Bayesian parameter estimation 2020 June 24

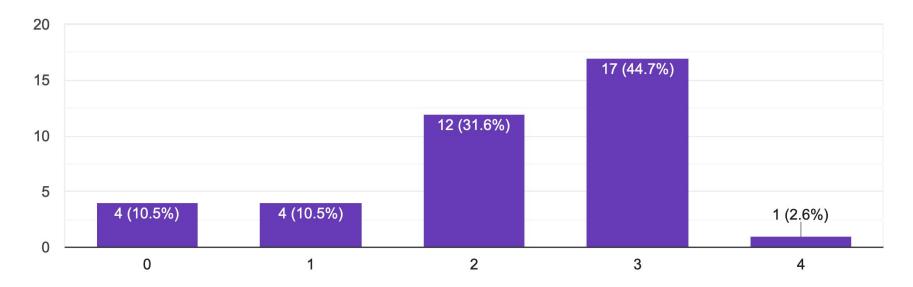
Why are you here?

(In any case, thanks for coming :)

Frequentist tests are confusing

"When you use a frequentist test, how confident are you usually that you chose the correct test for your statistical question?"

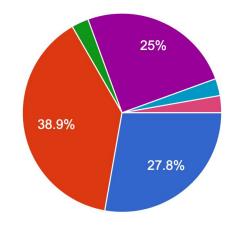
38 responses

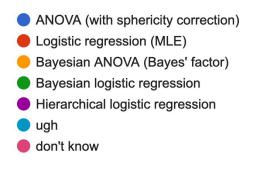


Choosing a test

- Repeated measures
- One independent categorical variable with several levels
- One dependent **binary** outcome variable

36 responses

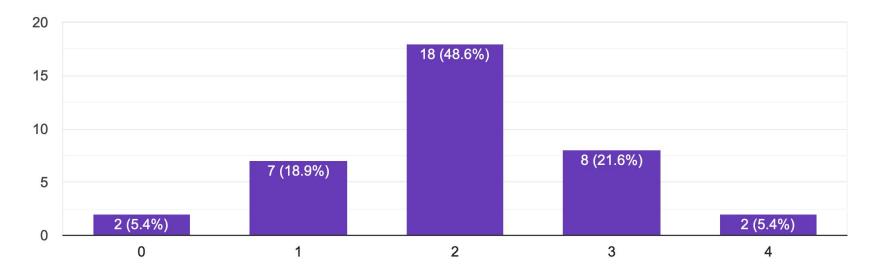




Frequentist tests are confusing

"When you use a frequentist test, how well do you usually feel you understand the test itself?"

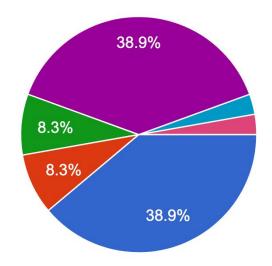
37 responses



Hypothesis testing is your world

"For you, the *most important* component of a statistical analysis's results is..."

36 responses



- The significance of a statistical test for a hypothesis
- The magnitude of an estimated effect size
- The direction of an estimated effect size
- The confidence interval
- The quality of the fit of a statistical model
- I think stat significance is as important...

Depends on the question/analysis

Statistics as posterior inference

Posterior inference?

$P(\theta|D) = \frac{P(D|\theta)P(\theta)}{p(D)}$

"How credulous *should* we be of our parameters, given our observations?"

"How surprising were our observations, given some parameters?"

 $\frac{P(D|\theta)P(\theta)}{P(\theta)}$

"How surprising were our observations under *any* parameters?"

 $P(\theta|D)$

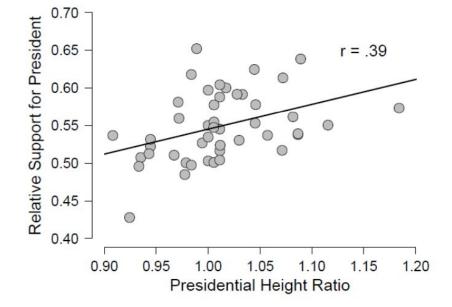
"How credulous were we of some parameters?"

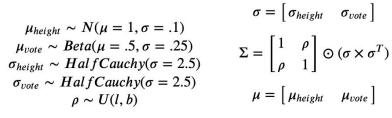
Recall from part 1:

Is there any evidence for a

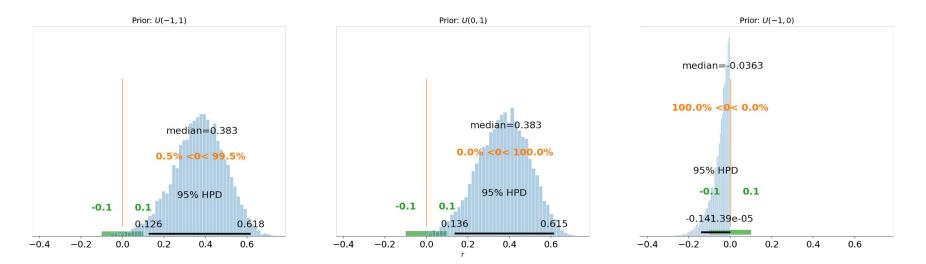
What is the correlation between the heights and popular vote share of U.S. presidents?

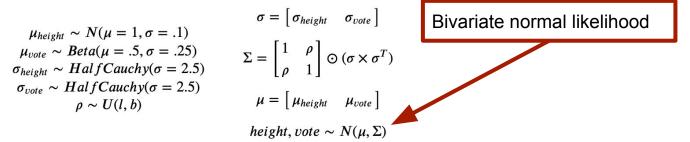
$$P(\rho|D) = P(D|\rho) \frac{P(\rho)}{P(D)}$$

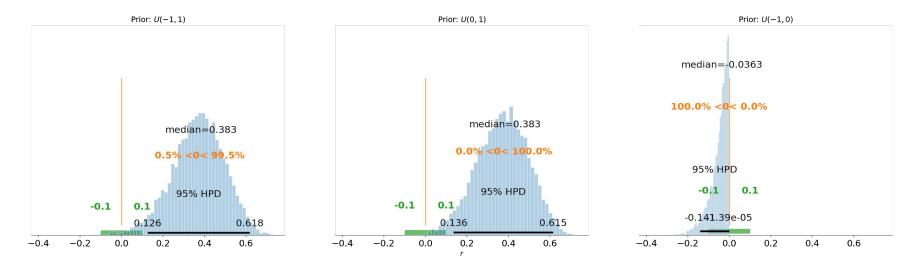


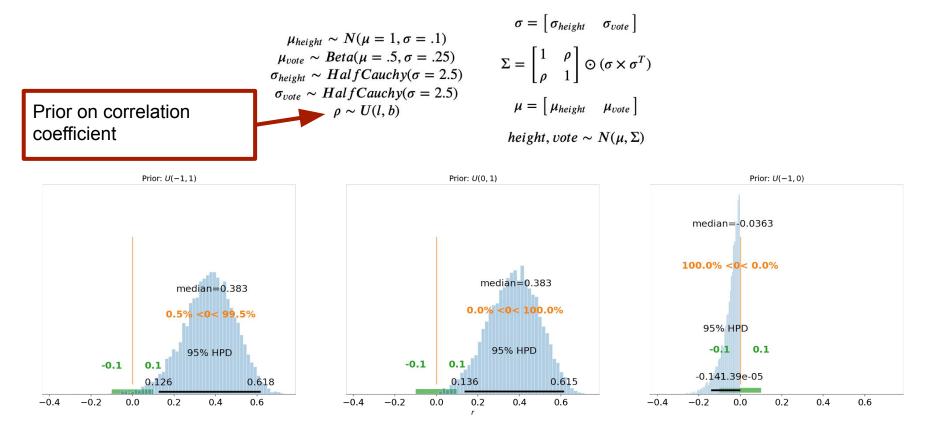


height, vote ~ $N(\mu, \Sigma)$







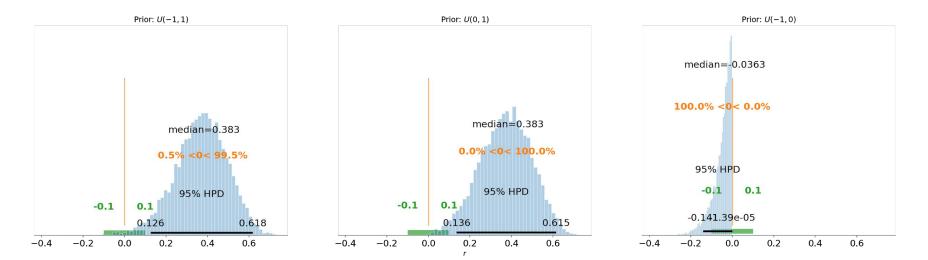


Priors on mean height and vote margin

 $\mu_{height} \sim N(\mu = 1, \sigma = .1)$ $\mu_{vote} \sim Beta(\mu = .5, \sigma = .25)$ $\sigma_{height} \sim HalfCauchy(\sigma = 2.5)$ $\sigma_{vote} \sim HalfCauchy(\sigma = 2.5)$ $\rho \sim U(l, b)$

$$\sigma = \begin{bmatrix} \sigma_{height} & \sigma_{vote} \end{bmatrix}$$
$$\Sigma = \begin{bmatrix} 1 & \rho \\ \rho & 1 \end{bmatrix} \odot (\sigma \times \sigma^{T})$$
$$\mu = \begin{bmatrix} \mu_{height} & \mu_{vote} \end{bmatrix}$$

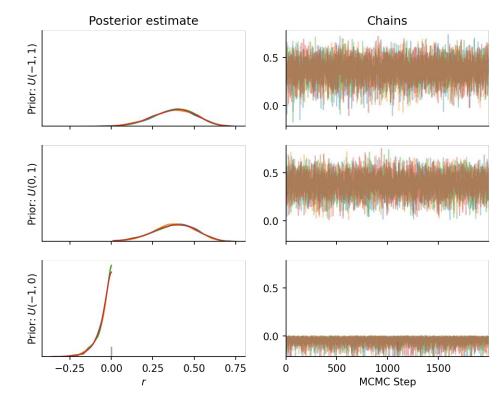
height, vote ~ $N(\mu, \Sigma)$



Computing posteriors

Monte Carlo methods sample from the posterior.

Modern samplers don't require much fussing.



Presidential Heights in PyMC3

Let's walk through some code.

Great, but what are we actually doing?

Not hypothesis testing.

"What hypothesis?"

The posterior distribution is a full report for the parameter of interest.

Do scientists always need to test hypotheses?

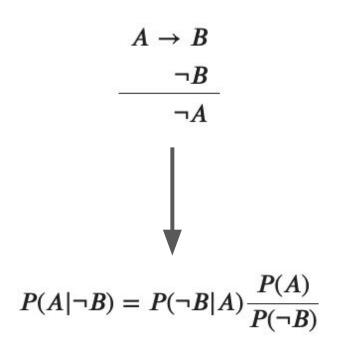
Hypothesis testing is a **decision procedure**.

It's used to produce binary decisions from uncertain beliefs.

Do scientists need to produce decisions?

Subjective Bayes and science

Probability theory **extends classical logic** to ideal reasoning under uncertainty.¹



¹ See Jaynes 2003 for more rigor

Weakly informative priors as null "hypotheses"

(Sort of.)

A **weakly informative prior** centered around a "null" value: the evidence must be sufficiently stronger than the prior.

Example: Ridge regression \rightarrow Gaussian prior

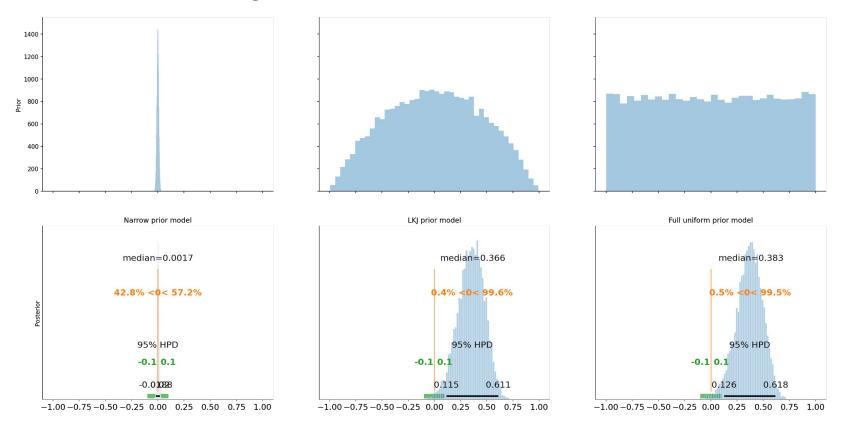
Example: Ridge regression

MAP estimate with Gaussian prior

Likelihood function + L2 regularization

 $\beta \sim N(0, \sigma_{\beta})$ $v_i \sim N(\beta x_i, \sigma)$ $p(\beta|\vec{y},\vec{x}) \propto p(\beta) \prod^{N} p(y_i|\beta,x_i)$ $\underset{o}{\operatorname{argmax}} \sum_{i=1}^{N} \log p(y_i | \beta, x_i) + \log p(\beta)$ $\underset{\beta}{\operatorname{argmin}} \frac{1}{\sigma} \sum_{i=1}^{N} (y_i - \beta x_i)^2 + \frac{1}{\sigma_{\beta}} \beta^2$

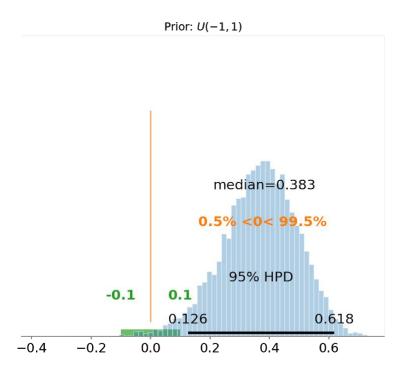
Presidential heights: informative priors



Still want to reject a null?

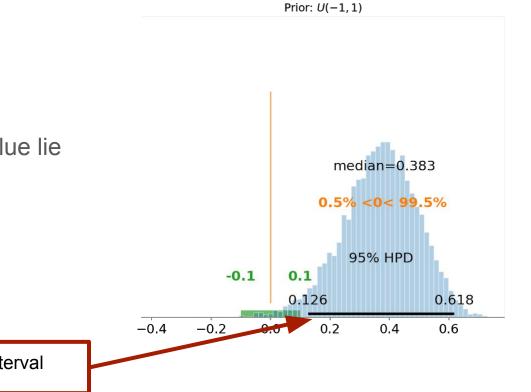
We can do it with posterior estimates.

Does the **ROPE** around a null value lie entirely outside the **HPDI**?



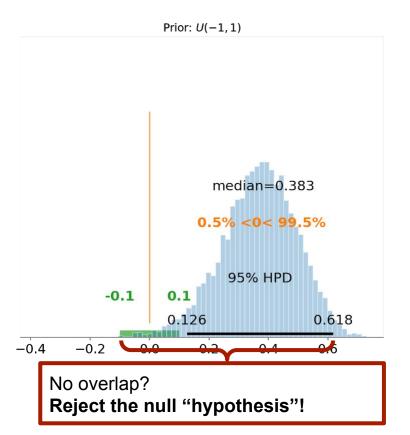


Does the **ROPE** around a null value lie entirely outside the **HPDI**?

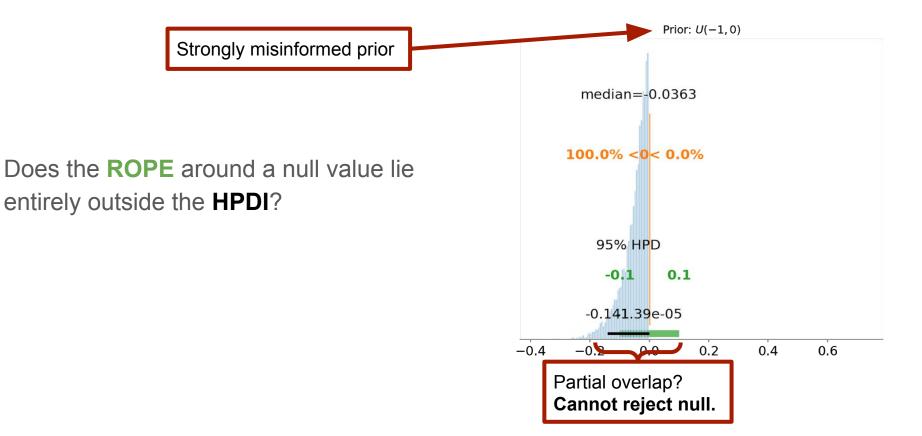


Highest Probability Density Interval

Does the **ROPE** around a null value lie entirely outside the **HPDI**?

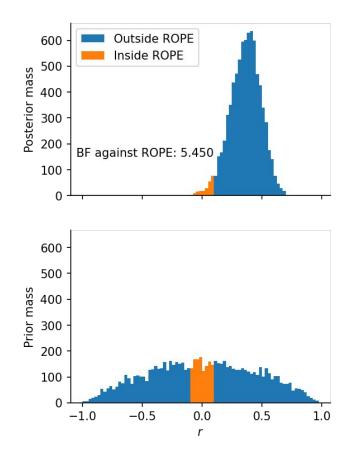


What does non-rejection look like?



Savage-Dickey method

$$BF_{01} = \frac{P(D|\theta \neq \theta_{null})}{P(D|\theta = \theta_{null})} = \frac{P(\theta \neq \theta_{null}|D)}{P(\theta \neq \theta_{null})}$$



Differences between BF and PE

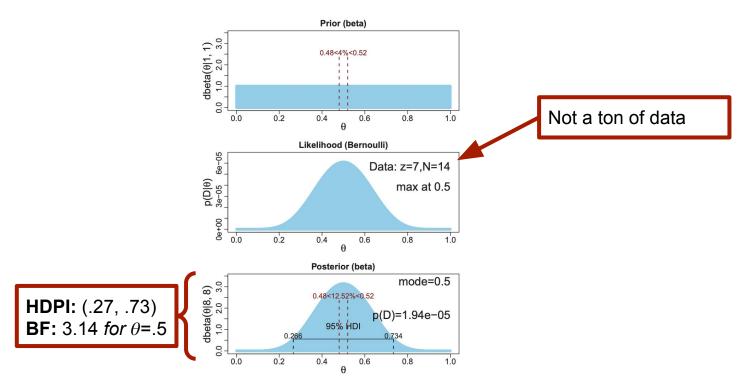
Bayes' factor

- Hypothesis testing as **model comparison**
- H_0 either a parameter value or a model
- Imitate frequentist tests and assumptions

Parameter estimation

- "What hypothesis?"
- Report full credibilities of magnitudes
- Model is explicit

Bayes' factors: YMMV



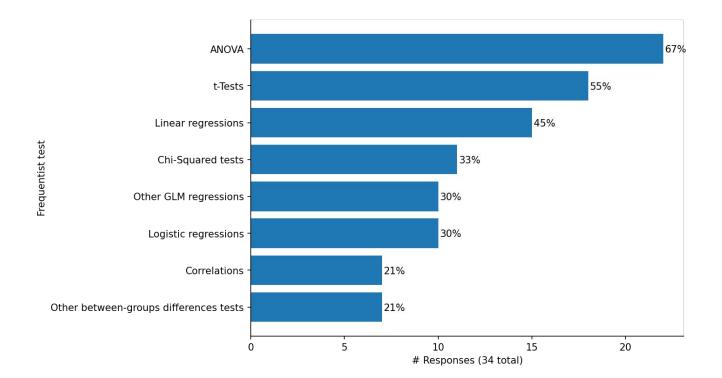
Kruschke 2015

ANOVA

By popular demand :)

ANOVA tops the list

What frequentist tests would you consider replacing?



What is ANOVA for, anyway?

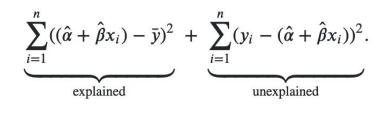
Technically, decomposing sources of variance

Loosely, often used to answer: "Did X influence Y?"

ANOVA is hypothesis testing and only makes sense in that framework

Standard ANOVA relies on a linear model

- "Explained" variance ratio
 - \rightarrow *F*-statistic
- Group means == coefficients
 - \rightarrow homogeneity of variance
 - \rightarrow normality of outcomes
- "How likely is my *F* given $\beta = 0$?"
 - $\rightarrow p$ -value

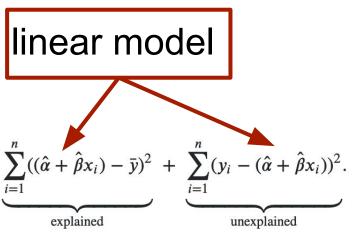


$$F = \frac{\sum_{i=1}^{n} ((\hat{\alpha} + \hat{\beta}x_i) - \bar{y})^2 / 1}{\sum_{i=1}^{n} (y_i - (\hat{\alpha} + \hat{\beta}x_i))^2 / (n-2)}.$$

CV Answer 1; CV Answer 2

Standard ANOVA relies on a linear model

- "Explained" variance ratio
 - \rightarrow *F*-statistic
- Group means == coefficients
 - \rightarrow homogeneity of variance
 - \rightarrow normality of outcomes
- "How likely is my *F* given $\beta = 0$?"
 - $\rightarrow p$ -value



$$F = \frac{\sum_{i=1}^{n} ((\hat{\alpha} + \hat{\beta}x_i) - \bar{y})^2 / 1}{\sum_{i=1}^{n} (y_i - (\hat{\alpha} + \hat{\beta}x_i))^2 / (n-2)}.$$

CV Answer 1; CV Answer 2

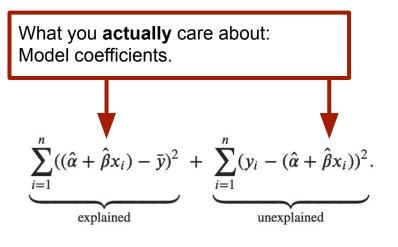
Categorical variable coding example

Level	Dummy Codes		
1	1	0	
2	0	1	
3	0	0	

Level	Sum Codes			
1	1	0		
2	0	1		
3	-1	-1		

Standard ANOVA relies on

- "Explained" variance ratio
 - \rightarrow *F*-statistic
- Group means == coefficients
 - \rightarrow homogeneity of variance
 - \rightarrow normality of outcomes
- "How likely is my *F* given $\beta = 0$?"
 - $\rightarrow p$ -value

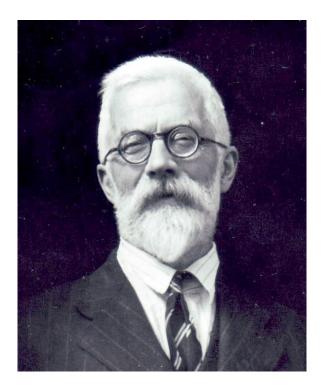


$$F = \frac{\sum_{i=1}^{n} ((\hat{\alpha} + \hat{\beta}x_i) - \bar{y})^2 / 1}{\sum_{i=1}^{n} (y_i - (\hat{\alpha} + \hat{\beta}x_i))^2 / (n-2)}.$$

CV Answer 1; CV Answer 2

Who gives a Fischer?

- Doesn't tell us about direction
- Ditto relationship *strength*
- Assumptions often don't obtain
- Complicated designs are "fun"



Who gives a Fischer?

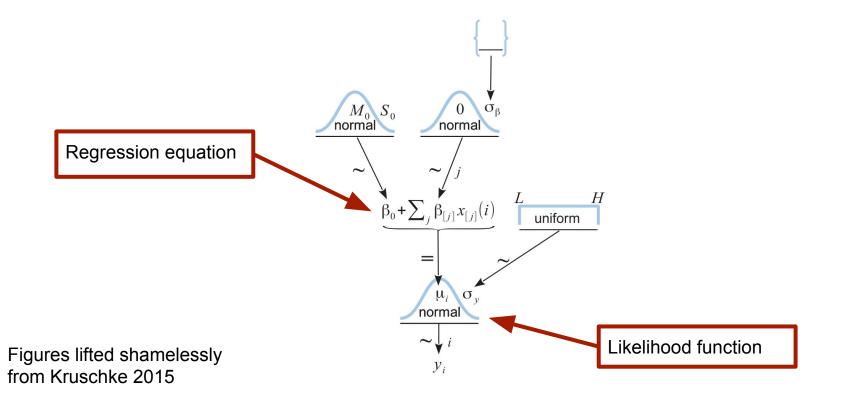
- Doesn't tell us about direction
- Ditto relationship strength
- Assumptions often don't obtain
- Complicated designs are "fun"

You need the model!

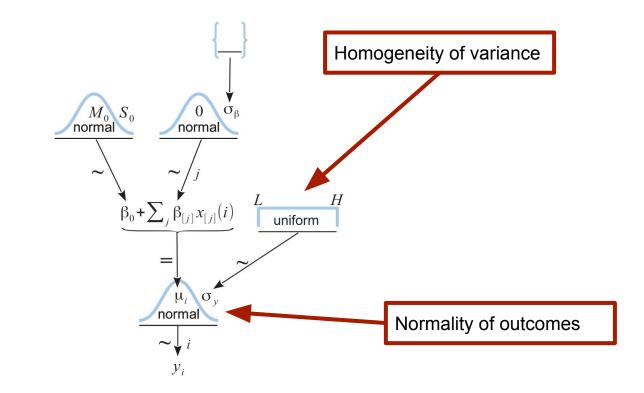
Everything you usually want to know is in the parameters of an appropriate regression model

So let's do that.

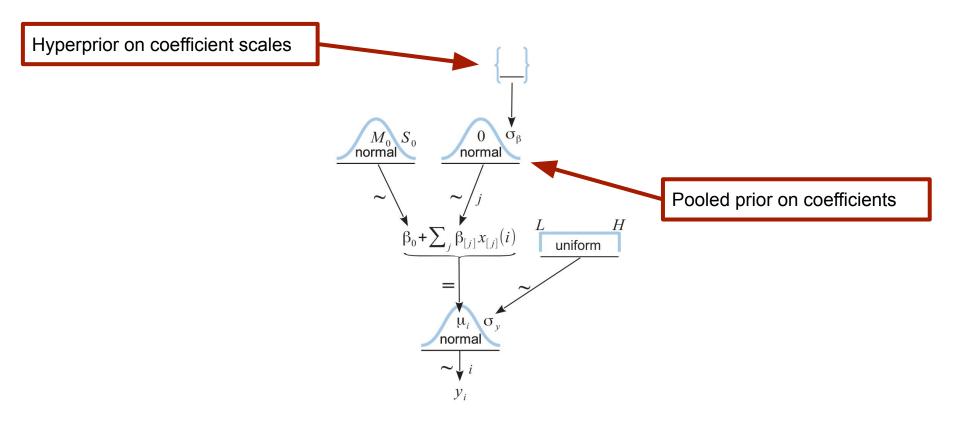
Regression with categorical predictors



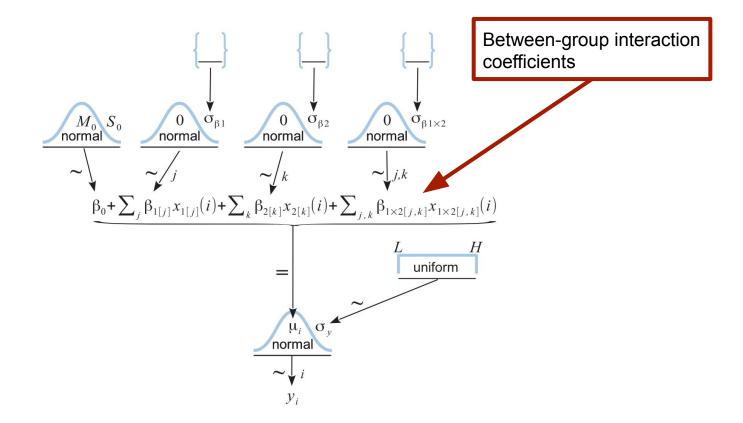
Regression: ANOVA assumptions



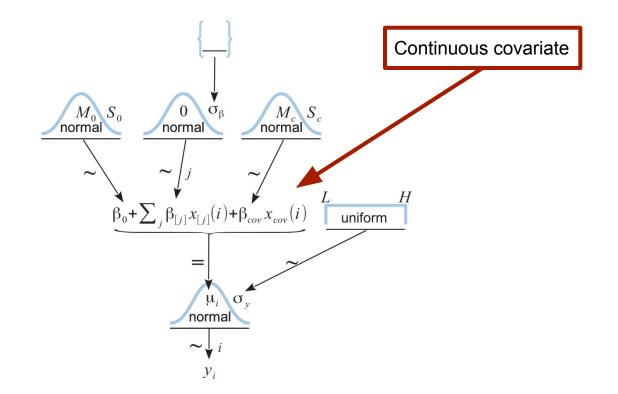
Regression: Pooled priors and shrinkage



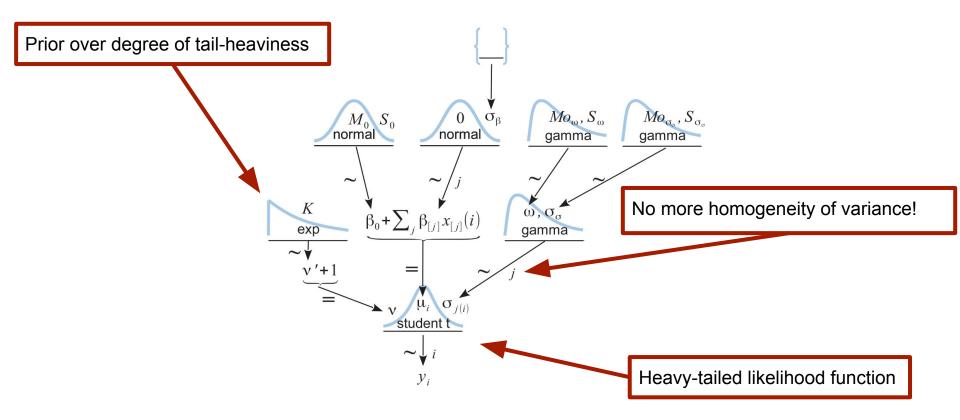
Extension: Multiple categorical variables



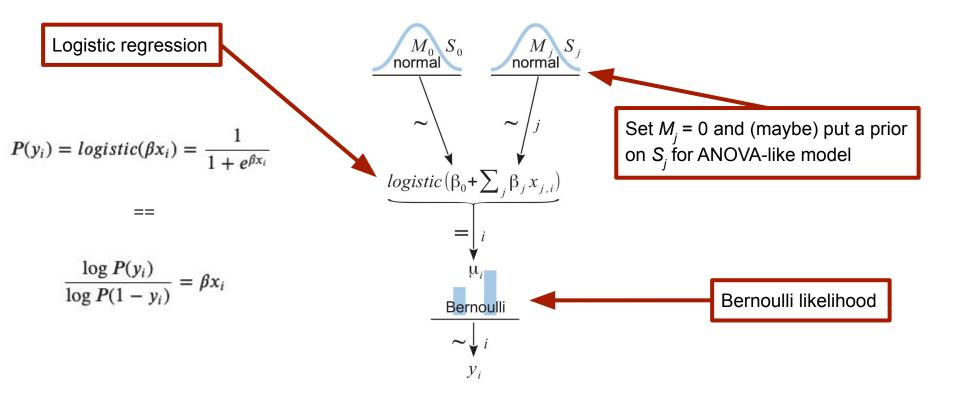
Extension: "Mixed effects" / ANCOVA



Extension: "Robust" errors model



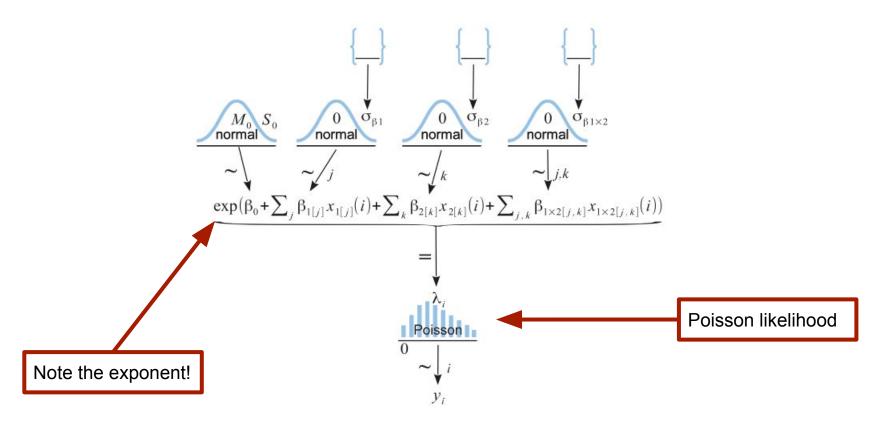
Extension: Bayesian logistic regression



Change detection task

Recall task

Extension: Poisson regression



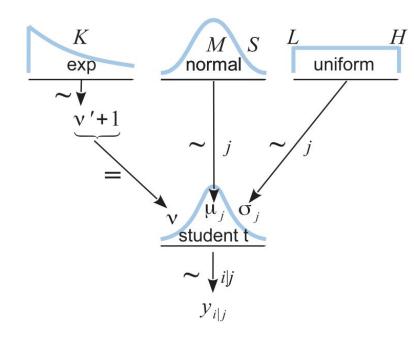
ETC

etc

What about t-tests?

Bayesian Estimation Supersedes the T-test

BEST model



Observations *i*

Groups j

Difference between groups 0 and 1: $\mu_1 - \mu_0$

Effect size:
$$(\mu_1 - \mu_0) / \sqrt{((\sigma_1^2 + \sigma_0^2) / 2)}$$

Final thoughts

Prior choices?

Much ink already spilled on this topic.

Rule of thumb: weakly informative prior for a skeptical audience.

Other uses!

- Cognitive process models
 - ex: Kruschke & Vanpaemel 2015)
- Dynamical models
 - ex: SEIR, Lotka-Volterra, whatever
- Time series models
- Latent variable models
 - ex: Bayesian matrix factorization, LDA
- Exotic models
 - ex: Gaussian processes, Bayesian neural networks

Further reading

If you get just one book, I recommend this one!

Kruschke, John K. Doing Bayesian Data Analysis. 2e, 2015.

Jaynes, E.T. Probability Theory: The logic of science. 2003.

Gelman, Andrew. "Analysis of Variance: Why it is more important than ever". *The Annals of Statistics*. 2005.

Wagenmakers, Eric-Jan; et al. "Bayesian inference for psychology. Part I: Theoretical advantages and practical ramifications". *Psychological Bulletin Review*. 2018.

Appendix

Inference methods: What about SVI?

HMC: Hamiltonian Monte Carlo

- Most packages implement variants of the No U-Turn Sampler (NUTS)
- Works well without hand-tuning for a variety of common models
- Slow when there is lots of data (>1-10k observations)

SVI: Stochastic Variational Inference

- Approximate posterior by minimizing ELBO objective
- Many "automatic" posterior guides available
- Scales well and performs better on large datasets (>1-10k observations)

Python packages

2020 June	РуМС3	РуМС4	Pyro	NumPyro	(py)STAN
Stability	Mature	Pre-release	Mature	Development	Mature
Features	•••	44	•••	44	•••
Future development	×	\checkmark	V	\checkmark	V
Backend	Theano	Tensorflow	PyTorch	JAX	C++
MCMC Speed	%	% % % ?	\$	Y Y Y Y	M M
SVI Speed	***	***	****	*** *?	₩₩ ₩?
GPU support	Model only	Yes?	Model only	Yes	Nope

Slide Graveyard

