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a visual discrimination task than they are 
under anesthesia, suggesting that the under-
lying mechanisms may differ between the two 
brain states.

The approach of partitioning the variance 
into firing rate variability and point process 
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is there signal in the noise?
Alexander S Ecker & Andreas S Tolias

A study now shows that variability in neuronal responses in the visual system mainly arises from slow fluctuations in 
excitability, presumably caused by factors of nonsensory origin, such as arousal, attention or anesthesia.

Responses of cortical neurons appear to be 
notoriously noisy. Even with repeated presen-
tations of the same visual stimulus, we rarely 
observe the same spike train twice. This high 
degree of variability, which is often correlated 
amongst pairs of neurons, has fascinated neu-
roscientists for decades. Is it noise, arising 
from stochastic features of neural architecture, 
or does it reflect meaningful, yet complicated, 
signals that we simply do not understand? 
Thus far, it is still not entirely clear what causes 
the observed neuronal variability. Moreover, 
we do not even have simple, parsimonious 
models to describe it appropriately. A study 
by Goris, Movshon and Simoncelli in this 
issue of Nature Neuroscience fills this latter 
gap and proposes a simple conceptual model 
that provides a new view on cortical response 
variability.

The authors propose modeling a neuron’s 
firing rate as the product of a sensory drive 
and a modulatory gain (Fig. 1a). Typical mod-
els of the early visual system consist of only 
the first ingredient, the sensory drive (usually 
called the receptive field or tuning curve), and 
assume that any variability around this average 
response is random noise arising in presyn-
aptic neurons or local circuits. Goris et al.1, 
in contrast, reasoned that signals internal to 
the brain that are not purely sensory in origin 
might equally affect neuronal responses and 
should therefore be explicitly incorporated 
into a response model. Examples of such sig-
nals include arousal, attention or adaptation. 
As they tend to modulate neural responses 
multiplicatively2, the authors modeled the  

sensory drive as being multiplied by a modu-
latory gain that fluctuates across trials, sub-
suming all such internal signals.

But how exactly does one go about fitting 
such a model? We know very little about all the 
possible internal signals that might contrib-
ute, which ones are most relevant in different 
contexts, how strongly each of them fluctu-
ates and how each of them affects the response 
of any given neuron. Thus, one might think 
we know close to nothing that is relevant and 
that there is no way of accomplishing this task. 
Fortunately, none of these needs to be known 
if we make just one additional assumption: 
neurons emit spikes according to a Poisson 
process. This means that, at any given point 
in time, a neuron either spikes or it doesn’t, 
with a certain probability that is independent 
of spikes that occurred in the past. In this case, 
the variance of a neuron’s spike count is equal 
to its mean. Any variability that exceeds the 
variance predicted by the Poisson process 
must be a result of fluctuations in the firing 
rate generated by signals internal to the brain. 
Because the authors assumed such fluctua-
tions to be driven by a multiplicative gain, they 
obtained a relatively simple Poisson mixture 
model, which they termed the modulated 
Poisson model. Through a clever choice of 
distribution for the gain (a gamma distribu-
tion), they obtained resulting spike counts that 
follow a well-known distribution, the negative 
binomial, whose parameters can be readily 
estimated.

The authors showed that this model nicely 
captures the variability of single units recorded 
in several areas along the visual hierarchy 
of monkeys and substantially outperforms 
the standard Poisson model for most neu-
rons. Notably, under anesthesia, the classical 
Poisson model accounts for only 20–30% of 
the cortical response variability. Gain fluctua-
tions, in contrast, account for the major share 
of the variance, and their share increases 
substantially along the visual hierarchy, from 
~50% in the lateral geniculate nucleus of the 
thalamus to ~70% in primary visual cortex 
and ~80% in cortical area MT. Part of these 
changes in excitability are quite slow, changing 
on the order of minutes. Interestingly, fluctua-
tions in excitability are less pronounced and 
somewhat faster in awake animals  performing 

Figure 1  The modulated Poisson model and the 
law of total variance. (a) The neuron’s firing rate, 
µ, is the product of a sensory drive (the tuning 
curve, f(S)) and a modulatory gain (G). Spikes are 
generated according to a Poisson process with 
rate µ. The gain is assumed to be constant within 
one trial and distributed across trials according 
to a gamma distribution with mean of 1 and 
variance of 2 (top). (b) The law of total variance 
states that the total variance can be decomposed 
into the variance of the conditional expectation 
plus the expected conditional variance:  
var(N) = var(〈N | G〉) + 〈var(N | G)〉. This 
decomposition forms the basis for separating 
the spike count variance (right) into firing 
rate variance (left) and point process variance 
(middle). (c) A supralinear mean-variance 
relationship characterizes the modulated 
Poisson model. Because of the multiplicative 
nature of the gain, the firing rate variance grows 
quadratically with the average firing rate.
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in an attention task10 or the possible choices 
in a forced-choice task13,15), introducing a 
low-dimensional axis of variability (namely, 
the attention axis10) and comodulating  
cells with similar stimulus selectivity with 
respect to the feature relevant for the task (for 
example, receptive field location, direction 
of motion). In contrast, in a passive fixation 
experiment, there is no task, so there is no rea-
son for any particular top-down signal to be 
particularly strong.

Coming back to the question posed in the 
beginning, it seems that under many condi-
tions there is actually a signal in the noise. 
The new framework developed by Goris et al.1 
moves us much closer to characterizing this 
signal, in terms of both its spatial and its tem-
poral correlation structure. However, what the 
model cannot do (yet) is tell us the exact value 
of the gain on a single-trial basis. Fortunately, 
this limitation may soon be overcome. As 
many internal signals affect a large number of  
neurons at the same time, we can infer them 
from jointly recorded population activity4,10. 
Thus, extending the modulated Poisson frame-
work to a full state-space model for the joint 
activity of neuronal populations is an exciting 
and promising avenue for future research. Used 
in combination with modern multielectrode 
recording or imaging techniques, such a model 
would allow us to read out signals internal to 
the brain and may greatly advance our under-
standing of the computations underlying deci-
sion making and cognition.
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(residual) variance through application of the 
law of total variance (Fig. 1b) has recently 
been applied by several other groups3,4. In fact, 
it is very common in statistical applications 
such as analysis of variance or, more gener-
ally, generalized linear models. What makes 
the model by Goris et al.1 stand out is the mul-
tiplicative nature of the modulation. In addi-
tion to being supported by experimental data 
on, for instance, attentional modulation2, this 
model makes a very specific prediction: if the 
fluctuations in the gain are independent of the 
neuron’s firing rate, then the spike count vari-
ance induced by the gain modulation should 
scale with the square of the average stimulus-
evoked response5,6, leading to a relatively 
simple formula (Fig. 1c)

var(N) = 〈N〉+2〈N〉2

Here 〈N〉 = f(S)∆t is the expected spike count 
of a neuron, which depends on both the 
 firing rate f(S) and the time window ∆t used 
to count spikes. Such an expanding mean- 
variance relation is indeed common for cor-
tical neurons7, but so far there has been no 
principled account for this phenomenon. For 
instance, under an additive model, the vari-
ances would simply add and the relative effect 
of the gain modulation would be weaker when 
stimulus drive is strong.

The modulated Poisson model is not lim-
ited to analyzing the variability of single neu-
rons. It can also be very useful for analyzing 
correlations in the variability of pairs of neu-
rons (sometimes called noise correlations). 
Correlated variability is of great interest to 
many researchers because the correlation 
structure should depend on how neurons 
are connected to each other or whether (and 
to what extent) they receive common input. 
Moreover, the correlation structure places 
important constraints on the fidelity of a popu-
lation code8. In our view, one of the most fun-
damental contributions of the study by Goris 
et al.1 is that it provides a powerful framework 
for understanding the origin of such noise cor-
relations. Analogously to the approach taken 
for the variances, they describe the correla-
tions as being generated by two components: 
point process correlations, which arise as a 
result of shared noise in the sensory afferent 
pathways9, and gain correlations, which are a 
result of gain modulation by unobserved inter-
nal signals10 (a partitioning that we proposed 
independently using a simplified version of the 
model4,5). Similarly to equation (1) above, the 
gain-induced covariance depends quadrati-
cally on the expected spike count, whereas the 

(1)

dependence is linear for the point process–
induced covariance. This relationship allows 
separation of the two components. Notably, the 
modulated Poisson framework predicts that 
one will observe a wide range of spike count 
correlations, even when point process correla-
tions and gain correlations are stable properties 
of neurons that do not change across stimulus 
conditions. For example, in the presence of 
strong gain fluctuations, there will be higher 
spike count correlations for stimuli that drive 
the cells strongly compared with stimuli that 
drive the cells suboptimally.

This insight may help us to reconcile what 
appeared to be contradictory experimen-
tal findings on correlated variability in the 
monkey visual system. The original view was 
that correlated variability arises as a result 
of shared noise in the sensory afferent path-
way9. Although this hypothesis seemed to 
be confirmed by a number of experimental 
measurements11,12, we observed substantially 
lower levels of correlations in V1 of awake, 
fixating monkeys5, and other studies pointed 
to a top-down source of correlated variability 
during decision making10,13, questioning the 
sensory noise hypothesis. We recently used an 
approach very similar in spirit to that of Goris 
et al.1 to analyze the correlation structure 
under anesthesia compared with that under 
passive fixation4. We partitioned the variability 
into two components: a network state, which is 
shared among all cells in the local circuit, and 
a residual variance. This analysis revealed that, 
under anesthesia, noise correlations were dom-
inated by a common fluctuating factor, slowly 
modulating all cells together. These fluctua-
tions resembled a common gain and accounted 
for most of the elevated correlations observed 
in comparison with that under passive fixation, 
where spike count correlations were low and 
variances were close to the mean (even for cells 
with high firing rates). Adopting the authors’ 
hypothesis that the Poisson process represents 
a ‘floor’ state of cortical variability1, our data 
suggest that gain fluctuations are nearly absent 
under our experimental conditions with awake, 
fixating monkeys and chronic recordings. This 
interpretation raises the question of why gain 
fluctuations should be weak during passive 
fixation, where the subject’s internal state is 
not well controlled, but stronger during diffi-
cult behavioral tasks, which provide a means of 
controlling and assessing cognitive state14. We 
suspect that when an animal performs a dif-
ficult task at perceptual threshold, task-related 
signals such as attention or prior expectations 
fluctuate between the two alternatives offered 
by the task (for example, the two stimuli  
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