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The group @ University of Helsinki

Luigi Acerbi Bayesian model fitting with (Py)VBMC NYU, Jan 2023 3 / 50



What this is all about

By the end of this tutorial, we will:

Perform Bayesian inference on a real dataset and model from neuroscience

Recap the basics of statistical modelling

Review the psychometric model used in cognitive & neuroscience

Explain the Bayesian approach to model fitting

Briefly introduce variational inference algorithms

Set up and run (Py)VBMC on a real dataset
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What is a model?

The best material model of a cat is another, or preferably the
same, cat.

Wiener, Philosophy of Science (1945) (with Rosenblueth)
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What is a mathematical model?

Quantitative stand-in for a theory

A family of probability distributions over possible datasets:

p (data|θ)

I data is a dataset with n data points (e.g., trials)
I θ is a parameter vector

Why? Description, prediction, and explanation

Defining p(data|θ) is the core of model building
I Wait, what?

How? Think about the data generation process!

We need some data
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Data from International Brain Laboratory (IBL)

https://www.internationalbrainlab.com
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IBL Task

(IBL et al., eLife, 2021)
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Hacking time I

Let’s have a look at the data
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The psychometric function

Data: (signed contrast, choice) for each trial

Parameters θ: (µ, σ, γlow, γhigh)

p(rightward choice|s,θ) = γlow + (1− γlow − γhigh) · F (s;µ, σ)
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The psychometric function (alt version)

Default decision process F (s;µ, σ)

Lapses with probability λ ∈ [0, 1] (lapse rate)

If lapse, respond ‘rightward’ with probability γ ∈ [0, 1] (lapse bias)

Parameters θ: (µ, σ, λ, γ)

p(rightward choice|s,θ) = λγ + (1− λ) · F (s;µ, σ)

Luigi Acerbi Bayesian model fitting with (Py)VBMC NYU, Jan 2023 13 / 50



Hacking time II

Let’s have a look at the psychometric function
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Metric for model fitting

We need a quantity to measure goodness of fit

The likelihood p(data|θ) ≡ L(θ; data)
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Likelihood vs. probability distribution

p(data|θ) has two interpretations

1 p(data|θ) is a probability distribution as you vary data for a fixed θ

2 p(data|θ) ≡ L(θ; data) is the likelihood, a function of θ for fixed data

Luigi Acerbi Bayesian model fitting with (Py)VBMC NYU, Jan 2023 16 / 50



Likelihood vs. probability distribution

p(data|θ) has two interpretations

1 p(data|θ) is a probability distribution as you vary data for a fixed θ

2 p(data|θ) ≡ L(θ; data) is the likelihood, a function of θ for fixed data

Luigi Acerbi Bayesian model fitting with (Py)VBMC NYU, Jan 2023 16 / 50



Likelihood vs. probability distribution

p(data|θ) has two interpretations

1 p(data|θ) is a probability distribution as you vary data for a fixed θ

2 p(data|θ) ≡ L(θ; data) is the likelihood, a function of θ for fixed data

Luigi Acerbi Bayesian model fitting with (Py)VBMC NYU, Jan 2023 16 / 50



The (log) likelihood

For numerical reasons we work with log p(data|θ) ≡ LL(θ; data)

Simplest case (conditionally independent trials):

log p (data|θ) = log
n∏

i=1

pi

(
y

(i)|s(i),θ
)

=
n∑

i=1

log pi

(
y

(i)|s(i),θ
)

Model building: Write function with
I Input: θ and data
I Output: log p(data|θ)
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Hacking time III

Let’s play with a log-likelihood function
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What is Bayesian inference?

p(data) =

∫
p(data|θ)p(θ)dθ
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What is Bayesian inference?
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What is Bayesian inference?

posterior︷ ︸︸ ︷
p(θ|data) =

likelihood︷ ︸︸ ︷
p(data|θ)

prior︷︸︸︷
p(θ)

p(data)︸ ︷︷ ︸
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Where does Bayes rule come from?

Really, just basic rules of probability:

1 p(θ, data) = p(θ|data)p(data)

2 p(θ, data) = p(data|θ)p(θ)

3 p(θ|data)p(data) = p(data|θ)p(θ)

4 p(θ|data) = p(data|θ)p(θ)
p(data)

Bayesian probability

We are treating both data and θ as random variables.

Probability as degree of belief.
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What’s new in Bayesian inference for model fitting?

The output of Bayesian inference is a probability distribution (posterior)
over model parameters:

p(θ|data)

Before, we only had a single best point estimate θ?.

Questions:

1 How do we compute p(θ|data)?

2 What do we do once we have p(θ|data)?

3 Why should we bother?
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Why Bayesian inference?

posterior︷ ︸︸ ︷
p(θ|data) =

likelihood︷ ︸︸ ︷
p(data|θ)

prior︷︸︸︷
p(θ)

p(data)︸ ︷︷ ︸
evidence

p(data) =

∫
p(data|θ)p(θ)dθ

Uncertainty quantification

Optimal experiment design

Robustness

Interpretability

Hyperparameter tuning

Model selection

Better predictions
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Data and model

Same data from before (IBL mouse behavioral data)

Same model as before (psychometric function model)
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Example: Let’s apply Bayes rule

Model parameters θ = (µ, σ, λ, γ)

For simplicity:
I We fix µ, λ, γ to some values µ?, λ?, γ?
I One free parameter, σ

We compute

p(σ|µ?, λ?, γ?, data) =
p(data|µ?, σ, λ?, γ?)p(σ)

Z

We assume a uniform-box prior p(σ) for σ ∈ [1, 100]

p(σ) =

{
1

99 for 1 ≤ σ ≤ 100
0 otherwise

The normalization is Z =
∫
p(data|µ?, σ, λ?, γ?)p(σ)dσ
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Hacking time IV

Let’s do Bayesian inference by hand!
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Preparing for inference

Domain of parameter vector θ = (θ1, θ2, . . . , θD) ∈ Θ

In practice, for each θd , define
I The hard bounds of the parameter.

F Mathematical constraints (e.g., σ > 0; 0 ≤ p ≤ 1)
F Effective physical limitations

I The plausible bounds of the parameter
F Should span parameter values for most datasets (e.g., 95% prior

interval)
F Built from pilot studies, literature, guesswork
F If in doubt, start larger
F This will help later with the priors

Consider reparameterizations to achieve
I Uniformity of effects across parameter range
I Independence between parameters
I Parameterization matters
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I Independence between parameters
I Parameterization matters
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Choose your prior

In Bayesian inference you need a prior over parameters, p(θ)

Common choice: independent priors p(θ) =
∏D

d=1 p(θd)
I Choose the prior p(θd) for each parameter
I Independent prior does not mean that the posterior is independent!

Remember that the prior is a probability distribution
∫
p(θ)dθ = 1

Okay, but how do I pick a prior for each parameter?
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Example priors: uniform box

Bounded parameter

Uniform in the range (lower/upper bound), zero outside

Pros: Easy to define and to justify (if wide bounds)

Cons: Non-informative
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Example priors: tent/trapezoidal

Bounded parameter

Uniform in a range, then falls off, zero outside the bounds

Can use the hard/plausible bounds defined previously

Pros: Still easy to define, “weakly” informative

Cons: Need some thought to define the plausible range
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Example priors: smoothed tent/trapezoidal

Bounded parameter

Just like tent prior but with smooth edges

Pros: Better numerical properties than tent prior

Cons: More complex to implement (use provided functions)
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What about not-bounded parameters?

Unbounded θ ∈ (−∞,∞)

Gaussian distributions (with wide σ)

Student’s t distributions (ν = 3− 7)

Half-bounded θ ∈ (0,∞)

Gamma distributions

Half-truncated Gaussians or t distributions

Hot take:

I generally recommend bounded parameters

Half-bounded / unbounded parameters ⇒ numerical issues
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Hacking time V

Let’s have a look at the priors.
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Bayesian inference done?

Not really – a grid only works in low dimension (D ∼ 1− 4)

Curse of dimensionality: N points per dimension ⇒ ND points

We need inference algorithms!
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Inference algorithms

A general-purpose inference algorithm
I takes as input an inference problem (likelihood, prior,. . . )
I returns an approximate posterior

Abstractly, similar to optimization. . .
I take as input an optimization problem (target function)
I return the optimum

. . . in practice, way more complex algorithms
I Inference is harder!
I Need to compute a full distribution instead of a single point
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Main families of general-purpose inference algorithms

1 Markov Chain Monte Carlo (MCMC)

2 Variational inference

(there are others)

Luigi Acerbi Bayesian model fitting with (Py)VBMC NYU, Jan 2023 37 / 50



Markov Chain Monte Carlo (MCMC)

Generates a random sequence θ0,θ1, . . . (a Markov chain)

Various rules for drawing θn+1|θn depending on the algorithm
I These will generally depend on p(θn, data), p(θn+1, data)

Output: A set of samples θ0, . . . ,θN
If all goes well, θ0, . . . ,θN ∼ p(θ|data)

I In practice, lot of tweaking to ensure convergence of the Markov chain
I State-of-the-art MCMC methods are (to a degree) self-tuning
I Still a lot of tweaking involved
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Example MCMC algorithm: Metropolis-Hastings

Source: Jin et al. (2019)
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Variational inference

Approximate p(θ|data) with qφ(θ)

Minimize Kullback-Leibler divergence between q and p

Outputs:

An approximate posterior qφ(θ)

A lower bound to the log marginal likelihood, ELBO(φ)

VI casts Bayesian inference into optimization + integration
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Variational inference: example

qφ(x) = N
(
x , µ, σ2

)
φ = (µ, σ2)
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Variational inference: example

qφ(x) =
K∑

k=1

wkN
(
x , µk , σ

2
k

)
φ = (wk , µk , σ

2
k)Kk=1
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Variational Bayesian Monte Carlo (vbmc)

x
1

x 2

Iteration 0 (initial design)

x
1

x 2

Target density

Iterations
-4

-2.27

-1
Model evidence

ELBO
LML

Acerbi, NeurIPS (2018; 2020)
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Variational Bayesian Monte Carlo (vbmc)

x
1

x 2

Iteration 2 (warm-up)
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1

x 2

Target density

1 2
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Variational Bayesian Monte Carlo (vbmc)

x
1

x 2

Iteration 3 (warm-up)

x
1

x 2

Target density

1 3
Iterations

-4

-2.27

-1
Model evidence

ELBO
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Variational Bayesian Monte Carlo (vbmc)
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1
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Iteration 4 (warm-up)
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1

x 2

Target density

1 4
Iterations
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Variational Bayesian Monte Carlo (vbmc)
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1
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Iteration 5 (warm-up)
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1

x 2

Target density

1 5
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-4
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Variational Bayesian Monte Carlo (vbmc)

x
1

x 2

Iteration 6 (end of warm-up)

x
1

x 2

Target density

1 5 6
Iterations
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Variational Bayesian Monte Carlo (vbmc)
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Variational Bayesian Monte Carlo (vbmc)
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Variational Bayesian Monte Carlo (vbmc)
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Variational Bayesian Monte Carlo (vbmc)
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Variational Bayesian Monte Carlo (vbmc)
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Variational Bayesian Monte Carlo (vbmc)
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Variational Bayesian Monte Carlo (vbmc)
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Variational Bayesian Monte Carlo (vbmc)

x
1

x 2

Iteration 15

x
1

x 2

Target density

1 5 10 15
Iterations

-4

-2.27

-1
Model evidence

ELBO
LML

Acerbi, NeurIPS (2018; 2020)
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Hacking time VI

Let’s set up and run a Bayesian inference algorithm
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1 A recap of statistical modelling
Of models and likelihoods
The psychometric function

2 Bayesian model fitting
Refresher of Bayesian inference
Bayesian inference for model fitting

3 Computing the posterior distribution
Computing the posterior “by hand”
Choosing the prior
Inference algorithms

4 Making use of a Bayesian posterior
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OK so we have a posterior what now

Visualize the posterior distribution

Represent uncertainty (e.g., credible intervals)

Make posterior predictions (“Bayesian fit”) and compare to data
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Hacking time VII

Let’s use this posterior
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What we learnt

By the end of this tutorial, we will:

Perform Bayesian inference on a real dataset and model from neuroscience

Recap the basics of statistical modelling

Review the psychometric model used in cognitive & neuroscience

Explain the Bayesian approach to model fitting

Briefly introduce variational inference algorithms

Set up and run (Py)VBMC on a real dataset
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This was a lot

You deserve another cat picture

Bayesian model fitting could fill an entire year

This tutorial is just the first steps on the Bayesian way
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Final slide

Contacts:

Email: luigi.acerbi@helsinki.fi

Twitter: @AcerbiLuigi

Acknowledgments:

The PyVBMC development team

FCAI

Code:

VBMC (MATLAB): github.com/lacerbi/vbmc

PyVBMC: github.com/acerbilab/pyvbmc

Questions?
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