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Abstract

The spatial distribution of visual items allows us to infer the presence of latent causes in the

world. For instance, a spatial cluster of ants allows us to infer the presence of a common

food source. However, optimal inference requires the integration of a computationally intrac-

table number of world states in real world situations. For example, optimal inference about

whether a common cause exists based on N spatially distributed visual items requires mar-

ginalizing over both the location of the latent cause and 2N possible affiliation patterns

(where each item may be affiliated or non-affiliated with the latent cause). How might the

brain approximate this inference? We show that subject behaviour deviates qualitatively

from Bayes-optimal, in particular showing an unexpected positive effect of N (the number of

visual items) on the false-alarm rate. We propose several “point-estimating” observer mod-

els that fit subject behaviour better than the Bayesian model. They each avoid a costly

computational marginalization over at least one of the variables of the generative model by

“committing” to a point estimate of at least one of the two generative model variables. These

findings suggest that the brain may implement partially committal variants of Bayesian mod-

els when detecting latent causes based on complex real world data.

Author summary

Perceptual systems are designed to make sense of fragmented sensory data by inferring

common, latent causes. Seeing a cluster of insects might allow us to infer the presence of a

common food source, whereas the same number of insects scattered over a larger area of

land might not evoke the same suspicions. The ability to reliably make this inference

based on statistical information about the environment is surprisingly non-trivial: making

the best possible inference requires making full use of the probabilistic information pro-

vided by the sensory data, which would require considering a combinatorially explosive

number of hypothetical world states. In this paper, we test human subjects on their ability

to perform a causal detection task: subjects are asked to judge whether an underlying

cause of clustering is present or absent, based on the spatial distribution of those items.

We show that subjects do not reason optimally on this task, and that particular computa-

tional short cuts (“committing” to certain world states over others, rather than
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representing them all) might underlie perceptual decision-making in these causal detec-

tion schemes.

Introduction

Many forms of perception or cognition require the inference of high-level categorical variables

from a multitude of stimuli. For example, the spatial distribution of visual items allows the per-

ceptual decision-making system to infer the presence or absence of latent causes in the world

(a high-level categorical variable). The Bayesian framework for perceptual decision-making

takes a “generative models” approach [1], positing perception as inference over a latent state of

the world based on noisy data. A generative model specifies how a stimulus may be generated

from the presence or absence of combinations of latent causes (or objects) in a scene. The

Bayes-optimal observer knows this generative model and uses it to perform inference based on

observed sensory data. The Bayesian approach is successful at capturing human decision-mak-

ing data for many cases of perceptual multisensory cue integration (e.g. [2, 3]) and sensorimo-

tor learning (e.g. [4]), and has also been successful in providing a computational account of

various perceptual grouping phenomena [5].

The generative model approach has been useful in tasks that require the grouping or orga-

nization of ambiguous image fragments into latent causes. The problem of perceptual group-

ing can be conceptualized as an instance of the broader problem of detecting a latent cause

(e.g., a partially occluded object), or delimiting its effects, based on directly observable stimuli

(e.g., image elements). Bayesian hierarchical grouping [6] is one such example of a framework

for perceptual grouping based on generative mixture models. Image elements are assumed to

be generated by a mixture of distinct objects, with each object generating image elements

according to certain generative assumptions, offering an explanation for dot clustering, con-

tour integration, and part decomposition in visual perception. Similarly, in the contour inte-

gration literature, researchers have re-interpreted the “association field” (how strongly the

visual system associates two line segments with a particular configuration of positions and ori-

entations as belonging to one contour) [7] as the conditional link probability between two ori-

ented line segments based on a generative model [8]. Contour integration– the ability to detect

curvilinearly aligned edge configurations despite randomly oriented distractors– was found to

be optimal in humans [9]. These findings suggests that the generative model approach may be

a useful starting point for constructing observer models that describe how the brain performs

these tasks.

Similar processes may underlie our ability to make high-level inferences about hidden states

of the world based on graphically abstracted visual data. For example, in the “London bomb

problem,” an individual looks at a map of bombings to determine whether they are all indis-

criminate or whether some bombs are in fact aimed at a common target. In this problem, the

ideal observer must consider all possible target locations, and the possibility that each bomb

was generated by a targeted vs. random process. The normative Bayesian framework proposed

by Griffiths and Tenenbaum [10] provides a unifying account of our sense of coincidence in a

variety of contexts— including, for instance, coincidences over space (e.g., many bombs land-

ing in a cluster on the map), time (e.g., many birthdays falling close together in date), and cate-

gory (e.g., landing many heads in a row in a series of coin flips)– providing an account of how

we may decide certain states are mere coincidences while others lead us to infer a common

cause. Empirically, they show that a Bayesian model roughly tracks trends in human ratings of

coincidence on a variety of causal inference tasks.
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However, in each of these cases of perceptual grouping or causal inference, the Bayesian

framework provides an approximate “as if” description of human behaviour, and falls short of

making any commitments about the mental representations and algorithms actually carried

out by the brain during these judgements. The success of Bayes-optimal models does not nec-

essarily entail that humans perform full Bayesian probabilistic computations at the algorithmic

or mechanistic level [11, 12].

Moreover, if one were to interpret the computational Bayesian model for spatial coinci-

dence detection as a representation-level model of the inner workings of the brain, the number

of computations required to solve a relatively simple spatial coincidence detection task would

quickly exceed a number which the visual system might plausibly implement. This is especially

problematic for natural visual scenes with a large number of elementary visual components.

How might the brain then be implementing something that approximates the Bayesian com-

putation in the case of perceptual grouping and spatial causal inference tasks?

In a Bayesian model, one of the most computationally taxing steps involves “marginalizing”

an often high-dimensional probability distribution over a large number of generative model

variables (the joint distribution) in order to arrive at the probability distribution for the spe-

cific task-relevant variable of interest (the marginal distribution). This step is often intractable

in natural settings with many objects and visual features [13]. For example, in the London

bombing problem described above, for a map with N visual items, the Bayesian calculation

amounts to considering 2N distinct combinations of “targeted” vs. “random” items.

In a decision-making task, these “nuisance” generative model variables are variables of the

generative model that do not bear directly on the decision of the observer, but that must be

accounted for (as in “marginalized out”) in order to arrive at the variable of interest in Bayes-

ian inference. For example, in the London bombing problem, the variable of interest is the

binary top-level category (whether or not the bombings are targeted), while an example of a

nuisance parameter is the location of the target, if it exists. Taking into account possible identi-

ties of the nuisance parameter (e.g. hypothetical target location) is necessary on the Bayesian

model to arrive at an optimal estimate about the variable of interest (e.g. presence or absence

of a target). The generative model employed by an ideal Bayesian observer is often assumed to

correspond to the true underlying process that generates the observations, meaning those nui-

sance variables and variables of interest are those determined by the true underlying process

itself. Previous studies in perceptual decision-making [14, 15] suggest that subjects might use

simplified point-estimates of certain nuisance variables instead of marginalizing over their full

probability distributions, resulting in particular patterns of suboptimal behaviour (but see

[16]). One way to potentially evade the combinatorial explosion of unique representations

entailed by the Bayesian computation during spatial coincidence detection is to represent only

some task parameters as full probability distributions, while committing to others as single-

point estimates. This family of approximately Bayesian models may be considered “partially

committal”, in that they commit to at least one of the nuisance variables of the generative

model as a point estimate, while still framing the problem as one involving inference about

generative model variables (rather than taking on an entirely heuristic strategy that requires no

knowledge of the generative model at all).

In the current study, we employ a spatial coincidence task inspired by the “London bomb-

ing” problem to test whether spatial causal inference is optimal or may be better accounted for

by “point-estimating” observer models. Our version of the task uses the spatial distribution of

pigeons in a park, affected by a pigeon feeder whose location is not directly observable. Pigeons

cluster around the pigeon feeder if she is present. The subject’s goal is to infer the presence or

absence of the feeder. The generative model of the task entails two abstract parameters: 1) the

location of the causal object (feeder) and 2) which of all observations “are affiliated with” (i.e.,
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“result from”) the causal object. We ask whether these two parameters are represented by the

brain at all, and if so, whether they are represented in full probabilistic form, or as collapsed

point estimates.

We then test three hypotheses about probabilistic representation in the brain during a spa-

tial coincidence detection task. On the Strong Bayesian representation hypothesis, the brain

represents all of the abstract parameters of the generative model, including their full probabil-

ity distributions. On the Non-Probabilistic representation hypothesis, the abstract variables of

the generative model are not mentally represented at all: instead, subjects assess spatial coinci-

dences using some heuristic metric like the mean distance between points. Lastly, the Point

Estimate representation hypothesis holds that the variables entailed by the generative model

are indeed represented by the brain, but that not all such parameters can be represented as full

probability distributions: at least some are represented as single-point estimates.

Task

10 subjects were given a cluster detection task (Fig 1), in which they were asked whether a set

of dots was drawn from a random uniform distribution, or from a mixture of a uniform distri-

bution and a Gaussian. In task context, dots denoted the location of pigeons in a park. A

“causal object” was introduced as an invisible “pigeon feeder” whose location was not directly

observable. Subjects were instructed as follows: “On days when the pigeon feeder is present,

pigeons tend to cluster around her location. But even when the feeder is present, there’s only a

50% chance that a given pigeon will be affiliated with her.” Pigeons which were not affiliated

with the feeder were drawn randomly. The location of the feeder herself was drawn from a

Gaussian distribution centered at the center of the screen. Subjects indicated whether a feeder

Fig 1. Task design and example stimuli. Example of “feeder present” (top) and “feeder absent” stimuli (bottom) for

N = 10. The stimulus is shown for 400 ms, after which subjects are prompted to respond about the presence or absence

of the feeder, and then asked to rate their confidence level from 1 (least confident) to 4 (most confident).

https://doi.org/10.1371/journal.pcbi.1009159.g001
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was present by pressing a button. Their decision was based on the spatial distribution of

pigeons on the screen. Subjects completed 20 practice trials with full feedback (“correct”/

“incorrect,” including an image showing the true underlying partition of pigeons and actual

location of the feeder if there was one), followed by the main task, comprised of 2000 trials

with partial feedback (“correct”/ “incorrect”).

The generative model

We first describe the generative model of the task. Each trial is experimentally defined as either

a “Feeder present” (C = 1) or “Feeder absent” (C = 0) trial. These trials occur in equal propor-

tions: p(C = 0) = p(C = 1) = 0.5. If C = 0, each observation (pigeon location) is drawn from a

uniform distribution on a disc of radius R, centered at (0, 0). If C = 1, the pigeon feeder’s loca-

tion μ is drawn from a circular Gaussian centered at (0, 0) with standard deviation σs, i.e.,

pðmjC ¼ 1Þ ¼ N ðm; ð0; 0Þ; s2
s IÞ, where I is the 2 × 2 identity matrix. On these “feeder present”

trials, for each of N pigeons, there is a paff chance that the pigeon is affiliated with the pigeon

feeder (in the experiment, paff = 0.5). If a pigeon is not affiliated (zi = 0), its location is drawn

from a uniform distribution on a disc of radius R centered at the center of the screen, just as in

the C = 0 case. If the pigeon is affiliated with the feeder (zi = 1), then the pigeon’s location is

drawn from a smaller Gaussian distribution centered at the location of the pigeon feeder (μ)

with standard deviation σ, such that pðxijzi ¼ 1; m;C ¼ 1Þ ¼ N ðxi; m;s2IÞ. As a a result, the

distribution of a pigeon location when the feeder is present is a mixture of a Gaussian distribu-

tion centered at μ and a uniform distribution:

pðxijm;C ¼ 1Þ ¼ paffN ðxi; m; s2IÞ þ
1 � paff
pR2

for jjxijj < R:

Through our choice of σs = 2 and σ = 2 (where the park had a circular radius of 10 units), it

was exceedingly rare that ||x||> R, but when this happened, a new stimulus was drawn.

Observer models

Despite its apparent simplicity, the pigeon task poses a strong computational challenge to any

inference system. This is because of the problem of nuisance parameters, variables that an opti-

mal observer would marginalize over to compute a posterior distribution over the variable of

interest. In our task, the generative model entails two nuisance parameters: μ, the location of

the bird feeder (if present), and the “partition variable” z, a binary vector that denotes which of

the N pigeons are affiliated or unaffiliated with the feeder. The ideal Bayesian observer would

represent both μ and z as probability distributions. Here, we test variants of the Bayesian

observer model, fully heuristic models, and models that commit to (instead of marginalizing

over) at least one of these two nuisance parameters.

Given N observations x = {x1, . . ., xN}, the observer is tasked to infer category C. The log

posterior ratio is

d ¼ log
pðC ¼ 1jxÞ

pðC ¼ 0jxÞ
¼ log

pðC ¼ 1Þ

pðC ¼ 0Þ
þ log

pðxjC ¼ 1Þ

pðxjC ¼ 0Þ
ð1Þ

Since p(C = 0) = p(C = 1) = 0.5, we have

d ¼ log
L1

L0

; ð2Þ

where we have introduced L0� p(x|C = 0) and L1� p(x|C = 1).
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We test five families of observer models, each with a different assumption about what it is

that cognitive systems represent during the task (Fig 2). In Family A (the Strong Bayesian

model), the brain represents full probability distributions over both variables of the generative

model. L1 is calculated through a double marginalization: by integrating over all possible feeder

locations μ and by summing over all possible z:

Family A : L1 ¼
X

z

Z

Lðz; m; xÞpðzÞpðmÞdm

Here, L(z, μ; x)� p(x|z, μ) represents the likelihood of a particular feeder location and parti-

tion given a set of pigeon observations. The prior probabilities of each feeder location and par-

tition are independent of one another and multiply this likelihood.

In Family B, the brain commits to and represents only a single feeder location (m̂), but rep-

resents (and sums over) the full probability distribution of partitions (z):

Family B : ~L1 ¼
X

z

Lðz; m̂; xÞpðzÞ

For instance, in one model, the brain simply chooses the center of mass of all of the pigeons

as its committed μ. For a given pigeon observation, since no marginalization of μ is needed,

and summing over different partitions involves consideration of its “affiliated” and “unaffili-

ated” likelihoods, ~L1 can be re-expressed as a product over observed pigeons, where

pðxijm̂Þ can be broken down into a given pigeon’s “affiliated” and “unaffiliated” terms:

~L1 ¼
QN

i¼1
pðxijm̂;C ¼ 1Þ, where each factor is given by Eq (1).

Conversely, in Family C, the brain commits to and represents only a single partition ẑ. That

is, it only represents one of all possible combinations of affiliated pigeons, while still

Fig 2. Taxonomy of model families. Family H models do not posit the representation of either location or partition.

https://doi.org/10.1371/journal.pcbi.1009159.g002
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representing the feeder location μ as a probability distribution over all possible locations:

Family C : ~L1 ¼

Z

Lðẑ; m; xÞpðmÞdm

The particular set of pigeons to represent as “affiliated”, ẑ, is determined by the specifics of

each of the models within Family C. For example, in model C8, the chosen ẑ is the partition

that maximizes the marginal likelihood, so that ~L1 ¼ max
z Lðz; xÞ. In model C9, the observer

commits to ẑ through “agglomerative clustering”– an algorithm that begins by calculating the

centroid of the pigeons as a reference point, then iteratively considers increasingly distant

pigeons for inclusion into a “feeder affiliated” cluster.

In Family D, the brain represents both feeder location and partition as point estimates

rather than probability distributions. The general form of models in this family is:

Family D : ~L1 ¼ Lðẑ; m̂; xÞ:

For instance, one model commits to both feeder location and partition by maximizing their

joint posterior: ~L1 ¼ max
z;m

Lðz;m; xÞpðmÞ.

For all of Families A through D, once the log posterior ratio d is calculated, observer

responses are modelled allowing for decision noise (Gaussian noise on the log posterior ratio

with variance σd), and a lapse rate λ, which represents the probability of randomly choosing

either category with probability 0.5. The ideal Bayesian observer would respond C = 1 when

d> k where k = 0. However, we also allow for the possibility that observers have unequal utili-

ties, costs, or incorrect prior assumptions when reporting C = 0 and C = 1, by fitting the deci-

sion criterion k as a free parameter over all trials or as four separate parameters for each of

N = 6, 9, 12, 15.

Putting everything together, the probability of reporting C = 1 becomes

pðĈ ¼ 1jxÞ ¼ 0:5lþ ð1 � lÞF log
~L1

L0

; k; s2

d

� �

; ð3Þ

where ~L1 ¼ L1 for Family A and F denotes the cumulative normal distribution.

Lastly, in Family H, the brain does not represent feeder location or partition at all. Instead,

observers solve the task by representing some other abstract variable outside of the generative

model, like “pigeon density.” For instance, the observer might simply represent the density of

the points on screen and respond “feeder present” if that number exceeds some threshold.

Each heuristic model has the form

pðĈ ¼ 1jxÞ ¼ Fðf ðxÞ; kn; s
2

dÞ;

where the function f represents the model’s heuristic.

Family A represents the Strong Bayesian representation hypothesis, Families B, C, and D

the Point-Estimate representation hypothesis, and family H the non-probabilistic representa-

tion hypothesis. See S1 Fig for the full list of observer models and their parameters by family,

and see Methods for a more detailed description of each model.

Results

Previous studies suggest that observers may combine their observations of ambiguous visual

elements with knowledge about a generative model in order to perform inferences about latent

causes. The aim of the present study is to investigate how observers represent and compute

over the intermediate “nuisance” variables entailed by these generative models, especially
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when those computations become intractable. To achieve this, we designed a task paradigm in

which observers are asked to detect the presence of a latent cause (a “pigeon feeder”) based on

a large number of image fragments (the distribution of “pigeons” in a park). We then fit four

different families of models, each of which represents the generative model’s nuisance variables

as either a point-estimate or full probability distribution.

On “feeder absent” trials, the pigeons are drawn from a uniform distribution over the park.

On “feeder present” trials, the pigeons are drawn from a mixture of a uniform and a Gaussian

distribution, where the Gaussian is centred at the location of the hidden pigeon feeder. When

the feeder is present, every pigeon has a 50% chance of affiliation with it (i.e. a 50% chance of

having been drawn from the Gaussians).

We first characterize behavioural responses as a function of basic stimulus properties like

“pigeon density.” As one might expect, subjects are more likely to respond “feeder present” the

more densely packed the pigeons are on screen. Intuitively again, when the distance between

the two closest pigeons is very small (i.e., when the two closest pigeons are very close together),

subjects are also more likely to respond “feeder present.” (Fig 3) Nevertheless, subjects are sur-

prisingly adept at telling apart trials when the feeder truly is or isn’t present even when statis-

tics like the “mean distance” between points are controlled for across trials. This fact is

evidenced by the vertical offset of the red and blue curves in Fig 3. Therefore, from the outset,

we see that if a summary statistic like density or minimum distance is represented, they cannot

possibly be the only thing that subjects represent in order to make accurate judgements about

spatial coincidence in this task.

We next examine the trend in responses, broken down by “feeder present” and “feeder

absent” trials, as the number of pigeons (N) varies. One unexpected finding is that the propor-

tion of “feeder present” responses increases as a simple function of the number of pigeons (N)

(Fig 4), even for “feeder absent” trials. In other words, as the number of uniformly drawn dots

increases, subjects are more likely to sound a false alarm and report “Feeder present”. Examin-

ing model predictions, we see that this unexpected qualitative trend is at odds with the Strong

Bayesian hypothesis (Fig 4)– intuitively, if we were able to reason optimally, observing more

dots drawn from a uniform distribution should make us more certain that the distribution is

in fact uniform. Instead, we see that the number of “feeder present” responses increases with

increasing N. Henceforth, we refer to the slope of this curve as the “effect of N on false alarms.”

We next ask whether the strong Bayesian model can be rescued by fitting a different prior

over category (or decision criterion) for each N. We tested this Bayes variant (see Model A2,

Fig 3. Proportion of “feeder present” responses as a function of each distance-based heuristic. “Feeder absent” trials in blue, “feeder present” trials

in red, with colour saturation indicating the number of pigeons on a given trial (N = 6, 9, 12, 15). For each trial, the following quantities were computed:

the mean pairwise distance of all pigeons (A), the maximum local density, where local density is computed by convolving a gaussian of σ = 1.4cm over

the circular arena (B), the nearest neighbour distance, calculated as the mean distance between all pigeons and their nearest neighbour (C), and the

distance between the two nearest pigeons (D). Points are binned in equal quantiles along the abscissa quantity such that an equal number of trials are

represented in each point. For stimulus histogram distributions along each abscissa quantity, see S2 Fig.

https://doi.org/10.1371/journal.pcbi.1009159.g003
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S1 Fig), which allowed for flexible, N-dependent decision criteria, to see whether the increasing

effect of N on false alarms seen in the data might be accounted for by a Bayesian model with

suboptimal decision criteria (see S8 and S9 Figs for the fitted decision criteria for each model).

On this modified Bayesian model, subjects are calculating the decision variable (log likelihood

ratio) in a perfectly Bayesian way, but may have a different decision criterion for each N, such

that they are generally more permissive of “Feeder present” reports as the total number of

pigeons increases. Together, S7 and S8 Figs show that the flexible criterion Bayesian model

(A2), among many other models, may correctly capture the effect of N on false alarms by

adopting a more liberal criterion for declaring “feeder present” as N grows larger.

We moreover tested another permissive variant of the Bayesian model which allowed for

subjects to have incorrectly internalized the spread of pigeons around the feeder (σ), and the

spread of the feeder around the center of the park (σs). We turned both of these variables into

free parameters in model A3 (producing a σ- and σs- flexible variant of the Bayesian model),

but this flexible variant performed similarly poorly to the ideal Bayes model (See Fig 6, model

A3).

To further visualize model performance, we next examined “Feeder present” trials in

greater detail. Recall that during “feeder present” trials, the generative model was such that any

one pigeon had a 50% chance of being “affiliated” with the feeder (i.e., drawn from the feeder-

centered Gaussian distribution). As a result, some “feeder present” trials have more affiliated

pigeons than others (following a binomial distribution over “feeder present” trials). We would

expect trials with a greater number of affiliated pigeons to be more easily assessed as “Feeder

Fig 4. Model fits of proportion of “feeder present” responses as a function of number of pigeons (N) denoted by shaded area; subject data

denoted by solid lines. The Bayesian model incorrectly predicts a decreasing effect of N on false alarms.

https://doi.org/10.1371/journal.pcbi.1009159.g004
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present” trials. As expected, for “feeder present” trials, subjects are more likely to correctly

respond “feeder present” as the proportion of affiliated pigeons increases, and are more likely

to incorrectly respond “feeder absent” as the proportion of unaffiliated pigeons increases (Fig

5). We show that the Strong Bayesian model manages to capture these general trends, but that

it provides a rather crude fit to the data. The modified Bayesian model with N-dependent deci-

sion criteria better captures these data. (S12 Fig)

Fig 5. Subject data (solid) and model fits (shaded), with standard error, showing proportion of “feeder present” responses during “feeder

present” trials, as a function of the number of affiliated or unaffiliated pigeons. Model fits shown for strong Bayes (A1) and Agglomerative

Clustering (C8).

https://doi.org/10.1371/journal.pcbi.1009159.g005
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In sum, a Bayesian model with flexible, N-dependent criterion (A2) captures subject data

well on a number of dimensions. Nevertheless, it still provides an implausible process-level

account of the cognitive process, as it requires marginalizing over 2N distinct representations.

We next asked whether other models which do not require this taxing marginalization over

both variables of the generative model (Families B, C, and D) are able to fit subject data as well

as model A2.

To summarize performance over the full range of models, we show two of the most infor-

mative aspects of model performance: the model’s predicted effect of N on false alarms, and

the overall predicted subject accuracy (% correct) in Fig 6. Notably, a number of partially com-

mittal models (those of Families B, C, and D) perform just as well as the modified Bayesian

model A2 on these dimensions. While the ideal Bayesian model A1 predicts subject accuracy

reasonably well, it is one of the only that predicts the wrong direction of the effect of N on false

alarms. Family H models may predict the correct direction of the effect of N on false alarms,

but are much farther afield in terms of predictions of overall accuracy.

Formal model comparison using Akaike Information Criterion (Fig 7) shows that each of

the three “Weak Bayesian” families (B, C, and D) present at least one strong contender for the

model that best fits subject data: B6 (in which μ is committed to via estimate of the posterior

Fig 6. Two informative dimensions of model predictions. Overall predicted subject accuracy, and effect of N on false alarms

(the slope of the blue shaded line in S7 Fig.

https://doi.org/10.1371/journal.pcbi.1009159.g006
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mean), C7 (in which z is committed to via maximizing the marginal likelihood), C8 (in which

z is committed to via agglomerative clustering), and D9 (in which both μ and z are jointly

committed to via maximizing the joint posterior). These results hold for model comparison

via Bayesian Information Criterion (see S3 Fig).

Lastly, it’s possible that subjects have not properly learned that the probability of affiliation

of a given pigeon is 0.5, and instead hold the false belief that probability of affiliation is N-

dependent. We tested family A, B, C, and D models again but allowed for probability of affilia-

tion to vary by N (See Fig 8 for model comparison, S1 Fig for model parameters, and S11 Fig

for fitted paff values for each N for each model). For instance, subjects may have a different

internalized probability of affiliation for each N, such that they generally believe the feeder to

have a higher probability of producing affiliated pigeons when the number of pigeons

decreases. This might similarly work to account for the effect of N on false alarms: it would

mean that subjects require higher clustering to declare “Feeder present” on low-N trials,

because “Feeder present” as the total number of pigeons increases. We see that with this varia-

tion, the Bayesian model can be rescued (see Fig 8 model A1 vs. A2 and S12 Fig model A1P vs.

Fig 7. Model comparison (AIC). MML denotes “Maximum Marginal Likelihood,” MMP denotes “Maximum Marginal Posterior,” MJP denotes

“Maximum Joint Posterior.” See NN denotes “Nearest Neighbour.” See “Model Descriptions” under “Methods” for definitions of each model. AIC

(Akaike information criterion) is an estimated score for the quality of each model, and the difference in AIC scores between models (Δ AIC) plotted

provides an estimate of the quality of each model relative to the fully Bayesian model (A1) in panel A, or the best-fitting model (D9) in panel B. The four

best models (highlighted) are indistinguishable via AIC and BIC (see S3 Fig).

https://doi.org/10.1371/journal.pcbi.1009159.g007

Fig 8. Model comparison (AIC) with probability of affiliation fitted as a separate free parameter for each of the four N conditions (N = 6, 9, 12,

15) are denoted with the addition of “P” to the model name. MML denotes “Maximum Marginal Likelihood,” MMP denotes “Maximum Marginal

Posterior,” MJP denotes “Maximum Joint Posterior.” NN denotes “Nearest Neighbour.” See “Model Descriptions” under “Methods” for definitions of

each model. AIC (Akaike information criterion) is an estimated score for the quality of each model, and the difference in AIC scores between models (Δ
AIC) plotted provides an estimate of the quality of each model relative to the fully Bayesian model (A1) in panel A, or the best-fitting model (B6P) in

panel B. The five best models (highlighted) are indistinguishable via AIC and BIC (see S4 Fig) Adding a flexible N-dependent criterion can help rescue

the Bayesian model (see model A2 compared to A1), and adding 4 flexible N-dependent probability of affiliation parameters increases goodness of fit

for all models. See S1 Fig for more information about the parameters included in each model.

https://doi.org/10.1371/journal.pcbi.1009159.g008

PLOS COMPUTATIONAL BIOLOGY Point-estimating observer models for latent cause detection

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009159 October 29, 2021 12 / 29

https://doi.org/10.1371/journal.pcbi.1009159.g007
https://doi.org/10.1371/journal.pcbi.1009159.g008
https://doi.org/10.1371/journal.pcbi.1009159


A2P). A number of family B and D models also become indistinguishably well-fitting with the

additional N-dependent free paff parameters. On this assumption of false belief, models B6P,

D9P, 10DP, and 11DP marginally outperform A2P, C7P, and C8P.

Among the basic (non-false-belief) set of winning models, Agglomerative clustering (C8) is

the only one of the four winning models that evades the combinatorially explosive marginali-

zation step over z while also providing a potential process-level model of mental representation

in the brain, and may be able to account for choice, reaction time, and confidence rating data

simultaneously. Fig 9 and S5 Fig show that the approximate log likelihood ratio given by the

agglomerative clustering algorithm tracks both reaction times and confidence ratings in a sim-

ilar manner to that of the Bayes-optimal log likelihood ratio, and Fig 9 suggests that the num-

ber of iterations performed by the agglomerative clustering algorithm is comparable to the

reaction times of participants for trials binned by agglomerative clustering approximated

LLRs. Importantly, Figs 5 and 4 demonstrate that the agglomerative clustering model is able to

provide a superior fit to response data compared to the Bayesian model (A1) and an indistin-

guishably good fit to the other three basic winning models (Fig 7).

In Agglomerative Clustering, the observer commits to a particular z rather than represent-

ing a full probability distribution. We choose this z by picking a single point as the cluster

“seed.” The cluster is hypothesized to belong to the causal source. One iteratively adds the

next-nearest point to the cluster, each time evaluating the log likelihood ratio which results

from that particular z. We continue adding points until the log likelihood ratio no longer

increases, resulting in some spatially contiguous set of points hypothesized to belong to the

source if such a source exists, represented by the committed z. The z-dependent log likelihood

ratio is then calculated as a decision variable with noisy threshold. This algorithm is loosely

based on work by Heller and Gharamani on agglomerative hierarchical clustering [17]. Our

algorithm is sequential rather than hierarchical, in that a single cluster is defined and single

observations are merged to the existing cluster via Bayesian hypothesis testing (i.e., the

Fig 9. (A) Subject reaction times and (B) Predicted reaction times (based on the number of iterations of the agglomerative clustering algorithm),

according to the log likelihood ratios (LLR) of the Bayesian model, binned into 10 LLR quantiles (equal number of trials in each plot point).

https://doi.org/10.1371/journal.pcbi.1009159.g009

PLOS COMPUTATIONAL BIOLOGY Point-estimating observer models for latent cause detection

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009159 October 29, 2021 13 / 29

https://doi.org/10.1371/journal.pcbi.1009159.g009
https://doi.org/10.1371/journal.pcbi.1009159


evaluation of the log likelihood ratio). For a histogram comparing the Bayesian LLR to the

Agglomerative Clustering approximation of the LLR, see Fig 10.

S8 Fig shows fitted decision criteria for each model across subjects. There are a number of

factors that contribute to the fitted decision criterion across models– for instance, the

Fig 10. Histogram of decision variables across trials, pooled across all subjects (2000 trials x 10 subjects, plotted in 35 equal bins from -10 to 25).

The decision variable is the log likelihood ratio for Bayes (A1), and an estimated log likelihood ratio for agglomerative clustering (C8), calculated based

on the stimulus on each trial. Note that as the number of pigeons increases during feeder-absent trials, the distribution of the decision variable for

agglomerative clustering shifts to the right (light blue to dark blue lines), whereas the Bayesian decision variable exhibits the opposite trend.

https://doi.org/10.1371/journal.pcbi.1009159.g010

PLOS COMPUTATIONAL BIOLOGY Point-estimating observer models for latent cause detection

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009159 October 29, 2021 14 / 29

https://doi.org/10.1371/journal.pcbi.1009159.g010
https://doi.org/10.1371/journal.pcbi.1009159


goodness of the committed variables, and the subject’s fitted paff beliefs. Some models commit

to a particular μ or z that is particularly good, thereby biasing the log posterior ratio estimates

to higher values. Overall positive decision criteria might therefore be expected if the commit-

ted variables are quite good– for example, Model 9 evaluates the LLR at only the μ and z that

maximizes the joint posterior, meaning the estimated LLR for a given trial will shift upwards

(see S10 Fig, panel A). Similarly, models with paff> 0.5 may cause the decision variable distri-

butions (and therefore the fitted decision criteria) to shift downwards. If the probability of

affiliation for the feeder present (C = 1) hypothesis is higher than 0.5, then it should take a

greater amount of dot “clustering” to support the feeder present hypothesis, and the observer’s

decision variable on a given trial will shift lower, in the direction of the feeder absent (C = 0)

hypothesis (see S10 Fig, panel B). Note that the decision variable’s zero-point is only meaning-

ful for the perfect Bayesian model (since a Bayesian observer should set their decision criterion

to zero), whereas observers likely set a different decision threshold when the log posterior ratio

is estimated (as in all other models), in compensation for the fact that these estimates produce

shifts in both C = 0 and C = 1 distributions.

Decision variables (ex, the Bayesian log likelihood ratio, or suboptimal estimates of it)

largely tracked confidence ratings and reaction times in expected ways. Confidence ratings

reliably tracked Bayesian log likelihood ratios in a monotonic manner (S5 Fig). High-confi-

dence “Feeder present” responses corresponded to high positive log likelihood ratios, while

high-confidence “Feeder absent” responses tracked low negative log likelihood ratios. Reports

of higher confidence were also related to shorter reaction times (S6 Fig). Trials which fell into

the highest positive LLR quantile (highly clustered pigeon configurations which greatly favour

“Feeder present” responses) were also related to shorter reaction times.

Notably, Agglomerative Clustering, being the only model with a structured iterative “time

course”, is able to predict trends in reaction time data (Fig 9). When binning stimuli based on

their estimated LLRs, trends in the number of iterations required of the agglomerative cluster-

ing algorithm mirror trends in subject reaction times, as seen in (Fig 9. For most subjects (8

out of 10), there is a very weak but significant (p< 0.001) ranked correlation between the reac-

tion times and the number of iterations of the agglomerative clustering algorithm across trials

(across subjects, mean Spearman ρ across subjects = 0.12, SEM = 0.02).

Discussion

In this paper, we asked how people infer the presence or absence of a latent cause based on a

spatial configuration of items, especially when optimal inference would require the integration

of a computationally intractable number of world states. We first asked whether observer mod-

els that make inferences over aspects of the true generative model (i.e., Bayesian models and

point-estimating variants) accounted better for human behaviour than models based on simple

visual heuristics, such as mean density or minimal distance. We found that this was the case,

with the heuristic models deviating greatly from the data. We fitted three families of partially

committal or point-estimating models, in each of which either or both of the nuisance variables

of the generative model were represented as point estimates rather than probability distribu-

tions. We found that the Bayesian model (which represents both generative model variables as

full probability distributions) exhibits qualitative deviations from subject behaviour. Notably,

the Bayesian model fails to capture the trend that observers are more likely to falsely detect a

latent cause as the number of visual elements increased. Several point estimate observer models-

—at least one from each family—can account for these deviations, as well as for fine-grained

subject behaviour in its entirety. Therefore, point estimate representation of certain generative

model variables may be how the brain performs causal inference, especially when full marginali-

zation over these variables requires accounting for a large number of world states.
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In context of this complex latent cause detection task, the effect of the number of observa-

tions on false alarm rates was strong. Recent work tested the ability of subjects to infer a hidden

low-level variable (the proportion of red vs. blue team supporters leaving a given airplane)

based on both observations of differently sized samples, and an inferred higher-level contex-

tual variable (the general red or blue-team bias for a set of planes). [18] show that inferred con-

text is integrated with observations to inform confidence estimate, and notably that the sample

size of previous observations guides context reliability. The sample size of observations may

therefore be a factor that subjects take into consideration when performing hierarchical latent

variable inference in the real world, affecting both choice and confidence judgements. In the

case of our study, however, subjects suboptimally set a more liberal detection criterion as sam-

ple size increased, perhaps reflecting certain real-world prior beliefs that a greater number of

observations provides evidence for the presence of a latent spatial cause, regardless of the dis-

tribution of the observations.

Among the basic set of models (that do not make false belief assumptions about the probabil-

ity of feeder affiliation), the four best-performing models (B6, C7, C8, D9) were functionally

indistinguishable according to AIC and BIC. However, taking seriously the computations

required of some of these winning models at the algorithmic level would still mean granting the

brain upwards of 2N evaluations in the case of marginalization over z. The agglomerative cluster-

ing account (C8) stands out because the number of operations required to commit to a plausible

partition is less than OðN2Þ, making it a more attractive candidate as a biologically plausible algo-

rithm compared to any of the other three statistically indistinguishable partially Bayesian models.

The algorithm further coheres with intuitions that the least plausible possibilities of z may not be

represented or considered at all during the decision-making process. The iterative nature of the

agglomerative clustering algorithm moreover allows it to predict response times, whereas the

Bayesian model and variants thereof do not provide an immediate mechanism to do so.

However, the present study only reflects a small sampling of the possible models in each

tested family. This means that we have to be cautious when making any inferences about

which generative model variables may be committed to as a point estimate. The study is also

limited in its ability to provide an explanation for why the brain may represent certain genera-

tive model variables as point estimates while representing others as full probability distribu-

tions. Nevertheless, the models tested represent a new and more or less principled category of

approximately Bayesian algorithms, distinct from sampling and variational algorithms.

These results advance an understanding of perceptual grouping and causal inference based

on spatially-related image elements, suggesting that, while observers likely represent the struc-

ture of the generative model, they probably do not represent full probability distributions and

marginalize over each nuisance variable. Committing to the representation of some nuisance

variables as point estimates may be one strategy employed by the brain to avoid computationally

costly marginalizations in real-world visual environments, if these marginalizations are in fact

shown to be costly to the brain. Though the present study cannot shed light on why some vari-

ables may be represented as full probability distributions but not others, testing algorithms that

implement these partially committal models may be a fruitful inductive modelling approach for

other perceptual decision-making tasks, as they may help reformulate intractable “as if” Bayesian

computations in terms of a set of tractable process-level algorithms potentially used by the brain.

Methods

Ethics statement

This experiment was approved by the University Committee on Activities Involving Human

Subjects of New York University (IRB-FY2019–2490). All subjects were naive to the purpose
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of the experiment and written informed consent was given by each subject at the start of the

first session.

Subjects

10 subjects (6 male), aged 19–39, completed the experiment in two 30–45 minute sessions

spaced at least 4 hours apart. Subjects received $12 per session and a $12 completion bonus.

Apparatus

Subjects were seated in a well-lit room, and stimuli were displayed using a 13.3-inch (1440 x

900) MacBook Air (early 2015 model, Intel HD Graphics 6000 1536 MB). Responses were

given on the laptop keyboard. The experiment was run using the Psychtoolbox-3 (V3.0.14)

package for MATLAB 9.2.

Stimuli

The background for all displays was black. Stimulus dots (denoting pigeon locations) were

white. Dots were displayed within a circular arena measuring 7 cm in radius positioned at the

center of the laptop screen. The circular perimeter of the arena was marked with a thin gray

line.

Procedure

Trial structure. Subjects completed two 30–45 minute sessions, spaced at least 4 hours

apart. The first session began with a detailed set of instructions delivered verbally and repeated

again in writing before the start of each session. Each subject completed 2000 trials in total,

split evenly between the two sessions. Each session contained 5 blocks (200 trials per block),

and lasted approximately 6 minutes (approximately 1.8 seconds per trial).

Instructions and category training. At the beginning of the first session, subjects com-

pleted a 10-minute demo which explained the task with visual examples and provided 10 prac-

tice trials on which full feedback is given. Subjects scrolled through the tutorial at their own

pace. The demo first introduced, in writing and with visuals, the boundaries of the park (the

circle), the center of the park (denoted by a grey cross), and the pigeons (denoted by white

dots). It was next explained that “On HALF (50%) of the days, there is no pigeon feeder. This

means pigeons were scattered randomly within the circle. . .” and that “With NO FEEDER, the

pigeons are all UNAFFILIATED PIGEONS.” This was followed by 10 randomly drawn exam-

ples of pigeon configurations with no pigeon feeder present (C = 0).

Next, the pigeon feeder was introduced (denoted by a dot of a different colour). The pigeon

feeder was introduced as “. . . a lonely old ghost who appears in the park on 50% of the days.

She typically appears near the center of the park, but she tends to stray.” 10 randomly drawn

examples were then given of the pigeon feeder’s location. It was explained that on exactly

“50%” of all days, the pigeon feeder visits the park, but cannot be observed directly. Lastly, the

pigeon distribution on “feeder present” days was explained and demonstrated: “When the

pigeon feeder is present, pigeons tend to cluster around her location. But even pigeons can’t

always sense her presence. Even when the feeder is present, there’s only a 50% chance that a

given pigeon will be AFFILIATED with her.” This was then followed by 10 examples of the

park when the feeder was present. On these displays, subjects were instructed to toggle the

space bar to reveal the true location of the feeder, as well as to reveal the pigeons which were

affiliated vs. unaffiliated with the feeder (these dots appear in different colours on the screen).

Subjects were then instructed to tell apart the days on which the ghostly pigeon feeder is absent
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(left-hand) vs. present (right-hand), and were instructed to use the full range of confidence val-

ues when they respond.

The tutorial was followed by 20 practice trials on which full feedback was given– the

response was marked as correct or incorrect, and for “feeder present” trials, the location of the

feeder as well as the unaffiliated and affiliated pigeons were revealed. These practice trials were

not included in the main analysis. See github.com/jennlauralee/pigeons to run the full demo

on MATLAB (requires Psychtoolbox).

Testing. At the beginning of each testing block, instructions were displayed on the screen

which show the mapping of keyboard buttons to confidence and category responses. At the

end of each trial, subjects received partial feedback about whether their categorization was cor-

rect or incorrect (ex, “Incorrect! You reported absent. The feeder was present.”) Subjects com-

pleted 200 trials per block, with five blocks per session. Subjects were able to take breaks

between blocks.

Model derivations

Below, we introduce the notation used for all models and formalize the true generative model

that determines how observations are in fact generated based on stimulus category. Then, we

formalize each of the observer models within the five observer model families, each of which

perform full (family A) or partial (families B, C, D) generative model inferences about stimulus

category based on observations, or which simply employ a heuristic decision model (family

H).

Notation

All location variables have two dimensions, but we do not denote them as vectors (with bold-

face). We reserve boldface notation for vectors corresponding to N observations.

C Latent cause variable (0 if absent, 1 if present)

paff Probability that an observation is drawn from the latent cause, when C = 1 (paff = 0.5 in the experiment)

R Radius of disc from which each “background” (non-latent-cause) observation is drawn

μ Location of latent cause

σs Standard deviation of circular Gaussian distribution with mean 0 from which μ is drawn

xi i th observation

x Set of all observations, {x1, . . ., xN}

σ Standard deviation of circular Gaussian distribution with mean μ from which each latent-cause

observation is independently drawn

zi Binary variable that takes the value 1 if xi is drawn from the latent cause and 0 if xi is drawn from the

background

σd Standard deviation of response noise

λ Lapse rate

Generative model

Here we discuss the generative model that determines how pigeon locations are generated in

the circular park based on stimulus category.

Category. The experimenter designates each trial randomly as either a “Feeder Present”

(C = 1) or “Feeder Absent” (C = 0) trial. There are an equal number of feeder present and

absent trials such that

pðC ¼ 0Þ ¼ pðC ¼ 1Þ ¼ 0:5 ð4Þ
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If C = 0, the distribution of each observation is uniform on a disc:

pðxijC ¼ 0Þ ¼

1

pR2
forjjxijj < R ð5Þ

0 otherwise ð6Þ

8
<

:

If C = 1, the pigeon feeder is present, and its location μ is drawn from a Gaussian centered at

the middle of the circular park (position (0,0)) with standard deviation σs.

pðmjC ¼ 1Þ ¼ N ðm; ð0; 0Þ; s2

s IÞ; ð7Þ

where I is the two-dimensional identity matrix. For a given μ, the pigeon locations are inde-

pendent

pðxjm;C ¼ 1Þ ¼
YN

i¼1

pðxijm;C ¼ 1Þ ð8Þ

For each of N pigeons drawn on a given trial, there is a paff chance that the pigeon is affiliated

with the pigeon feeder (in the experiment, paff = 0.5). If a pigeon is not affiliated (zi = 0), its

location is drawn from a uniform distribution on a disc of radius R centered on the center of

the screen:

pðxijzi ¼ 0;C ¼ 1Þ ¼

1

pR2
forjjxijj < R ð9Þ

0 otherwise ð10Þ

8
<

:

If the pigeon is affiliated with the feeder (zi = 1), then the pigeon’s location is drawn from a

smaller Gaussian distribution centered at the location of the pigeon feeder (μ) with standard

deviation σ:

pðxijzi ¼ 1; m;C ¼ 1Þ ¼ N ðxi; m;s2IÞ ð11Þ

This means the distribution of pigeon observations is a mixture of a Gaussian distribution cen-

tered at μ and a uniform distribution on the same disc:

pðxijm;C ¼ 1Þ ¼
paffN ðxi; m; s2IÞ þ

1 � paff
pR2

forjjxijj < R ð12Þ

N ðxi; m; s2IÞ otherwise: ð13Þ

8
<

:

Through our choice of σs and σ, the latter case where ||xi||> R, in which the location of a gen-

erated pigeon falls outside of the perimeter of the circular park, rarely occurs. We ignore this

case moving forward.

Observer models

Next, we discuss observer models that assume some knowledge of the generative model and

invert the model to perform inference about the trial’s category (feeder absent or present)

based on pigeon location observations.

Bayes-optimal model. Given N observations x = {x1, . . ., xN}, the observer is tasked to

infer category C. The log posterior ratio is

d ¼ log
pðC ¼ 1jxÞ

pðC ¼ 0jxÞ
¼ log

pðC ¼ 1Þ

pðC ¼ 0Þ
þ log

pðxjC ¼ 1Þ

pðxjC ¼ 0Þ
ð14Þ
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Since p(C = 0) = p(C = 1) = 0.5, we have

d ¼ log
L1

L0

; ð15Þ

where we have introduced the following notation for the category likelihoods:

L0 � pðxjC ¼ 0Þ; ð16Þ

L1 � pðxjC ¼ 1Þ: ð17Þ

Before we evaluate these expressions further, we first comment on how the observer would

make a decision based on d. An observer who maximizes probability correct will report C = 1

when d> 0. However, an observer may have utilities or costs that are unequal between C = 0

and C = 1, such as unequal degrees of satisfaction for correctly reporting the presence of the

latent cause than for correctly reporting its absence, or a higher motor cost for pressing a but-

ton with the non-preferred hand (in our experiment, hands corresponded one-to-one to cate-

gory responses). Due to such factors, which we do not model explicitly, the optimal Bayesian

decision-maker might use a decision criterion that is different from 0 and might even depend

on the number of observations. Since criterion-setting is not the subject of our study, we

remain as agnostic as possible about the criteria: we assume that the Bayesian observer reports

C = 1 when d> k, where k is fit as a free parameter. Incidentally, this also allows for a mis-

matched prior over C, although this would be a deviation from strictly optimal decision-

making.

In addition, we allow for decision noise, which we model as Gaussian noise on the log pos-

terior ratio d, with a variance that we denote by σd. Finally, we allow for a lapse rate λ; this is

the probability of randomly choosing either category with probability 0.5. Putting everything

together, the probability of reporting C = 1 becomes

pðĈ ¼ 1jxÞ ¼ 0:5lþ ð1 � lÞF log
L1

L0

; k; s2

d

� �

ð18Þ

We now return to the calculation of the likelihoods of both categories, from Eq (17). The likeli-

hood of the hypothesis C = 0 is simply

L0 ¼
1

ðpR2Þ
N ; ð19Þ

whereas the likelihood of the hypothesis C = 1 is obtained by marginalizing over all variables

in the generative model other than C and x, that is, over z and μ:

L1 ¼ pðxjC ¼ 1Þ

¼
X

z

Z

pðxjz; m;C ¼ 1ÞpðzÞpðmÞdm;

¼
X

z

Z

Lðz; mÞpðzÞpðmÞdm;

ð20Þ

ð21Þ

ð22Þ

where p(z) is the probability of the vector of affiliations and L(z, μ)� p(x|z, μ, C = 1) is the
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joint likelihood of the combination (z, μ) under the C = 1 hypothesis. The former is equal to

pðzÞ ¼ ð1 � paffÞ
N0ðzÞpN1ðzÞ

aff ð23Þ

where N0 and N1 are the number of unaffiliated and affiliated pigeons.

We further evaluate the joint likelihood by using the property that the pigeon locations are

drawn independently, that the location of an unaffiliated pigeon (zi = 0) is drawn from a uni-

form distribution on a disc, and that the location of an affiliated pigeon (zi = 1) is drawn from

a normal distribution with mean μ and standard deviation σ:

Lðz; mÞ ¼
YN

i¼1

pðxijzi; m;C ¼ 1Þ ð24Þ

¼
1

pR2

� �N0ðzÞ Y

i:zi¼1

pðxijzi ¼ 1; m;C ¼ 1Þ

 !

ð25Þ

¼
1

pR2

� �N0ðzÞ Y

i:zi¼1

N ðxi; m; s
2IÞ

 !

ð26Þ

We can write L1 in two equivalent “two-step” ways. The first is in terms of a likelihood over

z:

L1 ¼

X

z

LðzÞpðzÞ

LðzÞ �
R
Lðz; mÞpðmÞdm

¼ pðxjz;C ¼ 1Þ:

ð27Þ

ð28Þ

ð29Þ

The second is in terms of a likelihood over μ:

L1 ¼
R
LðmÞpðmÞdm;

LðmÞ �
X

z

Lðz; mÞpðzÞ

¼ pðxjm;C ¼ 1Þ:

ð30Þ

ð31Þ

ð32Þ

Here, L(μ) can be written in multiple equivalent ways:

LðmÞ ¼
X

z

pðzÞ
YN

i¼1

ðpðxijzi; m;C ¼ 1ÞÞ ð33Þ

¼
X

z

pðzÞ
1

pR2

� �N0ðzÞ Y

xi :zi¼1

N ðxi; m; s
2IÞ ð34Þ
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LðmÞ ¼
YN

i¼1

X1

zi¼0

ðpðxijzi; m;C ¼ 1ÞpðziÞÞ ð35Þ

¼
YN

i¼1

1 � paff
pR2

þ paffN ðxi; m; s
2IÞ

� �

ð36Þ

For all suboptimal models, we consider different ways of approximating the evidence for

the causal model (i.e. the “feeder persent” likelihood). The notation for this approximation

is ~L1.

Model descriptions

Family A—Marginalize over both μ and z. Family A models include the Bayes-optimal

model and two variants that allow for false beliefs about the generative model.

A(1) Strong Bayes-optimal model

The strong Bayes-optimal model is as described above. paff = 0.5 in all default models, but

an N-dependent flexible paff variant of most models is also fit, to reflect the hypothesis that

subjects may have different baseline priors or propensities to report C = 1 as the number of

pigeons N increases.

A(2) Bayes-optimal model with N-dependent decision criteria

A variant of the Bayesian model where a separate decision criterion KN is fit for each of

N = 6, 9, 12, 15 pigeons. Model A1 reflects a strong Bayesian model with one fitted decision

criterion, while model A2 reflects a modification of the Bayesian model with four decision

criteria fitted per subject. We equip all alternative models with the same N-dependent flexi-

bility in criteria moving forward.

A(3) Bayes-optimal model with flexible beliefs about σ and σs
A variant of the Bayesian model where we test false beliefs about the generative model by

fitting σ and σs as free parameters.

Family B—Commit to a single μ, marginalize over z. Family B models employ the strat-

egy of committing to a single hypothesized feeder location m̂, then reasoning probabilistically

over all possible combinations of each point having been generated from the feeder distribu-

tion or the uniform background distribution. The general form of the suboptimality is

~L1 ¼ Lðm̂; xÞ

¼
X

z

Lðz; m̂; xÞpðzÞ

¼
YN

i¼1

pðxijm̂Þ

We tested 4 possible ways of arriving at m̂. The first two benefit from easy heuristic interpreta-

tions, while the second two involve cognitively implausible computations.

B(4) Commit to μ as location of centroid

m̂ ¼
SðxÞ

N
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B(5) Commit to μ as location of maximum local density

• A Gaussian with σ = 1.4 cm (reflecting the statistics of bird dispersal around the bird

feeder) is convolved along all possible locations of the arena, as a measure of the local den-

sity of dots at all possible locations on the screen.

• The location of the highest local density is taken as m̂.

B(6) Commit to μ through posterior mean estimation

m̂ ¼

Z

m pðmjx;C ¼ 1Þdm ð37Þ

The posterior over μ is obtained by multiplying the prior over the distribution of μ by the

likelihood in Eq (34):

pðmjx;C ¼ 1Þ / pðmÞ
X

z

pðzÞ
ðpR2Þ

N0ðzÞ

Y

xi :zi¼1

N ðxi; m; s
2IÞ ð38Þ

¼
X

z

pðzÞ
ðpR2Þ

N0ðzÞ
pðmÞ

Y

xi:zi¼1

N ðxi; m;s
2IÞ ð39Þ

¼
X

z

pðzÞ
ðpR2Þ

N0ðzÞ
N ðm; 0; s2

m
IÞ
Y

xi :zi¼1

N ðxi; m; s
2IÞ ð40Þ

This is a mixture of a product of Gaussians, with mixture weights

wðzÞ �
pðzÞ

ðpR2Þ
N0ðzÞ

: ð41Þ

Writing the product of Gaussians as a single (unnormalized) Gaussian, we find

pðmjx;C ¼ 1Þ /
X

z

wðzÞN ðm; 0; s2

m
IÞ
Y

xi:zi¼1

N ðxi; m;s
2IÞ ð42Þ

¼
X

z

wðzÞ~wðx; zÞN ðm;mðx; zÞ; vðzÞÞ; ð43Þ

where

mðx; zÞ ¼
xsumðzÞ

N1ðzÞ þ
s2

s2
m

ð44Þ

vðzÞ ¼
1

1

s2
m
þ

N1ðzÞ

s2

I ð45Þ

~wðx; zÞ ¼
1

1þ
s2
m

s2 N1ðzÞ

1

ð2ps2Þ
N1ðzÞ

exp �
1

2s2

X

xi :zi¼1

jjxijj
2

 !

�
jjxsumðzÞjj

2

N1ðzÞ þ
s2

s2
m

" # !

; ð46Þ

where xsumðzÞ ¼
X

xi :zi¼1

xi.
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The normalized posterior is

pðmjx;C ¼ 1Þ ¼

P
z
wðzÞ~wðx; zÞN ðm;mðx; zÞ; vðzÞÞ

P
z
wðzÞ~wðx; zÞ

; ð47Þ

and the posterior mean estimate from Eq (37) is

m̂PME ¼

X

z

wðzÞ~wðx; zÞmðx; zÞ
X

z

wðzÞ~wðx; zÞ
: ð48Þ

Family C—Marginalize over μ, commit to a single z. Family C models employ the strat-

egy of first selecting a group of points which are thought to belong to the feeder distribution.

With this partition nailed down, the subject then reasons probabilistically over all possible

feeder locations. The general form of the suboptimality is

~L1¼ Lðẑ; xÞ

¼

Z

Lðẑ; m; xÞpðmÞdm

C(8) Commit to z as maximum marginal likelihood

~L1 ¼ max
z

Lðz; xÞ

C(9) Commit to z via agglomerative clustering

• See agglomerative clustering box (Box 1)

Family D—Commit to both μ and z. General form of the Family D suboptimality is

~L1 ¼ Lðẑ; m̂; xÞ

D(10) Commit jointly to μ and z by maximizing the joint posterior

~L1 ¼ max
z;m

Lðz; m; xÞpðmÞ

D(11) Commit jointly to μ and z by maximizing the joint likelihood

~L1 ¼ max
z;m

Lðz; m; xÞ

D(12) Commit jointly to μ and z via agglomerative clustering

• See agglomerative clustering box. (Box 1.)

D(13) Commit to μ as location of centroid, then commit to z by setting an optimal radial

threshold

D(14) Commit to μ as location of maximum local density, then commit to z by setting an opti-

mal radial threshold
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• For D(13) and D(14): Given an estimate of μ, the ML estimate of z amounts to applying a

specific distance threshold

ẑi ¼ 1 if Nðxi; m̂; s2Þ >
1

pR2
, jjxi � m̂jj <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2s2log
R2

2s2

r

Family H—Non-probabilistic heuristic models. Five prima facie plausible heuristic

models were developed based on basic first-pass intuitions about the task.

Each heuristic model has the form

pðĈ ¼ 1jxÞ ¼ Fðf ðxÞ; kn; s
2

dÞ;

where f(x) represents one of the following heuristics:

H(10) Negative mean pairwise distance

• The mean pairwise distance of all points is calculated as a measure of global dot density.

• This number is made negative.

• If this metric exceeds a noisy threshold, the model responds “feeder present”.

H(11) Maximum local density

• A Gaussian with σ = 1.4 cm (the true standard deviation of pigeon locations around the

feeder) is convolved with a map of the pigeon locations, as a measure of the local density of

dots.

• This number is made negative.

• If this local density metric at any one location exceeds a noisy threshold, the model

responds “feeder present”.

H(12) Negative minimum pairwise distance

• The distance between the two nearest points is calculated.

Box 1. The Agglomerative Clustering algorithm is as follows:

1. Pick a starting pigeon at random, to seed the cluster.

2. Evaluate the log likelihood ratio (LLR): that is, the marginal likelihood that that

cluster was generated by the Gaussian (and the rest by the uniform) against the

marginal likelihood that all points were generated by the uniform distribution.

3. Add the next-nearest point to the cluster. Repeat step 2.

4. If adding that next-nearest point caused the log likelihood ratio to decrease from

the previous iteration, stop. The current LLR is the best LLR for this seed. Other-

wise, repeat step 3.

5. Calculate the highest of all best LLRs across all starting cluster seeds (i.e. repeat

1–4 with each pigeon as the starting pigeon).

6. Use the highest possible LLR as a decision variable (where, if it exceeds some noisy

threshold, the subject responds “feeder present”).
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• This number is made negative.

• If this least distance metric exceeds a noisy threshold, the model responds “feeder present”.

H(13) Negative mean nearest-neighbour distance

• The mean distance between all points and their nearest neighbour is calculated.

• This number is made negative.

• If this least distance metric exceeds a noisy threshold, the model responds “feeder present”.

H(14) Fraction of points below some nearest-neighbour distance threshold

• The mean distance between all points and their nearest neighbour is calculated.

• This number is made negative.

• If this least distance metric exceeds a noisy threshold, the model responds “feeder present”.

We did not design our models to explicitly account for confidence responses. Modelling

confidence predictions for each of the 8 possible confidence levels would have required an

additional 7 decision boundaries, possibly multiplied by the 4 N conditions, which would have

introduced a large number of extra parameters without contributing additional understand-

ing. Therefore, we chose to fit to choices only and subsequently make a zero-parameter predic-

tion for confidence ratings.

Supporting information

S1 Fig. List of models and model parameters. Model parameters. N-dependent parameters

are denoted by ‘(4)’, reflecting a unique parameter fit for each N = 6, 9, 12, 15 condition.

(TIFF)

S2 Fig. Stimulus histogram distributions along each distance-based heuristic. Stimulus his-

togram distributions along each distance-based heuristic. “Feeder absent” trials in blue, “feeder

present” trials in red, with colour saturation indicating the number of pigeons on a given trial

(N = 6, 9, 12, 15). For each trial, the following quantities were computed: the mean pairwise

distance of all pigeons (A), the maximum local density, where local density is computed by

convolving a gaussian of σ = 1.4cm over the circular arena (B), the nearest neighbour distance,

calculated as the mean distance between all pigeons and their nearest neighbour (C), and the

distance between the two nearest pigeons (D).

(TIFF)

S3 Fig. Model comparison (Bayesian Information Criterion (BIC)). Model comparison

(Bayesian Information Criterion (BIC)). Compared to AIC, BIC model comparison penalizes

model complexity more heavily. MML denotes “Maximum Marginal Likelihood,” MMP

denotes “Maximum Marginal Posterior,” MJP denotes “Maximum Joint Posterior.” NN

denotes “Nearest Neighbour.” The difference in BIC scores between models (Δ BIC) plotted

provides an estimate of the quality of each model relative to the fully Bayesian model (A1) in

panel A, or the best-fitting model (D9) in panel B. The four best models (highlighted) are

indistinguishable via AIC and BIC.

(TIF)

S4 Fig. Model comparison (Bayesian Information Criterion (BIC)) with probability of

affiliation fitted as a separate free parameter. Model comparison (Bayesian Information Cri-

terion (BIC)) with probability of affiliation fitted as a separate free parameter for each of the
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four N conditions (N = 6, 9, 12, 15) are denoted with the addition of “P” to the model name.

Compared to AIC, BIC model comparison penalizes model complexity more heavily. MML

denotes “Maximum Marginal Likelihood,” MMP denotes “Maximum Marginal Posterior,”

MJP denotes “Maximum Joint Posterior.” NN denotes “Nearest Neighbour.” The difference in

BIC scores between models (Δ BIC) plotted provides an estimate of the quality of each model

relative to the fully Bayesian model (A1) in panel A, or the best-fitting model (B6P) in panel B.

Adding a flexible N-dependent criterion can help rescue the Bayesian model (see model A2

compared to A1), and adding 4 flexible N-dependent probability of affiliation parameters

increases goodness of fit for all models.

(TIF)

S5 Fig. Average d (log likelihood ratios) for trials binned by response x confidence pairs

across all subjects. Average d (log likelihood ratios) for trials binned by response x confidence

pairs across all subjects. Negative confidence rating denotes “feeder absent” response and posi-

tive confidence denotes a “feeder present” response.

(TIFF)

S6 Fig. Subject reaction times for each response x confidence pair. Subject reaction times

for each response x confidence pair, where negative confidence denotes a “feeder absent”

response and positive confidence denotes a “feeder present” response.

(TIFF)

S7 Fig. Model fits of proportion of “feeder present” responses as a function of number of

pigeons. Model fits of proportion of “feeder present” responses as a function of number of

pigeons (N), denoted by shaded area; subject data denoted by solid lines.

(TIFF)

S8 Fig. Fitted decision criterion parameter kN for each N. Value of the fitted decision crite-

rion parameter kN for each N, shown for each of the basic models.

(TIFF)

S9 Fig. Fitted decision criterion parameter kN for each N for flexible paff model variants.

Value of the fitted decision criterion parameter kN for each N, shown for each of the model

variants with a flexible paff.

(TIFF)

S10 Fig. Histograms of decision variable distributions for example models. Histograms of

decision variable distributions for the Bayesian model (paff = 0.5) in the top row, with two

examples of shifted decision variable distributions. Panel A: maximum joint posterior (model

9, right-shifted). Panel B: Bayesian model with a false probability of affiliation of 0.7 (left-

shifted).

(TIFF)

S11 Fig. Probabiltiy of affiliation (paff) fits across N. Fitted paff for each N shown for each

model variant.

(TIFF)

S12 Fig. “Feeder present” responses and model fits. Model fits of proportion of “feeder pres-

ent” responses as a function of number of pigeons (N), denoted by shaded area; subject data

denoted by solid lines.

(TIFF)
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