Bayesian model fitting made easy with Variational Bayesian Monte Carlo

Luigi Acerbi

Department of Computer Science University of Helsinki Finnish Center for Artificial Intelligence FCAI

New York University, Jan 2023

A recap of statistical modelling

- Of models and likelihoods
- The psychometric function

2 Bayesian model fitting

- Refresher of Bayesian inference
- Bayesian inference for model fitting

3 Computing the posterior distribution

- Computing the posterior "by hand"
- Choosing the prior
- Inference algorithms

4 Making use of a Bayesian posterior

The group @ University of Helsinki

Luigi Principal Investigator

Grégoire Postdoc (w/ Aki Vehtari)

Ulpu Postdoc (w/ Jukka Corander)

Chengkun PhD student

Daolang PhD student (w/ Sami Kaski)

Bobby Research Assistant

What this is all about

By the end of this tutorial, we will:

Perform Bayesian inference on a real dataset and model from neuroscience

- Recap the basics of statistical modelling
- Review the psychometric model used in cognitive & neuroscience
- Explain the Bayesian approach to model fitting
- Briefly introduce variational inference algorithms
- Set up and run (Py)VBMC on a real dataset

A recap of statistical modelling

- Of models and likelihoods
- The psychometric function

2 Bayesian model fitting

- Refresher of Bayesian inference
- Bayesian inference for model fitting

3 Computing the posterior distribution

- Computing the posterior "by hand"
- Choosing the prior
- Inference algorithms

4 Making use of a Bayesian posterior

A recap of statistical modelling

- Of models and likelihoods
- The psychometric function

Bayesian model fitting

- Refresher of Bayesian inference
- Bayesian inference for model fitting

3 Computing the posterior distribution

- Computing the posterior "by hand"
- Choosing the prior
- Inference algorithms

4 Making use of a Bayesian posterior

What is a model?

The best material model of a cat is another, or preferably the same, cat.

Wiener, Philosophy of Science (1945) (with Rosenblueth)

• Quantitative stand-in for a theory

- Quantitative stand-in for a theory
- A family of probability distributions over possible datasets:

- data is a dataset with n data points (e.g., trials)
- θ is a parameter vector

- Quantitative stand-in for a theory
- A family of probability distributions over possible datasets:

$p(\mathsf{data}|\boldsymbol{ heta})$

- data is a dataset with n data points (e.g., trials)
- θ is a parameter vector
- Why?

- Quantitative stand-in for a theory
- A family of probability distributions over possible datasets:

- data is a dataset with n data points (e.g., trials)
- θ is a parameter vector
- Why? Description, prediction, and explanation

- Quantitative stand-in for a theory
- A family of probability distributions over possible datasets:

- data is a dataset with n data points (e.g., trials)
- θ is a parameter vector
- Why? Description, prediction, and explanation
- Defining $p(data|\theta)$ is the core of model building

- Quantitative stand-in for a theory
- A family of probability distributions over possible datasets:

- data is a dataset with n data points (e.g., trials)
- θ is a parameter vector
- Why? Description, prediction, and explanation
- Defining p(data|θ) is the core of model building
 Wait, what?

- Quantitative stand-in for a theory
- A family of probability distributions over possible datasets:

- data is a dataset with n data points (e.g., trials)
- θ is a parameter vector
- Why? Description, prediction, and explanation
- Defining p(data|θ) is the core of model building
 Wait, what?
- How? Think about the data generation process!

- Quantitative stand-in for a theory
- A family of probability distributions over possible datasets:

$p(data|\theta)$

- data is a dataset with n data points (e.g., trials)
- θ is a parameter vector
- Why? Description, prediction, and explanation
- Defining p(data|θ) is the core of model building
 Wait, what?
- How? Think about the data generation process!

We need some data

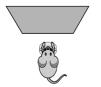
Data from International Brain Laboratory (IBL)

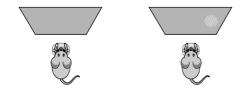
HOME PUBLICATIONS RESOURCES ABOUT OUR TEAM JOIN US IBL MEMBER LOGIN

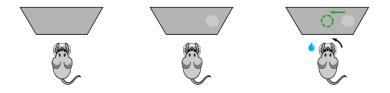
International Brain Laboratory

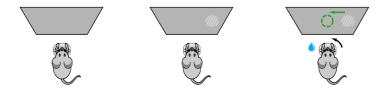
Experimental & theoretical neuroscientists collaborating to understand brainwide circuits for complex behavior

https://www.internationalbrainlab.com

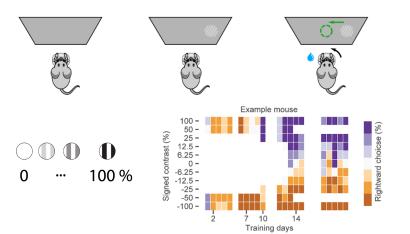








○ ● ● ● 0 … 100 %

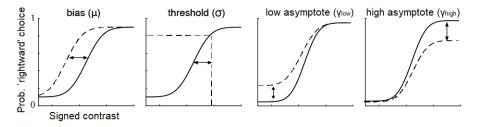


(IBL et al., eLife, 2021)

Hacking time I

Let's have a look at the data

The psychometric function



- Data: (signed contrast, choice) for each trial
- Parameters θ : (μ , σ , γ_{low} , γ_{high})

 $p(\text{rightward choice}|s, \theta) = \gamma_{\text{low}} + (1 - \gamma_{\text{low}} - \gamma_{\text{high}}) \cdot F(s; \mu, \sigma)$

The psychometric function (alt version)

- Default decision process $F(s; \mu, \sigma)$
- Lapses with probability $\lambda \in [0,1]$ (lapse rate)
- If lapse, respond 'rightward' with probability $\gamma \in [0,1]$ (lapse bias)
- Parameters $\boldsymbol{\theta}$: (μ , σ , λ , γ)

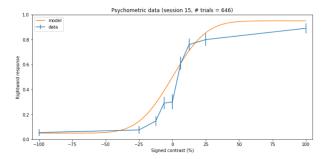
$$p(\mathsf{rightward\ choice}|s, oldsymbol{ heta}) = \lambda \gamma + (1 - \lambda) \cdot F(s; \mu, \sigma)$$

Hacking time II

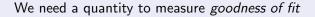
Let's have a look at the psychometric function

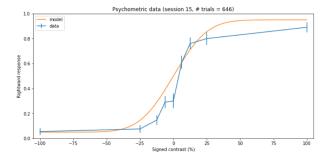
Metric for model fitting

We need a quantity to measure goodness of fit



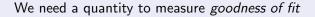
Metric for model fitting

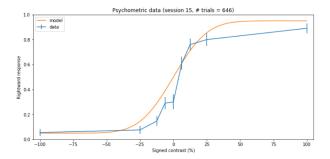




• Mean squared error?

Metric for model fitting





- Mean squared error?
- The likelihood $p(data|\theta) \equiv L(\theta; data)$

Likelihood vs. probability distribution

 $p(\text{data}|\boldsymbol{\theta})$ has two interpretations

Likelihood vs. probability distribution

 $p(data|\theta)$ has two interpretations

($p(data|\theta)$) is a *probability distribution* as you vary data for a fixed θ

Likelihood vs. probability distribution

 $p(data|\theta)$ has two interpretations

• $p(data|\theta)$ is a probability distribution as you vary data for a fixed θ • $p(data|\theta) \equiv L(\theta; data)$ is the likelihood, a function of θ for fixed data

The (log) likelihood

• For numerical reasons we work with log $p(data|\theta) \equiv LL(\theta; data)$

The (log) likelihood

- For numerical reasons we work with log $p(data|\theta) \equiv LL(\theta; data)$
- Simplest case (conditionally independent trials):

$$\log p(\text{data}|\boldsymbol{\theta}) = \log \prod_{i=1}^{n} p_i\left(\mathbf{y}^{(i)}|\mathbf{s}^{(i)}, \boldsymbol{\theta}\right)$$
$$= \sum_{i=1}^{n} \log p_i\left(\mathbf{y}^{(i)}|\mathbf{s}^{(i)}, \boldsymbol{\theta}\right)$$

The (log) likelihood

- For numerical reasons we work with log $p(data|\theta) \equiv LL(\theta; data)$
- Simplest case (conditionally independent trials):

$$\log p(\text{data}|\boldsymbol{\theta}) = \log \prod_{i=1}^{n} p_i\left(\mathbf{y}^{(i)}|\mathbf{s}^{(i)}, \boldsymbol{\theta}\right)$$
$$= \sum_{i=1}^{n} \log p_i\left(\mathbf{y}^{(i)}|\mathbf{s}^{(i)}, \boldsymbol{\theta}\right)$$

- Model building: Write function with
 - Input: θ and data
 - Output: log p(data|θ)

Hacking time III

Let's play with a log-likelihood function

A recap of statistical modelling

- Of models and likelihoods
- The psychometric function

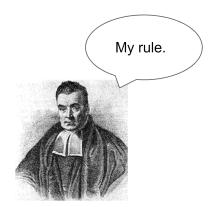
2 Bayesian model fitting

- Refresher of Bayesian inference
- Bayesian inference for model fitting

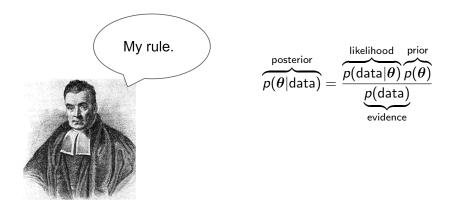
3 Computing the posterior distribution

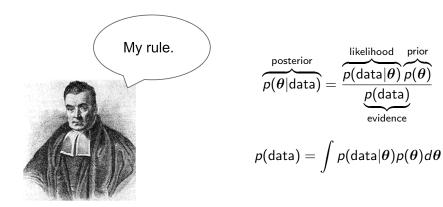
- Computing the posterior "by hand"
- Choosing the prior
- Inference algorithms

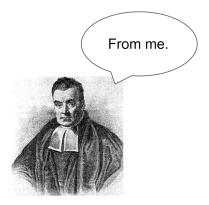
4 Making use of a Bayesian posterior

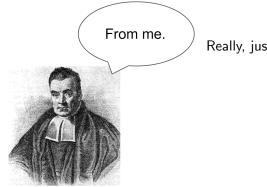


$$p(m{ heta}|\mathsf{data}) = rac{p(\mathsf{data}|m{ heta})p(m{ heta})}{p(\mathsf{data})}$$

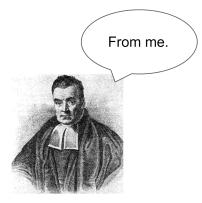




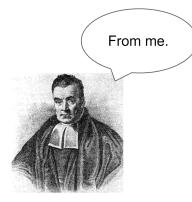




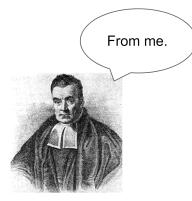
Really, just basic rules of probability:



Really, just basic rules of probability: • $p(\theta, data) = p(\theta|data)p(data)$

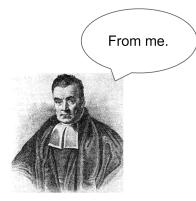


Really, just basic rules of probability: **1** $p(\theta, \text{data}) = p(\theta|\text{data})p(\text{data})$ **2** $p(\theta, \text{data}) = p(\text{data}|\theta)p(\theta)$



Really, just basic rules of probability:

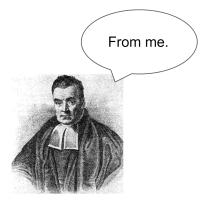
- $p(\theta, data) = p(\theta|data)p(data)$
- 2 $p(\theta, data) = p(data|\theta)p(\theta)$
- $p(\theta | \text{data}) p(\text{data}) = p(\text{data} | \theta) p(\theta)$



Really, just basic rules of probability:

- $p(\theta, data) = p(\theta|data)p(data)$
- $\ \textbf{0} \ \ p(\boldsymbol{\theta}, \mathsf{data}) = p(\mathsf{data}|\boldsymbol{\theta})p(\boldsymbol{\theta})$
- $p(\theta|\text{data})p(\text{data}) = p(\text{data}|\theta)p(\theta)$

•
$$p(\theta | data) = \frac{p(data | \theta)p(\theta)}{p(data)}$$



Really, just basic rules of probability: **a** $p(\theta, \text{data}) = p(\theta|\text{data})p(\text{data})$ **a** $p(\theta, \text{data}) = p(\text{data}|\theta)p(\theta)$ **b** $p(\theta|\text{data})p(\text{data}) = p(\text{data}|\theta)p(\theta)$ **c** $p(\theta|\text{data}) = \frac{p(\text{data}|\theta)p(\theta)}{p(\text{data})}$

Bayesian probability

- We are treating both data and θ as random variables.
- Probability as degree of belief.

What's new in Bayesian inference for model fitting?

The output of Bayesian inference is a probability distribution (posterior) over model parameters:

 $p(\theta | \mathsf{data})$

Before, we only had a single best point estimate θ_{\star} .

What's new in Bayesian inference for model fitting?

The output of Bayesian inference is a probability distribution (posterior) over model parameters:

 $p(\theta | \mathsf{data})$

Before, we only had a single best point estimate θ_{\star} .

Questions:

- How do we compute $p(\theta | data)$?
- 2 What do we do once we have $p(\theta | \text{data})$?
- Why should we bother?

What's new in Bayesian inference for model fitting?

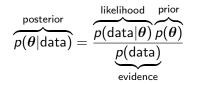
The output of Bayesian inference is a probability distribution (posterior) over model parameters:

 $p(\theta | \mathsf{data})$

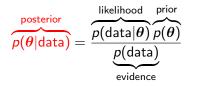
Before, we only had a single best point estimate θ_{\star} .

Questions:

- How do we compute $p(\theta | data)$?
- 2 What do we do once we have $p(\theta | \text{data})$?
- Why should we bother?

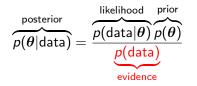


$$p(\mathsf{data}) = \int p(\mathsf{data}|oldsymbol{ heta}) p(oldsymbol{ heta}) doldsymbol{ heta}$$



$$p(\mathsf{data}) = \int p(\mathsf{data}|oldsymbol{ heta}) p(oldsymbol{ heta}) doldsymbol{ heta}$$

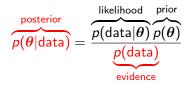
- Uncertainty quantification
- Optimal experiment design
- Robustness
- Interpretability



$$p(\mathsf{data}) = \int p(\mathsf{data}|oldsymbol{ heta}) p(oldsymbol{ heta}) doldsymbol{ heta}$$

- Uncertainty quantification
- Optimal experiment design
- Robustness
- Interpretability

- Hyperparameter tuning
- Model selection



$$p(\mathsf{data}) = \int p(\mathsf{data}|oldsymbol{ heta}) p(oldsymbol{ heta}) doldsymbol{ heta}$$

- Uncertainty quantification
- Optimal experiment design
- Robustness
- Interpretability

- Hyperparameter tuning
- Model selection

Better predictions

A recap of statistical modelling

- Of models and likelihoods
- The psychometric function

2 Bayesian model fitting

- Refresher of Bayesian inference
- Bayesian inference for model fitting

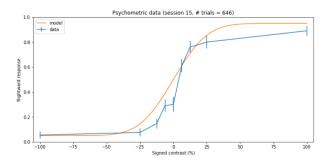
3 Computing the posterior distribution

- Computing the posterior "by hand"
- Choosing the prior
- Inference algorithms

4 Making use of a Bayesian posterior

Data and model

- Same data from before (IBL mouse behavioral data)
- Same model as before (psychometric function model)



• Model parameters $\boldsymbol{\theta} = (\mu, \sigma, \lambda, \gamma)$

- Model parameters $\boldsymbol{\theta} = (\mu, \sigma, \lambda, \gamma)$
- For simplicity:
 - We fix μ, λ, γ to some values $\mu_{\star}, \lambda_{\star}, \gamma_{\star}$
 - One free parameter, σ

- Model parameters $\boldsymbol{\theta} = (\mu, \sigma, \lambda, \gamma)$
- For simplicity:
 - We fix μ, λ, γ to some values $\mu_{\star}, \lambda_{\star}, \gamma_{\star}$
 - One free parameter, σ
- We compute

$$p(\sigma | \mu_{\star}, \lambda_{\star}, \gamma_{\star}, \mathsf{data}) = rac{p(\mathsf{data} | \mu_{\star}, \sigma, \lambda_{\star}, \gamma_{\star}) p(\sigma)}{Z}$$

- Model parameters $\boldsymbol{\theta} = (\mu, \sigma, \lambda, \gamma)$
- For simplicity:
 - \blacktriangleright We fix μ,λ,γ to some values $\mu_\star,\lambda_\star,\gamma_\star$
 - One free parameter, σ
- We compute

$$p(\sigma|\mu_{\star},\lambda_{\star},\gamma_{\star},\mathsf{data}) = \frac{p(\mathsf{data}|\mu_{\star},\sigma,\lambda_{\star},\gamma_{\star})p(\sigma)}{Z}$$

• We assume a uniform-box prior $p(\sigma)$ for $\sigma \in [1, 100]$

$$p(\sigma) = \begin{cases} rac{1}{99} & ext{for } 1 \leq \sigma \leq 100 \\ 0 & ext{otherwise} \end{cases}$$

- Model parameters $\boldsymbol{\theta} = (\mu, \sigma, \lambda, \gamma)$
- For simplicity:
 - \blacktriangleright We fix μ,λ,γ to some values $\mu_\star,\lambda_\star,\gamma_\star$
 - One free parameter, σ
- We compute

$$p(\sigma|\mu_{\star},\lambda_{\star},\gamma_{\star},\mathsf{data}) = \frac{p(\mathsf{data}|\mu_{\star},\sigma,\lambda_{\star},\gamma_{\star})p(\sigma)}{Z}$$

• We assume a uniform-box prior $p(\sigma)$ for $\sigma \in [1, 100]$

$$p(\sigma) = \left\{ egin{array}{cc} rac{1}{99} & ext{for } 1 \leq \sigma \leq 100 \\ 0 & ext{otherwise} \end{array}
ight.$$

• The normalization is $Z=\int p({\sf data}|\mu_\star,\sigma,\lambda_\star,\gamma_\star)p(\sigma)d\sigma$

Hacking time IV

Let's do Bayesian inference by hand!

• Domain of parameter vector $\boldsymbol{\theta} = (\theta_1, \theta_2, \dots, \theta_D) \in \boldsymbol{\Theta}$

- Domain of parameter vector θ = (θ₁, θ₂, ..., θ_D) ∈ Θ
 In practice, for each θ_d, define
 - The *hard bounds* of the parameter.
 - ★ Mathematical constraints (e.g., $\sigma > 0$; $0 \le p \le 1$)
 - ★ Effective physical limitations

- Domain of parameter vector θ = (θ₁, θ₂,..., θ_D) ∈ Θ
 In practice, for each θ_d, define
 - The *hard bounds* of the parameter.
 - ★ Mathematical constraints (e.g., $\sigma > 0$; $0 \le p \le 1$)
 - ★ Effective physical limitations
 - The plausible bounds of the parameter
 - Should span parameter values for most datasets (e.g., 95% prior interval)
 - * Built from pilot studies, literature, guesswork
 - ★ If in doubt, start larger
 - ★ This will help later with the priors

- Domain of parameter vector θ = (θ₁, θ₂,..., θ_D) ∈ Θ
 In practice, for each θ_d, define
 - The *hard bounds* of the parameter.
 - ★ Mathematical constraints (e.g., $\sigma > 0$; $0 \le p \le 1$)
 - ★ Effective physical limitations
 - The plausible bounds of the parameter
 - Should span parameter values for most datasets (e.g., 95% prior interval)
 - * Built from pilot studies, literature, guesswork
 - ★ If in doubt, start larger
 - ★ This will help later with the priors
- Consider reparameterizations to achieve
 - Uniformity of effects across parameter range
 - Independence between parameters
 - Parameterization matters

• In Bayesian inference you need a prior over parameters, $p(\theta)$

- In Bayesian inference you need a prior over parameters, p(heta)
- Common choice: independent priors $p(\theta) = \prod_{d=1}^{D} p(\theta_d)$

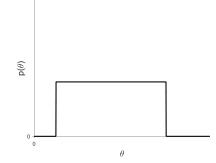
- In Bayesian inference you need a prior over parameters, $p(\theta)$
- Common choice: independent priors $p(\theta) = \prod_{d=1}^{D} p(\theta_d)$
 - Choose the prior $p(\theta_d)$ for each parameter
 - Independent prior does not mean that the posterior is independent!

- In Bayesian inference you need a prior over parameters, $p(\theta)$
- Common choice: independent priors $p(\theta) = \prod_{d=1}^{D} p(\theta_d)$
 - Choose the prior $p(\theta_d)$ for each parameter
 - Independent prior does not mean that the posterior is independent!
- Remember that the prior is a probability distribution $\int p(\theta) d\theta = 1$

- In Bayesian inference you need a prior over parameters, p(heta)
- Common choice: independent priors $p(\theta) = \prod_{d=1}^{D} p(\theta_d)$
 - Choose the prior $p(\theta_d)$ for each parameter
 - Independent prior does not mean that the posterior is independent!
- Remember that the prior is a probability distribution $\int p(\theta) d\theta = 1$
- Okay, but how do I pick a prior for each parameter?

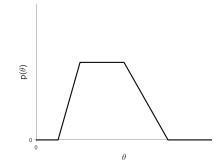
Example priors: uniform box

- Bounded parameter
- Uniform in the range (lower/upper bound), zero outside
- Pros: Easy to define and to justify (if wide bounds)
- Cons: Non-informative



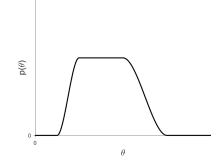
Example priors: tent/trapezoidal

- Bounded parameter
- Uniform in a range, then falls off, zero outside the bounds
- Can use the hard/plausible bounds defined previously
- Pros: Still easy to define, "weakly" informative
- Cons: Need some thought to define the plausible range



Example priors: smoothed tent/trapezoidal

- Bounded parameter
- Just like tent prior but with smooth edges
- Pros: Better numerical properties than tent prior
- Cons: More complex to implement (use provided functions)



Unbounded $\theta \in (-\infty, \infty)$

- Gaussian distributions (with wide σ)
- Student's t distributions ($\nu = 3 7$)

Unbounded $\theta \in (-\infty, \infty)$

- Gaussian distributions (with wide σ)
- Student's t distributions ($\nu = 3 7$)

Half-bounded $\theta \in (0,\infty)$

- Gamma distributions
- Half-truncated Gaussians or t distributions

Unbounded $\theta \in (-\infty, \infty)$

- Gaussian distributions (with wide σ)
- Student's t distributions ($\nu = 3 7$)

Half-bounded $\theta \in (0,\infty)$

- Gamma distributions
- Half-truncated Gaussians or t distributions

Hot take:

- I generally recommend bounded parameters
- Half-bounded / unbounded parameters \Rightarrow numerical issues

Hacking time V

Let's have a look at the priors.

Bayesian inference done?

Bayesian inference done?

- Not really a grid only works in low dimension $(D\sim 1-4)$
- Curse of dimensionality: N points per dimension $\Rightarrow N^D$ points
- We need inference algorithms!

Inference algorithms

- A general-purpose inference algorithm
 - takes as input an inference problem (likelihood, prior,...)
 - returns an approximate posterior

Inference algorithms

- A general-purpose inference algorithm
 - takes as input an inference problem (likelihood, prior,...)
 - returns an approximate posterior
- Abstractly, similar to optimization...
 - take as input an optimization problem (target function)
 - return the optimum

Inference algorithms

- A general-purpose inference algorithm
 - takes as input an inference problem (likelihood, prior,...)
 - returns an approximate posterior
- Abstractly, similar to optimization...
 - take as input an optimization problem (target function)
 - return the optimum
- ... in practice, way more complex algorithms
 - Inference is harder!
 - Need to compute a full distribution instead of a single point

Main families of general-purpose inference algorithms

- Markov Chain Monte Carlo (MCMC)
- Variational inference

(there are others)

• Generates a random sequence $heta_0, heta_1, \dots$ (a Markov chain)

- Generates a random sequence $heta_0, heta_1, \dots$ (a Markov chain)
- Various rules for drawing $heta_{n+1}| heta_n$ depending on the algorithm

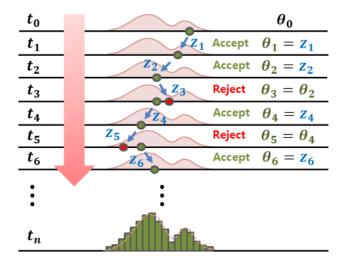
- Generates a random sequence $heta_0, heta_1, \dots$ (a Markov chain)
- Various rules for drawing $heta_{n+1}| heta_n$ depending on the algorithm
 - These will generally depend on $p(\theta_n, \text{data})$, $p(\theta_{n+1}, \text{data})$

- Generates a random sequence $heta_0, heta_1, \dots$ (a Markov chain)
- Various rules for drawing $heta_{n+1}| heta_n$ depending on the algorithm
 - These will generally depend on $p(\theta_n, \text{data})$, $p(\theta_{n+1}, \text{data})$
- **Output:** A set of samples $\theta_0, \ldots, \theta_N$

- Generates a random sequence $heta_0, heta_1, \dots$ (a Markov chain)
- Various rules for drawing $\theta_{n+1}|\theta_n$ depending on the algorithm
 - ▶ These will generally depend on $p(\theta_n, \text{data})$, $p(\theta_{n+1}, \text{data})$
- **Output:** A set of samples $\theta_0, \ldots, \theta_N$
- If all goes well, $heta_0,\ldots, heta_N\sim p(heta|\mathsf{data})$

- Generates a random sequence $heta_0, heta_1, \dots$ (a Markov chain)
- Various rules for drawing $heta_{n+1}| heta_n$ depending on the algorithm
 - ▶ These will generally depend on $p(\theta_n, \text{data})$, $p(\theta_{n+1}, \text{data})$
- **Output:** A set of samples $\theta_0, \ldots, \theta_N$
- If all goes well, $heta_0,\ldots, heta_N\sim p(heta|\mathsf{data})$
 - ► In practice, lot of tweaking to ensure convergence of the Markov chain
 - State-of-the-art MCMC methods are (to a degree) self-tuning
 - Still a lot of tweaking involved

Example MCMC algorithm: Metropolis-Hastings



Source: Jin et al. (2019)

• Approximate $p(heta|\mathsf{data})$ with $q_\phi(heta)$

- Approximate $p(heta|\mathsf{data})$ with $q_\phi(heta)$
- Minimize Kullback-Leibler divergence between q and p

- Approximate $p(heta|\mathsf{data})$ with $q_\phi(heta)$
- Minimize Kullback-Leibler divergence between q and p

Outputs:

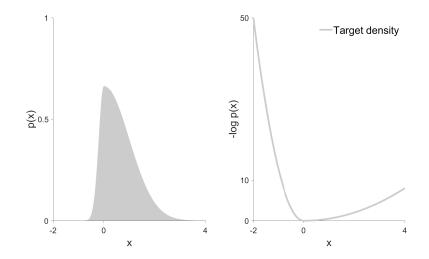
- An approximate posterior $q_{\phi}(heta)$
- A lower bound to the log marginal likelihood, $\mathsf{ELBO}(\phi)$

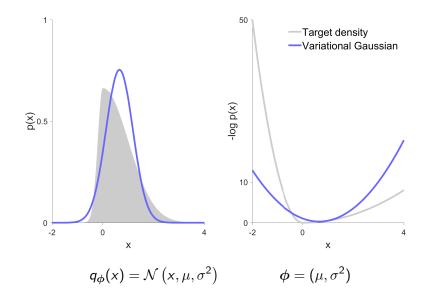
- Approximate $p(heta|\mathsf{data})$ with $q_\phi(heta)$
- Minimize Kullback-Leibler divergence between q and p

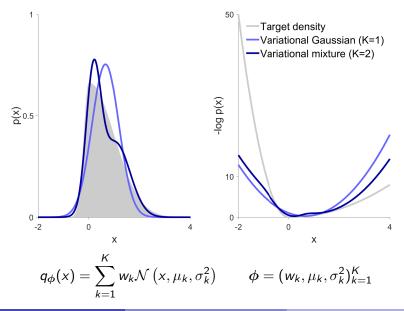
Outputs:

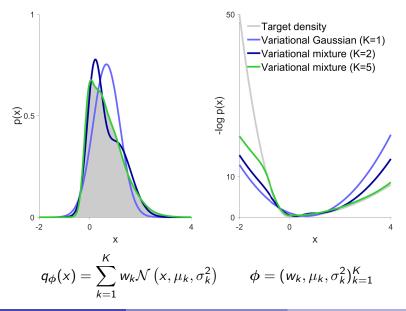
- An approximate posterior $q_{\phi}(heta)$
- A lower bound to the log marginal likelihood, $\mathsf{ELBO}(\phi)$

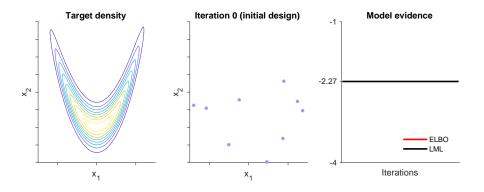
$\mathsf{VI}\xspace$ casts Bayesian inference into optimization + integration

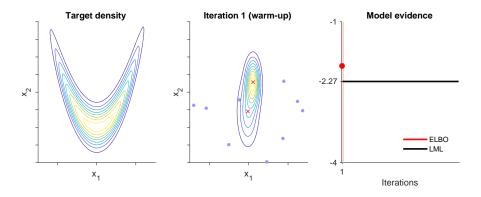




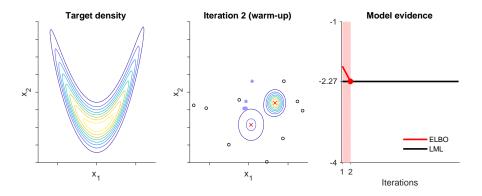


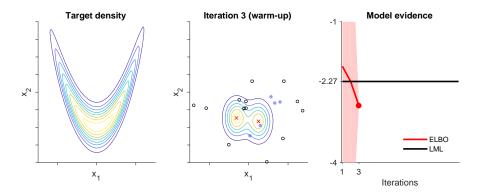


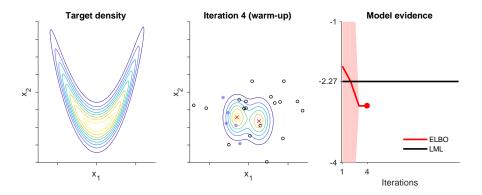


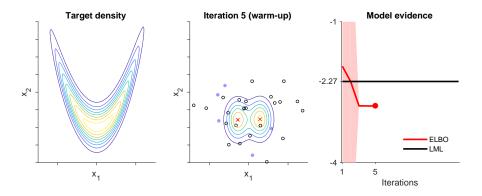


Acerbi, NeurIPS (2018; 2020)

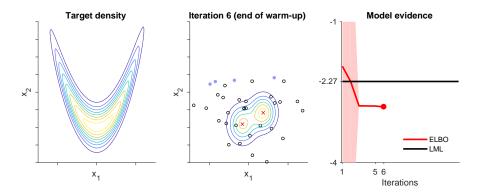


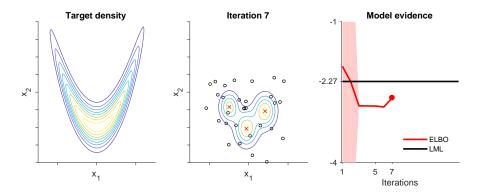


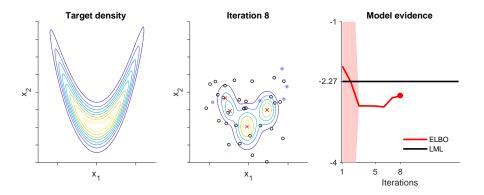


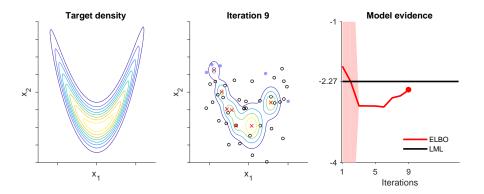


Acerbi, NeurIPS (2018; 2020)

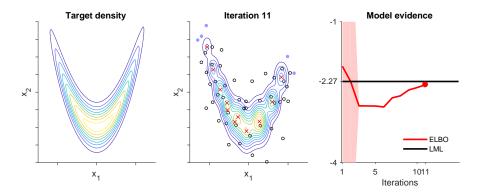


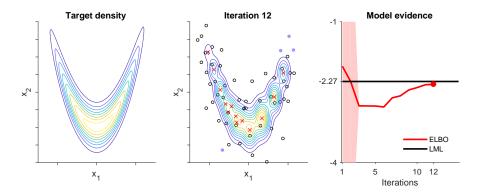


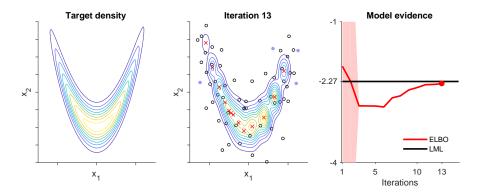




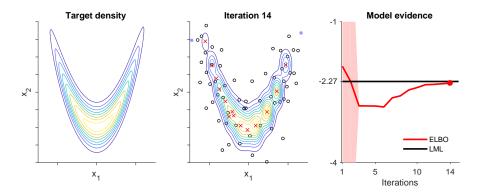


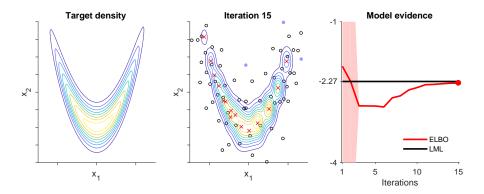






Acerbi, NeurIPS (2018; 2020)





Hacking time VI

Let's set up and run a Bayesian inference algorithm

A recap of statistical modelling

- Of models and likelihoods
- The psychometric function

2 Bayesian model fitting

- Refresher of Bayesian inference
- Bayesian inference for model fitting

Computing the posterior distribution

- Computing the posterior "by hand"
- Choosing the prior
- Inference algorithms

4 Making use of a Bayesian posterior

OK so we have a posterior what now

OK so we have a posterior what now

- Visualize the posterior distribution
- Represent uncertainty (e.g., credible intervals)
- Make posterior predictions ("Bayesian fit") and compare to data

Hacking time VII

Let's use this posterior

What we learnt

By the end of this tutorial, we will:

Perform Bayesian inference on a real dataset and model from neuroscience

- Recap the basics of statistical modelling
- Review the psychometric model used in cognitive & neuroscience
- Explain the Bayesian approach to model fitting
- Briefly introduce variational inference algorithms
- Set up and run (Py)VBMC on a real dataset

This was a lot

This was a lot

You deserve another cat picture

This was a lot

You deserve another cat picture

- Bayesian model fitting could fill an entire year
- This tutorial is just the first steps on the Bayesian way

Final slide

Contacts:

- Email: luigi.acerbi@helsinki.fi
- Twitter: @AcerbiLuigi

Acknowledgments:

- The PyVBMC development team
- FCAI

Code:

- VBMC (MATLAB): github.com/lacerbi/vbmc
- PyVBMC: github.com/acerbilab/pyvbmc

Final slide

Contacts:

- Email: luigi.acerbi@helsinki.fi
- Twitter: @AcerbiLuigi

Acknowledgments:

- The PyVBMC development team
- FCAI

Code:

- VBMC (MATLAB): github.com/lacerbi/vbmc
- PyVBMC: github.com/acerbilab/pyvbmc

Final slide

Contacts:

- Email: luigi.acerbi@helsinki.fi
- Twitter: @AcerbiLuigi

Acknowledgments:

- The PyVBMC development team
- FCAI

Code:

- VBMC (MATLAB): github.com/lacerbi/vbmc
- PyVBMC: github.com/acerbilab/pyvbmc

Questions?