and thus, the problem bears resemblance to the classic sparse decomposition problem in signal pro-
cessing and machine learning, where the neural waveforms are the “features” and the spike trains
are the “coefficients”, with the additional constraint thatthe features are unknown but convolutional,
and the coefficients are mostly zero except for a few that are close to one. This sparse blind de-
convolution problem arises in a variety of contexts other than spike sorting, including radar [5],
seismology [6], and acoustic processing [7, 8].
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Most current approaches to spike sorting (with notable exceptions [9, 10]) can be summarized in
three steps ([1, 2]): (1) identify segments of neural activity (e.g., by thresholding the voltage), (2)
determine a low-dimensional feature representation for these segments (e.g., PCA), (3) cluster the
segments in the feature space (e.g.,k-means, mixture of Gaussians). Fig. 1 illustrates a simple
version of this procedure. Segments within the same clusterare interpreted as spikes of a single
neuron, whose waveform is estimated by the cluster centroid. This method works well in identifying
temporally isolated spikes whose waveforms are easily distinguishable from background noise and
each other. However it generally fails for segments containing more than one spike (either from the
same or different neurons), because these segments do not lie close to the clusters of any individual
cell [1]. This is illustrated in Figs. 1(b) 1(c), and 1(d). Several state-of-the-art methods improve
or combine upon one or more of these steps (e.g., [11, 12]), but remain susceptible to these errors
because they still rely on clustering. These errors are systematic, and can have important scientific
consequences. For example, an unresolved question in neuroscience is whether the occurrence of
correlated or synchronous spikes carries specialized information [13, 14]. In order to experimentally
address this question, one needs to record from multiple neurons, and to accurately obtain their joint
spiking activity. A method that systematically fails for synchronous spikes (e.g., by missing them
altogether, or by incorrectly assigning them to another neuron) will lead to erroneous conclusions.

Although the limitations of clustering methods have been known within the neuroscience commu-
nity for some time [1, 2, 15, 16], they remain ubiquitous. Practitioners have developed a wide
range of manual adjustments to overcome these limitations,from adjusting the electrode position
to isolate a single neuron, to manually performing the clustering for spike identification. However,
previous studies have shown that there is great variabilityin manual sorting results [17], and that
human choices for cluster parameters are often suboptimal [18]. As such, there is a need for a fully
automated sorting method that avoids these errors. This need is becoming ever more urgent as the
use of multi-electrode arrays increases ([19]): manual parameter selection for a multi-dimensional
clustering problem becomes more difficult and time-consuming as the number of electrodes grows.

We formulate the spike sorting problem as a Bayesian estimation problem by incorporating a prior
model for the spikes and assuming a linear-Gaussian model for the recording given the spikes [2, 4].
Although the generative model is simple, inferring the spike times and waveforms is challenging.
We approximate the most likely spikes and waveform shapes given the recording (i.e. the maximum-
a-posteriori, or MAP solution), by alternating between solving for the spike times while fixing the
waveforms and vice versa. Solving for optimal spike times and amplitudes with fixed waveform
shapes is itself an NP-hard problem, and we employ a novel method called continuous basis pursuit
[20, 21], combined with iterative reweighting techniques,to approximate its solution. We compare
our method with clustering on simulated and real data, demonstrating substantial reduction in spike
identification errors (both misses and false positives), particularly when spikes overlap in the signal.

2 Model of voltage trace

The major deficiency of clustering is that each time segment is modeled as a noisy version of a single
centered waveform rather than a noisy superposition ofmultiple, time-shifted waveforms. A simple
generative model for the observed voltage traceV (t) is summarized as follows:

V (t) =
N
∑

n=1

Kn
∑

i=1

aniWn(t− τni) + η(t) (1)

{τni}
Kn

i=1 ∼ Poisson Process(λn) n = 1, ..., N

{ani}
Kn

i=1 ∼ N (1, ǫ2n) n = 1, ..., N (2)

In words, the spikes are a Poisson processes with known rates{λn} and amplitudes independently
normally distributed about unity. The trace is the sum of convolutions of the spikes with their re-
spective waveformsW ≡ {Wn(t)}Nn=1 along with Gaussian noiseη(t) (note: other log-concave
noise distributions can be used). Here,Kn is the (Poisson-distributed) number of spikes of then’th
waveform in the signal. Thus, the model accounts for superimposed spikes, variability in spike
amplitude, as well as background noise. The model can easilybe generalized to multielectrode
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Figure 1: Illustration of clustering on simulated data. (a)Threshold/windowing procedure. Peaks are
identified using a threshold (horizontal lines) and windowsare drawn about them (vertical lines) to
identify segments. (b) Plot of the segments projected onto the first two principal components. Color
indicates the output ofk-means clustering (k = 3). (c) The top-left plot shows the true waveforms
used in this example. The other plots indicate the waveformswhose projections are the black points
in (b).(d) Another example of simulated data with a single biphasic waveform (not shown). The
projections of the spikes can have a non-Gaussian distribution in PC space. Two clusters arise
because the waveform has two peaks around which the segmentscan be centered.

recordings by makingV (t) and theWn(t)’s vector-valued, but to simplify notation we assume a
single electrode. Note also that since the model describes the full voltage trace, it does not require a
thresholding/windowing preprocessing stage, which can lead to additional artifacts (e.g., Fig 1(d)).
The priors on the spike trains account for the observed variability in spike amplitudes and aver-
age spike rates with minimal assumptions. We are interestedin the maximum-a-posteriori (MAP)
solution of the waveforms and spike times and amplitudes given the observed voltage traceV (t):

arg max
{ani},{τni},W

P ({ani}, {τni},W|V (t)) (3)

= arg max
{ani},{τni},W

log(P (V (t)|{ani}, {τni},W)) + log(P ({ani}, {τni},W))

In the following sections, we describe a procedure to approximate this solution.

3 Inference methods

3.1 Objective function

MAP estimation under the model described in Eq. (2) and Eq. (1) boils down to solving:

min
{ani},{τni},W

1

2
‖V (t)−

∑

n,i

aniWn(t−τni)‖
2
2,Σ+

∑

n,i

[

(ani − 1)2

2ǫ2n
+

1

2
log(2πǫ2n)− log(λn)

]

(4)

where‖~x‖2,Σ = ‖Σ−1/2~x‖2 andΣ is the noise covariance. Direct inference of the parametersis a
highly nonlinear and intractable problem. However, we can make the problem tractable by using a
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linear representation for time-shifted waveforms. The simplest such representation uses a dictionary
containing discretely time-shifted copies of the waveforms themselves{Wn(t− i∆)}n,i. We chose
to use a more accurate and efficient dictionary to represent continuously time-shifted waveforms in
the context of sparse optimization, which relies on trigonometrically varying coefficients [21]:

N
∑

n=1

Kn
∑

i=1

aniWn(t− τni) ≈
N
∑

n=1

∑

i

(

Cn(t− i∆)
Un(t− i∆)
Vn(t− i∆)

)T




ani

anirn cos( 2τniθn

δ )
anirn sin(2τniθn

∆ )



 (5)

=

N
∑

n=1

∑

i

(

Cn(t− i∆)
Un(t− i∆)
Vn(t− i∆)

)T (
xni1

xni2

xni3

)

= (ΦW~x)(t)

The dictionaryΦW contains shifted copies of the functionsCn(t), Un(t), Vn(t) that approximate
the space of time-shifted waveforms. The functionsCn(t), Un(t), andV (t), as well as the constants
rn andθn depend on the waveformWn(t) and are explained in Fig. 2(b). We can then solve the
following optimization problem:

min
~x,W

F (~x,W) such that
xni2 ≥ rn cos(θn)xni1, ∀n, i
√

x2
ni2 + x2

ni3 ≤ rnxni1, ∀n, i
(6)

where F (~x,W) =
1

2
‖V (t)− (ΦW~x)(t)‖22,Σ −

∑

n,i

log
(

(1− λn∆)δ(xni1) + (λn∆)φ1,ǫ2n
(xni1)

)

whereφµ,σ2(.) is the Gaussian density function.The constraints on~x in Eq. (6) ensure that each
triplet (xni1, xni2, xni3) is consistent with the mapping defined in Eq. 5, withxni1 being the ampli-
tude and ∆

2θn
atan (xni3/xni2) being the time-shift associated with the waveformWn(t) (see [21]

for a detailed development of this approach). The constrained region, denoted byC, is convex and
is illustrated as sections of cones in Fig. 2(c). Note that wehave used the Bernoulli discrete-time
process with a spacing∆ (matching the interpolation dictionary spacing) to approximate the Poisson
process described in Eq. (2). Even with this linear representation, the problem is not jointly convex
in W and~x, and is not convex in~x for fixedW. The optimization of Eq. (6) resembles that of [22]
and other sparse-coding objective functions with the following important differences: (1) the dictio-
nary is translation-invariant and interpolates continuous time-shifts, (2) there is a constraint on the
coefficients~x due to the interpolation, and (3) there is a nonconvex mixture prior on the coefficients
to model the spike amplitudes. We propose a block coordinatedescent procedure to solve Eq. (6).
After initializing W randomly, we iterate the following steps:

1. GivenW, approximately solve for~x.

2. Perform a rescalingxnij ←
xnij

zn
andWn(t) ← znWn(t) where thezn’s are chosen to

optimizeF (
[

xnij

zn

]

, {znWn(t)}).

3. Given~x, solve forW, constraining‖Wn(t)‖2 to be less than or equal to its current value.

The first step minimizes successive convex approximations of F and is the most involved of the
three. The second is guaranteed to decreaseF and amounts toN scalar optimizations. The final
step minimizes the first term with respect to the waveforms while keeping the second term constant,
and amounts to anL2-constrained least squares problem (ridge regression) that can be solved very
efficiently. The following sections provide details of eachof the steps.

3.2 Solve spikes given waveforms

In this step we wish to minimize the functionF (·,W) while ensuring that the solution lies in the
convex setC. However, this function is nonconvex and nonsmooth due to the second term in Eq. (6).
This especially causes problems when the current estimatesof W are far from the optimal values,
since in this case there are many intermediate amplitudes between0 and1. To get around this, we
replace each summand in the second term by a relaxation:
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Figure 2: (a) Illustration of the circle approximation in [21]. The manifoldM of translates of a
function f(t) lies on the hypersphere since translation preserves norm (black curve). This can be
locally approximated by a circle (red curve). The approximation is exact at 3 equally-spaced points
(black dots). (b) Visualization in the plane on which the three translates off(t) lie. The quantities
r andθ can be derived analytically for a fixedf(t) and spacing∆. (c) These circle approximations
can be linked together to form a piecewise-circular approximation of the entire manifold.

G(xni1) = − log

(

(1− λn∆)

∫ ∞

0

1

γ
e−

xni1
γ P (γ)dγ + (λn∆)φ1,ǫ2n

(xni1)

)

(7)

which replaces the delta function at0 with a mixture of exponential distributions. We chose the
parameterγ to be Gamma-distributed about a fixed small value. We solve this approximation using
an iterative reweighting scheme.The weights are initialized to be uniformw

(0)
ni = λn, ∀n, i. Then

the following updates are iterated computed:

~x(t+1) ← arg min
~x∈C

1

2
‖V (t)− (ΦW~x)(t)‖22 +

∑

n,i

w
(t)
ni |xni1| (8)

w
(t+1)
ni ←

G(x
(t+1)
ni1 )

x
(t+1)
ni1

(9)

Eq. (8) is a convex optimization that can be solved efficiently. The weights are updated so that the
second term in Eq. (8) is exactly the negative log prior probability of the previous solution~x(t). If a
coefficient is0, its weight is∞ and the corresponding basis function is discarded. Such reweighting
procedures have been used to optimize a nonconvex function by a series of convex optimizations
[23, 24, 25]. Although there is no convergence guarantee, wefind that it works well in practice.

3.3 Solve rescaling factors

The first term ofF (~x, {Wn(t)}) does not change by much if one divides the coefficientsxnij by
somezn and multiplies the corresponding waveform byzn

1. The second term does change under
such a rescaling. In order to avoid the solution where the waveforms/coefficients become arbitrarily
large/small, respectively, we perform a rescaling in a separate step and then optimize the waveform
shapes subject to a fixed norm constraint (described in the next section). Since the second term
decomposes into terms that are each only dependent on onezn, we can independently solve the
following scalar optimizations numerically:

zn ← arg max
z>0

∑

i

log

(

(1−∆λn)
1

γ
e−

xni1
zγ + ∆λnφ1,ǫ2n

(xni1

z

)

)

n = 1, ..., N (10)

These are essentially maximum likelihood estimates of the scale factors given fixed coefficients and
waveform shapes. One then performs the updates:

1If ΦW is linear inW, there is no change. For our choice ofΦW, there is a small change of orderO(∆).
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xnij ←
xnij

zn
∀n, i, j (11)

Wn(t) ← znWn(t) ∀n (12)

This step is guaranteed not to increase the objective in Eq. (6) since the first term is held constant
(up to a small error term, see footnote) and the second term cannot increase.

3.4 Solve waveforms given spikes

Given a set of coefficients~x, we can optimize waveform shapes by solving:

min
W:‖Wi(t)‖2≤ki

1

2
‖V (t)− (ΦW~x)(t)‖22 (13)

whereki is the current norm ofWi(t). The constraints ensure that only the waveform shapes change
(ideally, we would like the norm to be held fixed, but we relax to to an inequality to retain convexity),
leaving any changes in scale to the previous step. Since(ΦW~x)(t) is approximately a linear function
of the waveforms, Eq. (13) is a standard ridge regression problem. Efficient algorithms exist for
solving this problem in its dual form ([26]). This step is guaranteed to decrease the objective in
Eq. (6) since the second term is held constant and the first term can only decrease.

4 Results

We applied our method to two data sets. The first was simulatedaccording to the generative model
described in Eq. (2-1). The second is real data from Harris etal. ([18]) consisting of simultaneous
paired intracellular/extracellular recordings. The intracellular recording provides ground truth spikes
for one of the cells in the extracellular recording.

4.1 Simulated data

We obtained three waveforms from retinal recordings made inthe Chichilnisky lab at the Salk Insti-
tute (shown in Fig. 3(a)). Three Poisson spike trains were sampled independently with rate(1−ρ)λ0

with λ0 = 10Hz. To introduce a correlation ofρ = 1
3 , we sampled another Poisson spike train with

rateρλ0 and added these spikes (with random jitter) to each of the previous three trains. Spike
amplitudes were drawn fromN (1, 0.12). The spikes were convolved with the waveforms and Gaus-
sian white noise was added (withσ six times the smallest waveform amplitude). For clustering, the
original trace was thresholded to identify segments(the threshold was varied in order to see the error
tradeoff). PCA was applied and the leading PC’s explaining95% of the total variance were retained.
K-means clustering was then applied (withk = 3) in the reduced space.

To reduce computational cost, we applied our method to disjoint segments of the trace, which were
split off whenever activity was less than3σ for more than half the waveform duration (about 4ms).
The waveforms were initialized randomly andP (γ) was Gamma-distributed with mean0.0005 and
coefficient of variation0.25 (in Eq. (7)) for all experiments. The waveforms were allowedto change
in length by adding (removing) padding on the ends on each iteration if the values exceeded (did not
exceed) 5% of the peak amplitude (similar to [7]). Padding was added in increments of 10% of the
current waveform length. Convex optimizations were performed using theCVX package ([27]). The
learned waveforms and spike amplitude distributions are shown in Fig. 3. The amplitude distribu-
tions are well-matched to the generative distributions (shown in red). To evaluate performance, we
counted missed spikes (relative to the number of true spikes) and false positives (relative to the num-
ber of predicted spikes) for clustering and our method. We varied the segment-finding threshold for
clustering, and the amplitude threshold for our algorithm.The error tradeoff is shown in Fig. 4(a),
and indicates that our method reduces both types of errors.

To visualize the errors, we chose optimal thresholds for each method (yielding the smallest number
of misses and false positives), and then projected all segments used in clustering onto the first two
principal components. We indicate by dots, open circles, and crosses the hits, misses, and false

6



positives, respectively (with colors indicating the waveform). For the same segments, we illustrate
the behavior of our method in the same space. Note that unlikeclustering, our method is allowed to
assign more than one spike to each segment. The visualization is shown in Figures 4(b) and 4(c),
and shows how clustering fails to account for the superimposed spikes, while our method eliminates
a large portion of these errors. We found that this improvement was robust to the amount of noise
added to the original trace (not shown).
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Figure 3: (a) Three waveforms used in simulations. (b),(c),(d) Histograms of the spike amplitudes
learned by our algorithm of the blue,green, and red waveforms, respectively. The amplitudes were
converted into unitsσ by multiplying them by the corresponding waveform amplitudes, then divid-
ing by the noise standard deviation. The red line indicates the generative density, corresponding to
a Gaussian with mean1 and standard deviation0.1.
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Figure 4: (a) Tradeoff of misses and false positives as the segment-identification threshold in clus-
tering is varied (blue), and the amplitude threshold for ourmethod (red) is varied. Diagonal lines
indicate surfaces with equal total error. (b),(c) Visualization of spike sorting errors for clustering
(b) and our method (c). Each point is a threshold-crossing segment in the signal, projected onto the
first two principal components. Dots represent segments whose composite spikes were all correctly
identified, with the color specifying the waveform (see Fig.3(a)). Open circles and crosses repre-
sent misses and false positives, respectively. The thresholds were optimized for each method, and
correspond to the enlarged dots in (a).

4.2 Real data

We used one electrode from the tetrode data in [18] to simplify our analysis. The raw trace was high-
pass filtered (800Hz) to remove slow drift. The noise standard deviation was estimated from regions
not exceeding three times the overall standard deviation. We then repeated the same analysis as
for the simulated data. The resulting waveforms and coefficients histograms are shown in Figure 5.
Unlike the simulated example, the spike amplitude distributions are bimodal in nature, despite the
prior amplitude distribution containing only one Gaussian. We first focus on the high-amplitude
groups (2 and 4), both of which are well-separated from theirlow-amplitude counterparts (1 and
3), suggesting that an appropriately chosen threshold would provide accurate spike identification for
the ground-truth cell (4). Figure 6(a) confirms this, showing that our method provides substantial
reduction in misses/false positives. Figures 6(b) and 6(c)show that, as before, the majority of this
reduction is accounted for by recovering spikes overlapping with those of another cell (group 2).
The low-amplitude groups (1 and 3) could arise from background cells whose waveforms look like
scaled-down versions of those of the foreground cells 2 and 4, thus creating secondary “lumps” in
the amplitude distributions. The projections of the eventsin these groups are labeled in Figures 6(b)
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and 6(c), showing that it is unclear whether they arise from noise or one or two background cells. It
is up to the user whether to interpret these badly-isolated groups as cells.
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Figure 5: (a) Two waveforms learned from CBP. (b),(c) Distributions of the amplitude values for
the blue and green waveform, respectively. The numbers label distinct groups of amplitudes that
could be treated as spikes of a single cell. Group 4 corresponds to the ground truth cell. Group 2
corresponds to another foreground cell. Groups 1 and 3 likely correspond to a mixture of background
cell activity and noise. The groups are labeled in PC-space in Figures 6(b) and 6(c).
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Figure 6: (a) Error tradeoff as in Fig. 4(a). The blue, green,and red curves are results ofk-means
clustering for differentk. (b) Illustration of clustering errors in PC-space, withk = 4 and a threshold
corresponding to the large red dot in (a). (c) Errors for our method with threshold corresponding
to the large black dot. The numbers show the approximate location in PC-space of the amplitude
groups demarcated in Figures 5(b) and 5(c).

5 Discussion

We have formulated the spike sorting problem as a maximum-a-posteriori (MAP) estimation prob-
lem, assuming a linear-Gaussian likelihood of the observedtrace given the spikes and a Poisson
process prior on the spikes. Unlike clustering methods, themodel explicitly accounts for over-
lapping spikes, translation-invariance, and variabilityin spike amplitudes. Unlike other methods
that handle overlapped spikes (e.g., [10]), our method jointly learns waveforms and spikes within a
unified framework. We derived an iterative procedure based on block-coordinate descent to approx-
imate the MAP solution. We showed empirically on simulated data that our method outperforms the
standard clustering approach, particularly in the case of superimposed spikes. We also showed that
our method yields an improvement on a real data set with ground truth, despite the fact that there
are similar waveform shapes with different amplitudes. Themajority of improvement in this case is
also accounted for by identifying superimposed spikes. Ourmethod has only a few parameters that
are stable across a variety of conditions, thus addressing the need for an automated method for spike
sorting that is not susceptible to systematic errors.
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