Modeling of behavior
Wel Ji Ma

New York University
Center for Neural Science and Department of Psychology

You can download the slides from www.cns.nyu.edu/malab (News), so no
need to frantically copy/photograph them. Probably better to follow along.

On an entirely unrelated note, if you want to set up #growingupinscience
in your own department, here are some pointers:

www.growingupinscience.com (Get involved)



Seriously, a tutorial?

Focus on motivation and methods
not on results

And I'll make you work



Multisensory perception

Visual working memory 15 years of modeling of behavior
Categorization

Visual search

Perceptual organization

Horizontal-vertical illusion
Aperture problem on a relatively limited skill set.
Proactive interference

Word recognition memory

Confidence ratings

Smooth pursuit eye movements

Information sampling in a trust game

Choosing between cookies and chips

Exploration/exploitation

Playing strategy games

Monkeys determining which female to mate with based on the
color of her face



Why do we fit models?

From Ma lab survey by Bas van Opheusden, 201703



Why do we fit models?

To drown a conceptually uninteresting question in math
Maslow's hammer

Because we can and we are good at it

To get into a higher impact journal

Because Weiji says so

From Ma lab survey by Bas van Opheusden, 201703



Why do we fit models?

To make inferences about latent causes of behavior that we cannot
observe directly

To get closer to a simplified form of people's cognitive processes
Because we want to infer latent variables/mechanisms

To say something about the potential computations involved when
completing a task

Infer what's really happening inside the black box

To create order in the universe

Models let us ask questions that are hard to answer with experiments
To quantify evidence for our theories and hypotheses

To produce good models according to well-considered criteria

From Ma lab survey by Bas van Opheusden, 201703



“The purpose of models is not to fit the data but to sharpen the
guestions.”
— Samuel Karlin, R.A. Fisher Memorial Lecture, 1983

“If a principled model with a few parameters fits a rich behavioral
data set, | feel that | have really understood something about the

world™  _ \weij Ji Ma, CCN Tutorial, 2017



Agenda

1.Model building
2.Model fitting

3.Model comparison



Part 1. Model building



1a. What kind of model - descriptive or process?
1b. A special kind of process model - Bayesian
1c. Prior examples: visual illusions

1d. Likelihood example: Gestalt perception

1e. How to actually do Bayesian modeling”




1a. What kind of model?

Descriptive model: summary of the data in a function
with (usually a small number of) parameters

* Psychometric curve: cumulative Gaussian

* Prospect theory U M |

/ocal reaction times (ms)

Marinelli et al. 2014

Reference point Wikipedia

Fitting descriptive models is like doing laundry



1a. What kind of model?

* Descriptive model: summary of the data in a function
with (usually a small number of) parameters

e Danger: arbitrarily throwing parameters at it

 Process model: model based on a psychological
hypothesis of how an observer/agent makes a decision

* Interpretable! (Nicole Rust)



Process models

* Signal detection theory

d=1

Hits = 97.5%

False alarms = 84%
Hits = 84%

False alarms = 50%
Hits = 50%

False alarms = 16%

David Heeger lecture notes




Drift-diffusion model

THE DIFFUSION PROCESS
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Stimulus Observer

Measurement Estimate
v - 5 —— ()
Noise!
Retinal
speed Stocker and Simoncelli, 2006
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1b. A special kind of process model: Bayesian

- State of the world unknown to decision-maker
* Uncertainty!
- Decision-maker maximizes an objective function
* |n categorical perception: accuracy
* But could be hitting error, point rewards
e Stronger claim: brain represents probability distributions



1b. Why Bayesian models?

- Evolutionary/philosophical: Bayesian inference optimizes
performance or minimizes cost. The brain might have optimized
perceptual processes. This is handwavy but very cool if true.

- Empirical: in many tasks, people are close to Bayesian.
This is hard to argue with.

- Bill Geisler’s couch argument: | =

=
e —— ‘o d
! |
T ‘JL"-—-'_'J'

It is harder to come up with a god model sitting on
your couch than to work out the Bayesian model.



- Basis for suboptimal models: Other models can often be

constructed by modifying the assumptions in the Bayesian
model. Thus, the Bayesian model is a good starting point for
model generation.



Where does uncertainty come from?

 Noise
 Ambiguity






Hollow-face illusion

David Mack



Likelihood

how probable are the
retinal image is if the
hypothesis were true

convex concave



Likelihood X Prior

how probable are the  how much do you expect
refinalimage isif the  the hypothesis based on
hypothesis were true your experiences

convex concave convex concave



Posterior

Likelihood X Prior oc .
probabllity
how probable are the  how much do you expect
retinalimage isif the  the hypothesis based on
hypothesis were true your experiences
convex concave convex concave convex /concave

This hypothesis becomes
your percept!
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e Where is the ambiguity?

* What role do priors play?

 What happens if you view with
two eyes, and why?







Prior over objects

object
descriptions, S

image, |



Prior over objects Likelihood over objects given 2D image
p(s) L(s) = p(!]s)

object
descriptions, S

image, |

Kersten and Yuille, 2003



Examples of priors:

 Convex faces are more common than concave ones

* Priors at the object level (Kersten and Yuille)

e Light usually comes from above (Adams and Ernst)

« Slower speeds are more common (Simoncelli and Stocker)

» Cardinal orientations are more common (Landy and
Simoncelli)



Fake news

Bayesian models are about:

e the decision-maker making the best possible decision
(given an objective function)

* the brain representing probability distributions



Law of common fate

Bayesian explanation?



Generative model

Scenario 1 Scenario 2
l zi common motion direction md1 || md2 || md3 || md4 d5
l r r2 r3 r4 r5

Scenario 1: All dots are part of the same object and they therefore always
move together. They move together either up or down, each with

probability 0.5.

Scenario 2: Each dot is an object by itself. Each dot independently

moves either up or down, each with probability 0.5.




Scenario 1

Scenario 2

md]

md?2

md3

md4

dd

llill

l zi common motion direction

r r2 r3 r4 r5

Scenario 1: All dots are part of the same object and they therefore always
move together. They move together either up or down, each with

probability 0.5.

Scenario 2: Each dot is an object by itself. Each dot independently

moves either up or down, each with probability 0.5.

Sensory observation: all dots moving down.

The likelihood of a scenario is the probability of these sensory

observations under the scenario. What is the likelihood of Scenario 1?




Scenario 1

Scenario 2

md]

md?2

md3

md4

dd

llill

l zi common motion direction

r r2 r3 r4 r5

Scenario 1: All dots are part of the same object and they therefore always
move together. They move together either up or down, each with

probability 0.5.

Scenario 2: Each dot is an object by itself. Each dot independently

moves either up or down, each with probability 0.5.

Sensory observation: all dots moving down.

The likelihood of a scenario is the probability of these sensory

observations under the scenario. What is the likelihood of Scenario 27




Scenario 1

Scenario 2

md]

md?2

md3

md4

dd

llill

l zi common motion direction

r r2 r3 r4 r5

Scenario 1: All dots are part of the same object and they therefore always
move together. They move together either up or down, each with

probability 0.5.

Scenario 2: Each dot is an object by itself. Each dot independently

moves either up or down, each with probability 0.5.

Sensory observation: all dots moving down.

How many times larger is the likelihood of Scenario 1 than of Scenario 27




Scenario 1

Scenario 2

common motion direction

md]

md?2

md3

md4

md5

lete

rl

r2

r3

r4

r5

A

Scenario 1: All dots are part of the same object and they therefore always
move together. They move together either up or down, each with

probability 0.5.

Scenario 2: Each dot is an object by itself. Each dot independently

moves either up or down, each with probability 0.5.

Sensory observation: all dots moving down.

Say the priors are equal. How many times larger is the posterior probability

of Scenario 1?




With likelihoods like these, who needs priors?

Bayesian models are about the best possible decision.



» i B

MacKay (2003), Information theory, inference, and learning
algorithms, Sections 28.1-2




1e. How to actually do Bayesian modeling”?

Good news: there is a general recipe
that you just need to follow.



The four steps of Bayesian modeling
Example: categorization task

/STEP 1: GENERATIVE MODEL World state of interest \
a) Draw a diagram with each node a variable and each arrow a P(C) =0.5
statistical dependency. Observation is at the bottom. Stimulus
b) For each variable, write down an equation for its probability p(s ‘ C) _ N(S',u O.z)
distribution. For the observation, assume a noise model. For reme
others, get the distribution from your experimental design. If Observation

there are incoming arrows, the distribution is a conditional one.

p(x|s)=N(x;s,0'2) /
~

-

STEP 2: BAYESIAN INFERENCE (DECISION RULE)

a) Compute the posterior over the world state of interest given an observation. The optimal observer
does this using the distributions in the generative model. Alternatively, the observer might assume
different distributions (natural statistics, wrong beliefs). Marginalize (integrate) over variables other
than the observation and the world state of interest.

p(Cls)e< p(C)p(x|C):p(C)jp(x\s)p(s|C)ds=...=N(x;,uC,O'2+O'é)

b) Specify the read-out of the posterior. Assume a utility function, then maximize expected utility under
posterior. (Alternative: sample from the posterior.) Result: decision rule (mapping from observation to
decision). When utility is accuracy, the read-out is to maximize the posterior (MAP decision rule).

L C=1whenN(x;4,0° +07)>N(x;44,,0° +03 ) )

4 )
STEP 3: RESPONSE PROBABILITIES

For every unique trial in the experiment, compute the probability that the observer will choose each
decision option given the stimuli on that trial using the distribution of the observation given those stimuli
(from Step 1) and the decision rule (from Step 2).

p(é: 1 |x) =Pr,, (N(x;ul,cy2 +0f) > N(x;,u2,02 +G§))

+ Good method: sample observation according to Step 1; for each, apply decision rule; tabulate

responses. Better: integrate numerically over observation. Best (when possible): integrate analytically.

» Optional: add response noise or lapses.

\

[STEP 4: MODEL FITTING AND MODEL COMPARISON

a) Compute the parameter log likelihood, the log probability of the subject’s sl
actual responses across all trials for a hypothesized parameter Al
combinatign. P P LL(O-)_ z Ing(C" |S"’O-)

b) Maximize the parameter log likelihood. Result: parameter estimates and
maximum log likelihood. Test for parameter recovery and summary
statistics recovery using synthetic data.

c) Obtain fits to summary statistics by rerunning the fitted model.

d) Formulate alternative models (e.g. vary Step 2). Compare maximum log
likelihood across models. Correct for number of parameters (e.g. AIC).
(Advanced: Bayesian model comparison, uses log marginal likelihood of
model.) Test for model recovery using synthetic data.

J

~

i=l

LL*- -~
LL(0)

S

e) Check model comparison results using summary statistics.

Ma, Kording,
Goldreich,
Bayesian modeling of
behavior

This will be a book
published by Oxford
University Press.

It will appear in 2018.

Really.

Sorry Konrad for my
procrastination!!



Example: auditory localization task



Step 1: Generative model

p(s) °
p(x|s) °
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Step 2: Inference, deriving the decision rule

Prior Likelihood
]
L(s): p(,\'ohs |s) =
2no
> I
5 . ! T
a (@]
g % ! function of s
o = :o
I
I
L 2 s L 2
-10-8 6 -4 -2 0 2 4 6 8 10 Xobs

Hypothesized stimulus s Hypothesized stimulus s



posterior} p(s|X,ps likelihood, L(S)=p(XpeS)

prior, p(S)

Probability (degree of belief)

“ ~
10 8 6 -4 -2 0 2:x4 6 8 10

Hypothesized stimulus

Does the model deterministically predict the posterior tfor a
given stimulus and given parameters”?



Probability (degree of belief)

-0 8 6 4 -2 x, 2:Xx45Xp0 8 10
Hypothesized stimulus



Step 3: Response probabilities (predictions for
your behavioral experiment)

Decision rule: mapping X — §

But x is itselt a random variable for given s

Therefore s is a random variable for given s
p(5ls)

Can compare this to data!! _L.

>



The four steps of Bayesian modeling
Example: categorization task

/STEP 1: GENERATIVE MODEL World state of interest \
a) Draw a diagram with each node a variable and each arrow a P(C) =0.5
statistical dependency. Observation is at the bottom. Stimulus
b) For each variable, write down an equation for its probability p(s ‘ C) _ N(S',u 0'2)
distribution. For the observation, assume a noise model. For reme
others, get the distribution from your experimental design. If Observation

there are incoming arrows, the distribution is a conditional one.

p(x|s)=N(x;s,0'2) /
~

-

STEP 2: BAYESIAN INFERENCE (DECISION RULE)

a) Compute the posterior over the world state of interest given an observation. The optimal observer
does this using the distributions in the generative model. Alternatively, the observer might assume
different distributions (natural statistics, wrong beliefs). Marginalize (integrate) over variables other
than the observation and the world state of interest.

p(Cls)e< p(C)p(x|C):p(C)jp(x\s)p(s|C)ds=...=N(x;,uC,O'2+O'é)

b) Specify the read-out of the posterior. Assume a utility function, then maximize expected utility under
posterior. (Alternative: sample from the posterior.) Result: decision rule (mapping from observation to
decision). When utility is accuracy, the read-out is to maximize the posterior (MAP decision rule).

L C=1whenN(x;4,0° +07)>N(x;44,,0° +03 ) )

( )
STEP 3: RESPONSE PROBABILITIES

For every unique trial in the experiment, compute the probability that the observer will choose each
decision option given the stimuli on that trial using the distribution of the observation given those stimuli
(from Step 1) and the decision rule (from Step 2).

p(C‘: 1 |x) =Pr, (N(x;ul,cf2 +0f) > N(x;,uz,cr2 +G§))

+ Good method: sample observation according to Step 1; for each, apply decision rule; tabulate

responses. Better: integrate numerically over observation. Best (when possible): integrate analytically.

» Optional: add response noise or lapses.

\_

(STEP 4: MODEL FITTING AND MODEL COMPARISON

a) Compute the parameter log likelihood, the log probability of the subject’s sl
actual responses across all trials for a hypothesized parameter _ A
combination. LL(o)= z Ing(C" |S"’O-)

b) Maximize the parameter log likelihood. Result: parameter estimates and
maximum log likelihood. Test for parameter recovery and summary
statistics recovery using synthetic data.

c) Obtain fits to summary statistics by rerunning the fitted model.

d) Formulate alternative models (e.g. vary Step 2). Compare maximum log
likelihood across models. Correct for number of parameters (e.g. AIC).
(Advanced: Bayesian model comparison, uses log marginal likelihood of
model.) Test for model recovery using synthetic data.

e) Check model comparison results using summary statistics.

J

~
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Bayesian models are about:

* the decision-maker making the best possible decision
(given an objective function)

- the brain representing probability distributions



Does the brain represent probability distributions?

Bayesian transfer Different degrees of
probabilistic computation

Task 1
Fully probabilistic computation
G1 ( a, W) yp P
. Point estimates
L(w|x) |:> &,(x) Transfer Task (Gain) o :: ;
7, (W) optimal Sensory uncertainty =~ m——— > Action
G, (a, W) Prior uncertainty — No parameters
R Outcome uncertainty —~
Task 2 L (w|x) 5, (X)
? optimal?
G, (a, W) T4 (W) P :T Probabilistic computation in sensorimotor domain
)
L,(w]x) |::> 5, (x) = £
. < Point estimates —_
optimal i .
Ty (W) o Sensory uncertainty ——> | Learned parameters —3 Action
‘@ Outcome uncertainty —> | * Prior uncertainty
g * Reward uncertainty
v}
c
Maloney and Mamassian, 2009 , -
Fully learned mapping (nonprobabilistic)
F
Learned parameters
Point estimates — | ° Sensoryuncertainty [ Action

* Prior uncertainty
* Qutcome uncertainty
* Reward uncertainty

Ma and Jazayeri, 2014



Part 2: Model fitting



2a. What to minimize/maximize when fitting parameters?
2b. What fitting algorithm to use”
2c. Validating your model fitting method



2a. What to minimize/maximize when
fitting a model?




Try #1: Minimize sum squared error

40
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O
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Input current (pA)

Only principled if your model is linear
Otherwise arbitrary and suboptimal



Try #2: Maximize likelihood

Output of Step 3:
p(response | stimulus, parameter combination)

Likelihood of parameter combination
= p(data | parameter combination)

= H p(responsei‘stimulusi, parameter combination)

trials i



Log likelihood
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A (guessing rate)

Parameter trade-offs

0.1 ~1100
0.08
0.06 -1200
0.04 -1300
0.02
-1400
0

005 01 015 0.2
J (precision)

Shen and Ma, http://www.biorxiv.org/content/early/
2017/06/22/153650
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DE1, subject #1
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Van den Berg and Ma, data from http://www.biorxiv.org/
content/early/2017/06/18/151365




2b. What fitting algorithm to use”

#usebads !

Bayesian Adaptive Direct Search

W61 Model Fitting Under Uncertainty: A Practical Analysis of Derivative-Free Optimization for
Cognitive and Computational Neuroscience

Co-Authors
Luigi Acerbi, Wei Ji Ma

https://arxiv.org/abs/1705.04405




OptimViz (Rosenbrock function)
1000

fminsearch 1

Error

0.001 ~ T T 1

0 50 100 150
Fecn. evals.

https://github.com/lacerbi/bads

#useBADS https://github.com/lacerbi/optimviz



OptimViz (Rosenbrock function)
1000

Error

1

BADS

0.001 T T 1
0 50 100 150

Fcn. evals.

https://github.com/lacerbi/bads

RS https://github.com/lacerbi/optimviz



Bayesian Adaptive Direct Search (BADS) optimization algorithm for model fitting in MATLAB

optimization-algorithms

D 146 commits

Branch: master v

i lacerbi committed on GitHub Update README.md

W acq
i docs
8 gpdef

bayesian-optimization

¥ 2 branches

New pull request

8 gpml-matlab-v3.6-2015-07-07

8 gpml_fast
B init

i poll

I private

I search

i utils

B warp
.gitignore
[E) LICENSE.txt
[E) README.md
E) bads.m

[£) bads_examples.m
E) install.m

[E) rosenbrocks.m

log-likelihood

noiseless-functions

© Sreleases

Update README.md

added arXiv reference

fixed prctile1

moved files

Update README.md

renamed file

Update README.md

Fixed LB/UB starting point issue
Update README.md

fixed prctile1

Update README.md

first commit

Create LICENSE.txt

Update README.md

Fixed LB/UB starting point issue
fixed bug with fixed vars and output fcn
print readme after installation

improved documentation; added examples

noisy-functions

matlab

22 1 contributor

s GPL-3.0
1

Find file Clone or download ~

Latest commit fagb@54 on Jul 19

4 months ago
4 months ago
4 months ago
6 months ago
4 months ago
4 months ago
4 months ago
2 months ago
4 months ago
4 months ago
4 months ago
6 months ago
5 months ago
2 months ago
2 months ago
3 months ago
4 months ago

4 months ago



Model fitting best practices

e |f you can, maximize the likelihood (probability of single-
trial responses) if you can.

Do not minimize squared error!

* Do notfit summary statistics (but the raw data)!
e Use more than one algorithm

e (Grid search

 Fmincon

« BADS
* Multistart



2c. Validating your method:
Parameter recovery




recovered

recovered

0.2

parameter recovery test

alpha angry boundala(

recovered

0.1 0.2
input

happy boundary

recovered

input

Jenn Laura Lee



Part 3: Model comparison



3a. Choosing a model comparison metric

3b. Validating your model comparison method
3c. Factorial model comparison

3d. Absolute goodness of fit

3e. Heterogeneous populations



3a. Choosing a model comparison
metric



Proportion of
reporting “right”

Try #1: Visual similarity to the data

0 -10 0 10 =10 0 10

Target orientation, s, (°)

Shen and Ma, 2016

Fine, but not very quantitative



Try #2: H?

* Justdontdo it
* Unless you have only linear models
 Which almost never happens



Try #3: Likelihood-based metrics

Good!
Problem: there are many!

AIC

AlCc

BIC

K-fold
cross-validation
leave-one-out
cross-validation
Log marginal
likelihood

WAIC

From Ma lab survey by Bas van Opheusden, 201703



Metrics based on maximum likelihood:
* Akaike Information Criterion (AlC or AlCc)
e Bayesian Information Criterion (BIC)

Metrics based on the full likelihood function (often
sampled using Markov Chain Monte Carlo):

 Marginal likelihood (model evidence, Bayes’ factor)
 Watanabe-Akaike Information criterion

Cross-validation can be either



Metrics based on explanation:
e Bayesian Information Criterion (BIC)
 Marginal likelihoods (model evidence, Bayes’ factors)

Metrics based on prediction:

* Akaike Information Criterion (AIC or AlCc)
« \Watanabe-Akaike Information criterion
 Most forms of cross-validation



Practical considerations:
 No metric is always unbiased for finite data.

* AIC tends to underpenalize free parameters, BIC
tends to overpenalize.

Do not trust conclusions that are metric-
dependent. Report multiple metrics it you can.



AlCc*(model) — AICc*(VP)

BIC*(model) — BIC*(VP)

LML(model) — LML(VP)

Model Mean Mean Standard error of the mean Mean Standard error of the mean
IL
M1 —125 —122 15 —121 15
M2 —183 —180 18 —180 18
M3 —167 —164 18 —163 18
Humans —47.2 —45.7 6.8 —47.1 6.6
EP
M1 —47.5 —44.8 9.2 —48.9 9.1
M2 —12.8 —-10.1 4.6 —12.7 4.8
M3 —30.3 —-27.6 7.8 —31.3 8.1
Humans —12.9 —-11.4 1.5 —14.4 1.7
EPF
M1 —40.2 —40.2 7.9 —39.0 7.8
M2 —9.3 —9.3 4.4 —6.7 4.6
M3 —-24.0 —24.0 6.7 —22.6 6.9
Humans —7.6 —7.6 1.5 —6.2 1.6
VPF
M1 —-1.3 —4.18 0.83 1.5 15
M2 —2.2 —4.00 0.91 1.20 0.81
M3 —0.56 —-3.2 1.5 2.0 1.1
Humans —1.46 —3.00 0.32 —0.57 0.31

Devkar, Wright, Ma 2015



Challenge: your model comparison metric and how you
compute it might have issues. How to validate it?

3b. Model recovery



Model recovery example

Fitted model
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Devkar, Wright, Ma, Journal of Vision, in press
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Devkar, Wright, Ma, Journal of Vision, in press



Model recovery

>100

BayesStrong + d noise

BayesWealk + d noise

75

Bayesumaweak + d noise

Orientation Estimation

g
ol V

Linear Neural

fitted model

Lin
25
Quad

Fixed

model used to generate synthetic data

Will Adler, http://www.biorxiv.org/content/early/2016/12/11/093203



Challenge: how to avoid “handpicking”
models?

3c. Factorial model comparison



3c. Factorial model comparison

* Models often have many “moving parts”, components
that can be in or out

* Similar to factorial design of experiments, one can mix
and match these moving parts.

* References:
* Acerbi, Vijayakumar, Wolpert 2014
* Van den Berg, Awh, Ma 2014
e See also Contributed Talk #14 (Mingyu Song)



Factorial Comparison of Working Memory Models

Ronald van den Berg Edward Awh
University of Cambridge and Baylor College of Medicine University of Oregon

Wei Ji Ma
New York University and Baylor College of Medicine
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Challenge: how to summarize the results”

A B C D
All from Full Knock-in Knock-out Posterior
(1,1, 1) (1.1, 1) (1,1, 1) (1,1. 1)
Full Full Full Full
A/
o ™ [sp] o
s |/ 5 5 5
(&) Q (& o
© (1) 4] 1]
- 2 - 2 - 2 - 92
ao\.O‘ 30\0‘ 30\0‘ ao\o‘
(0.0.0) Factor1 € (0,0,0) Factor1 < (0,0.0) Factor1 € (0.0,0) F <
Base Base Base Base

Shen and Ma, http://www.biorxiv.org/content/early/2017/06/22/153650



Challenge: the best model is not
necessarily a good model.

3d. Absolute goodness of fit



Absolute goodness of fit

e How close is the best model to the data”
 Method 1: Visual inspection (model checking)

Subject 1 Subject2 Subject3 Subject4 Subject5 Subject6 Subject7 Subject8 Subject9

éllﬁllllﬂll
L ¥ 1] o | L 1 |

13679

Proportion of
reporting “right”

Quantile of distractor
orientation

Opt

Quantile of target orientation

Proportion of
reporting “right”

Shen and Ma, 2016



3d. Absolute goodness of fit

* Method 2: Deviance / negative entropy
* There is irreducible, unexplainable variation in the data

e This sets an upper limit on the goodness of fit of any
model: negative entropy

 How far away is a model from this upper bound?
 Wichmann and Hill (2001)
 Shen and Ma (2016)



Negative entropy estimates or
negative cross-entropy estimates

Subject identifier

1 2 3 B 5 6 7 8 9

=200

-400

-600

=800 —

N perfect prediction

------ - Negative entropy

—-—- Chance
--- Opt > unexplainable variation

—— Other models

T "'-f" % i}. unexplained variation

> explained variation

Shen and Ma (2016)



Challenge: what if different subjects
follow different models®?
(heterogeneity in the population)

3e. Hierarchical model selection



Consider all possible partitions of your population

Bayesian model selection for group studies

Klaas Enno Stephan ***, Will D. Penny ?, Jean Daunizeau ?, Rosalyn J. Moran 2, Karl J. Friston 2

Neuroimage, 2009
Bayesian model selection for group studies — Revisited

L. Rigoux ?, K.E. Stephan ¢, K. Friston °, . Daunizeau >* Neuroimage, 2014

e Returns probabillity that each model is the most
common one in a population

e Returns posterior probability for each model
* Matlab code available online!
 Example application: Poster T25 (Maija Honig)



Model building

1a. What kind of model -
descriptive or process?

1b. A special kind of process

model - Bayesian

1c. Prior examples: visual

illusions

1d. Likelihood example:
Gestalt perception

1e. How to actually do
Bayesian modeling?

Model fitting

2a. What to minimize/
maximize when fitting
parameters?

2b. What fitting
algorithm to use?

2c. Validating your
model fitting method

Model comparison

3a. Choosing a model
comparison metric

3b. Validating your
model comparison
method

3c. Factorial model
comparison

3d. Absolute
goodness of fit

3e. Heterogeneous
populations

Good job everyone!l



