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Abstract
Planning, the process of evaluating the future consequences of
actions, is typically formalized as search over a decision tree.
This procedure increases expected rewards but is computation-
ally expensive. Past attempts to understand how people miti-
gate the costs of planning have been guided by heuristics or the
accumulation of prior experience, both of which are intractable
in novel, high-complexity tasks. In this work, we propose a
normative framework for optimizing the depth of tree search.
Specifically, we model a metacognitive process via Bayesian
inference to compute optimal planning depth. We show that
our model makes sensible predictions over a range of parame-
ters without relying on retrospection and that integrating past
experiences into our model produces results that are consistent
with the transition from goal-directed to habitual behavior over
time and the uncertainty associated with prospective and retro-
spective estimates. Finally, we derive an online variant of our
model that replicates these results.
Keywords: sequential decision-making; planning; Bayesian
inference

Introduction
From spatial navigation to organizational strategy to playing
Go, planning is a hallmark of human intelligence. Planning
involves the mental simulation of future actions and their con-
sequences in order to make a decision. However, evaluating
every possible course of action in complex environments is
simply intractable. For example, if an agent has to make a
sequence of N decisions with K options at each step, then the
total number of sequences is KN .

Planning problems have typically been formalized as
search over a decision tree in both cognitive science (Daw,
Niv, & Dayan, 2005; Huys et al., 2015; van Opheusden et
al., 2021) and artificial intelligence (Shannon, 1950; Silver et
al., 2016). In such a scheme, the agent builds a tree of pos-
sible future trajectories where every decision that the agent
must make is represented by a branching point. The agent
then gains information by traversing the decision tree, which
is used to estimate the long-term expected reward of each cur-
rently available action.

Tree search algorithms generally lead to better decisions
that may have been overlooked without planning, but can be
costly to run. Even with a small cost per unit of time or
planning iteration, real-world tasks involve too many pos-
sible actions to extensively evaluate each one considering
the breadth and depth of the trees an agent would need to
construct. Therefore, a growing body of literature has fo-
cused on solutions for approximating the values of choices

without fully expanding a search tree (Snider, Lee, Poizner,
& Gepshtein, 2015) or efficiently allocating limited compu-
tational resources during planning (Callaway et al., 2018).
Other mechanisms in planning models that achieve similar
goals involve pruning initially unpromising courses of ac-
tion (Huys et al., 2012), relying on the uncertainty or accu-
racy of forward search and model-free reinforcement learn-
ing methods in tandem (Daw, Gershman, Seymour, Dayan, &
Dolan, 2011; Kool, Gershman, & Cushman, 2017; Hamrick
et al., 2019), or leveraging simulated experience to further ex-
pedite the transition from goal-directed to habitual behavior
(Dasgupta, Schulz, Goodman, & Gershman, 2018). Mean-
while, simpler choice models of human planning often do not
explore the tradeoffs between the costs of planning and de-
cision quality (Solway & Botvinick, 2015; Tajima, Drugow-
itsch, Patel, & Pouget, 2019).

As a result, previous models of human planning have been
predominantly guided by researcher-specified heuristics. A
notable exception to this computes the value of information
gained by planning in a principled manner (Sezener, Dez-
fouli, & Keramati, 2019), but relies on a habitual system to es-
timate values at the frontier of the search tree. Such a method
may not scale well to complex tasks where an agent almost
exclusively encounters unique states, thus hindering the de-
velopment of informative habits.

Here, we propose an alternative: a normative Bayesian
model for optimizing the depth of decision tree search. Our
framework is inspired by perceptual cue combination mod-
els, and operates at a metacognitive level of abstraction by
asking how far in advance an agent should plan before any
planning actually takes place. This method has the added ca-
pability to incorporate retrospective experience as it becomes
available to provide better depth estimates, but does not rely
on model-free state learning in order to make sensible pre-
dictions. We make a number of simplifying assumptions that
can be replaced by more sophisticated planning methods, but
we note that the purpose of a metacognitive algorithm is to
approximate expected reward while simultaneously reducing
costs. Our simulation results show that this framework de-
rives intuitive principles about the depth to which planning is
beneficial as a function of the cost per measurement, the to-
tal number of actions the agent must evaluate, the amount of
accumulated retrospective experience, and the uncertainties
associated with both prospective and retrospective samples.

91



We conclude by deriving an online version of the model and
discussing its cognitive plausibility when applied to simple
and complex planning tasks.

Model
From a metacognitive perspective, an agent must think about
how far into the future it may be beneficial to plan in a given
state. To address this, assume the agent is in state s with ac-
tions {a1, ...,an} available and has the option of executing a
tree search policy π. The key insight that our model is based
on is that each state-action pair has a theoretical long-running
expected reward under π, Q(a). We take a Bayesian inference
view where this value is unknown to the agent, and the agent
tries to build a probability distribution over each Q(a) while
balancing the costs of search. This distribution is primarily
computed by considering how a one-step, myopic evaluation
will change under a certain depth of search, and is combined
with any prior experience that the agent has already accumu-
lated for each state-action pair. We reiterate that this pro-
cess occurs prior to any forward search taking place, and that
this paper introduces the general framework for approximat-
ing the effects of planning under the agent’s particular tree
search policy.

Generative model

To simulate the measurements that the agent has available to
them prior to planning (Figure 1A), we assume that the true
value Q for a given state-action pair is normally distributed:

Q∼N
(
µ0,σ

2
0
)
. (1)

We omit the dependence of the parameters on the action a
from the notation until the last step, where we will compute
the value of the state across all actions. A retrospective ex-
perience with a is modeled as a noisy measurement, qretro,i,
drawn from a normal distribution centered at the true Q:

qretro,i ∼N
(
Q,σ2

retro
)
. (2)

The retrospective measurements form a vector qretro ≡
(qretro,1, . . . ,qretro,n), where n is the number of past experi-
ences with action a in state s. Similarly, the agent can perform
a one-step look-ahead to obtain another noisy measurement,
q1, of Q:

q1 ∼N
(
Q,σ2) . (3)

The core part of our framework is a statistical model main-
tained by the agent of the effects of prospective tree search
without actually performing the search. We assume that
each iteration of the tree search algorithm works on a branch
that starts with action a and produces a new, independent
measurement of Q, qt . Therefore, after T iterations of tree
search, the agent has another vector of measurements q ≡
(q1, . . . ,qT ).

Inference

The overarching goal of this framework is to solve for the
optimal number of iterations to plan for, T ∗. We take a nor-
mative approach, meaning that we assume the agent makes
this decision by maximizing expected reward given costs. T
is optimized independently of any action, which includes the
possibility of choosing T = 1, or no planning at all. One way
to conceptualize this is that, before planning, the agent ap-
proximates a breadth-first search algorithm by evaluating the
future expected reward at each action to the same depth.

The general inference scheme is outlined in Figure 1B and
works as follows: (1) the agent considers different futures for
each action after T planning iterations, (2) this future distribu-
tion is integrated with any retrospective information to form a
posterior distribution, and (3) the agent marginalizes over all
possible futures by combining across actions and computing
the maximum over the distribution of the posterior’s expected
value. The final output of this inference procedure is the mean
of the max distribution, which we call the value of planning
for T iterations.

Formally, the posterior is the normalized product of the
prior, the retrospective likelihood, and the prospective like-
lihood, all of which we assume to be independent:

p(Q|qretro,q) ∝ p(Q)p(qretro|Q)p(q|Q). (4)

Each of the likelihoods is over Q based on the retrospective
or prospective measurements available to the agent:

p(qretro|Q) = N
(

Q; q̄retro,
σ2

retro

n

)
(5)

p(q|Q) = N
(

Q; q̄,
σ2

T

)
, (6)

where q̄retro ≡
n

∑
i=1

qretro,i and q̄ ≡
T

∑
t=1

qt . This allows

us to rewrite the posterior as the normal distribution
N

(
Q;µT ,σ

2
T
)
, where we define the mean and variance as

µT =
J0µ0 + Jretronq̄retro + JT q̄

JT
(7)

σ
2
T =

1
JT

, (8)

along with the precision quantities Jretro ≡ 1
σ2

retro
, J ≡ 1

σ2 , J0 ≡
1

σ2
0
, and JT ≡ J0 + Jretron+ JT . We then write q̄ to indicate

that the myopic values, q1, are known while the remaining

values are defined as q̄>1 =
1

T −1

T

∑
t=2

qt . Now, we calculate

the distribution over q̄>1 given q1 and qretro by marginalizing
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Figure 1: Planning to plan as Bayesian inference. (A) The generative model, where the agent receives noisy measurements
of the underlying Q value for a given state-action pair. These measurements can come from retrospective experience or a
myopic evaluation one step into the future, with a specific mean and variance. (B) The inference procedure, where the agent
computes the value of the state for T planning iterations. Per action, the agent simulates the evolution of the myopic likelihood
(blue distribution) T steps ahead, resulting in a sum over T prospective samples (q̄). The gray distributions represent different
potential future likelihoods. q̄ is combined with any retrospective information (the sum over retrospective samples, q̄retro) into
a posterior. The agent then combines across actions by marginalizing over all possible futures, resulting in a distribution for
each posterior mean µT (light red distributions) and a max distribution for the state (dark red distribution). The expected value
of the max distribution, E[MT ], is the value of planning for T . (C) The optimization step, where the agent repeats the inference
procedure for all T . Subtracting a fixed cost per evaluation c to find the value of planning results in an optimal planning depth
T ∗. Note that this cost must be multiplied by the depth of search (T ) and the number of actions that the agent considers (N).
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Figure 2: The model makes reasonable predictions about planning depth based solely on myopic estimates. (A) Optimal
planning depth (T ∗) as a function of the cost per measurement (c) and the number of actions available to the agent (N). (B)
75th, 50th, and 25th percentiles for the gap between the top two myopic measurements as a function of number of actions for
a single cost (c = 0.001). (C) Optimal planning depth as a function of the gap between the top two myopic measurements and
number of actions, for the same cost as in (B). The color code is two-dimensional: the hue represents optimal planning depth
and the saturation proportion of total simulations for the combination of top gap size and N.

over the current possible values of Q:

p(q̄>1|q1,qretro) =
∫

p(q̄>1|Q)p(Q|q1,qretro)dQ (9)

= N
(

q̄>1;µ1,
σ2

T −1
+σ

2
1

)
. (10)

The main technical result here is computing the distribution
over future prospective measurements T time steps into the
future given the first myopic measurement. On average, the
mean of the resultant distribution stays at the mean of the
first measurement while the variance becomes narrower. The
variance of this distribution at T is

Var[µT ] =
σ2

1

1+ σ2

(T−1)σ2
1

. (11)

Intuitively, the variance monotonically increases as a function
of T because the future measurements are unknown and will
cumulatively pull the posterior mean away from µ1. Note that
when T = 1, the variance is 0 as µ1 is known and that when
T → ∞, the variance saturates as σ2

1. This is because the fu-
ture measurements will have fully pulled the posterior mean
to the true value of Q.

The value of planning is the maximum of the future poste-
rior mean of Q across all actions, MT = max

a
µT (a). We can

evaluate the expected value of this quantity, E[MT ], analyti-
cally by computing the max distribution and taking its mean.
Within our framework, the mathematical reason why plan-
ning is beneficial is that the expected value of a maximum is
greater than the maximum of expected values.

Optimization
After computing the benefit of planning for a range of T val-
ues, this expected reward is compared against the cost of plan-
ning (Figure 1C). We assume a fixed cost per evaluation c
such that the utility of planning for T iterations is given by:

UT = (E[MT ]−E[M1])− cNT, (12)

where N is the total number of actions considered in the state.
In this way, our cost function takes into account the depth and
breadth of the tree being approximated by the model. The
first term increases sublinearly with T , while the second one
increases linearly, meaning that their difference will have an
optimum. We numerically calculate this optimum, which is
the best number of steps to plan ahead:

T ∗ = argmax
T

UT . (13)

Results
The primary goal of this work is to allow an agent to preemp-
tively characterize the conditions under which tree search is
beneficial. We performed a set of simulations in order to val-
idate that the model makes intuitive depth predictions.

Myopic model predictions
We first consider the case where the agent has no prior expe-
rience and relies purely on myopic evaluations to decide how
far into the future to plan. This mimics real-world planning
environments where an agent has uninformed priors over their
retrospective system, such as in novel tasks or tasks in which
states may not repeat often.
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Our cost function is dependent on the number of evalua-
tions that the agent must make during inference, or the prod-
uct of the cost per measurement (c) and the total number of
actions available to the agent in the state (N). Over this pa-
rameter space, our model predicts that deeper planning is ben-
eficial at lower costs and with less alternatives (Figure 2A).

The reasoning behind this effect is based on the value of
the myopic measurements. Suppose that the agent’s objec-
tive is to decide between two actions. If the gap between the
myopic values of these two actions is small, should the agent
plan further ahead in hopes of determining which action is
actually better? Or, should the agent avoid wasting valuable
resources planning, since it will be unclear which action is
best regardless? And conversely, if the gap between two my-
opic evaluations is large, should the agent plan more or less?

In Figure 2B, we show that as the number of actions in-
creases, the distribution of the difference between the top two
myopic measurements becomes more right-skewed. In other
words, small top gap sizes are more common when there are
more actions to consider, and the size of the top gap is varied
at a lower number of alternatives. Figure 2C then investi-
gates the relationship between top gap size and optimal plan-
ning depth: T ∗ is higher with smaller top gap sizes and with
less available actions. This suggests that smaller gap sizes
do increase optimal planning depth, but that this effect is di-
minished with more actions where cost grows and ultimately
outweighs the added benefit of planning more deeply.

Figure 3: The effect of accumulating experience on depth of
planning. Optimal planning depth for 2 actions (left) and 20
actions (right) as a function of the average number of retro-
spective measurements per action (modeled as a Poisson rate)
for a single cost (c = 0.001). The dashed line in each panel
indicates the optimal planning depth without retrospective ex-
perience.

Incorporating retrospective information
Next, we examine environments where the agent does have
prior experience. In principle, planning depth should be mod-
ulated by the total amount of retrospective experience accu-
mulated by the agent as well as the uncertainty of those es-
timates. These correlate directly to well-studied mechanisms
in the planning literature: the transition from model-based to

model-free control over time and uncertainty-based arbitra-
tion between prospective and retrospective systems.

We simulate total experience by using a variable Poisson
rate (λ) to determine n for each action. The model predicts
a shallower optimal planning depth as more experience is ac-
cumulated, and this trend holds irrespective of the number
of alternatives that the agent considers (Figure 3). The ra-
tionale behind this is that environments with low amounts
of retrospective information require similar planning depths
compared to when the model relies only on myopic esti-
mates. Optimal planning depth then decreases as the agent
gains more experience. In these cases, the agent can spend
less resources planning and instead relies more heavily on
its cost-effective retrospective experiences. Additionally, we
varied the amount of uncertainty for both the retrospective
and myopic estimates to investigate their joint effect on plan-
ning depth (Figure 4). This is straightforward to implement,
since our model directly takes the variance associated with
each type of sample as part of its generative model. With
a low number of alternatives, increased uncertainty with ei-
ther or both sources of information led to deeper planning.
With more alternatives, however, high amounts of prospec-
tive uncertainty resulted in lower optimal planning depths.
Intuitively, planning more deeply is generally beneficial in
gaining high-value estimates under uncertainty, but if the un-
certainty attached to planning is too high then it is no longer
worthwhile to obtain these costly measurements.

Figure 4: The effect of uncertainty on depth of planning. Op-
timal planning depth for 2 actions (left) and 20 actions (right)
as a function of the retrospective and prospective variance in
the generative model for a single cost (c = 0.001).

Online planning
In order to study how our framework might approximate dif-
ferent search procedures, we implemented a variant of the
model where the agent determines online whether increas-
ing the depth of search by one layer is worthwhile. In prac-
tice, this model could be used by the agent to iteratively
learn heuristics over a set of parameters, such as a stopping
rule, that are then used to inform a planning algorithm. The
general logic for the model is the same: given the posterior
based on retrospective and prospective information, the agent
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marginalizes over possible futures. The difference is that the
past measurements consist of a sequence of T measurements
for each action and the future consists of a single time step,
from T to T +1.

Mathematically, the posterior at time T is identical to Eq.
(4). However, q̄T , which is the mean of the measurements
q1, . . . ,qT , is given, rather than only q1. These measurements
may be provided by the forward search algorithm that the
agent is utilizing. The new measurement qT+1, which the
agent receives if it plans one step further ahead, is unknown
and has to be marginalized over:

p(qT+1|q̄T ,qretro) =
∫

p(qT+1|Q)p(Q|q̄T ,qretro)dQ (14)

= N
(
qT+1;µT ,σ

2 +σ
2
T
)
. (15)

Again, the mean of the distribution of the expected value of
Q at T +1 stays at the mean of the measurement at T , while
the variance at T +1 is

Var[µT+1] =
1

JT (1+ JT
J )

. (16)

Note that the variance of the online and offline implementa-
tions match when moving from T = 1 to T = 2. In order to
combine across actions and decide whether to plan one step
further, we compute the expected value of the maximum of
the future posterior means for all actions and subtract a fixed
cost c for that additional iteration multiplied by the number of
alternatives N and the current depth of search T . This gives
the utility of planning at each step as

UT+1 = (E[MT+1]−E[MT ])− cNT. (17)

T ∗, or the final number of steps that are planned ahead, is now
the value of T where the cost exceeds the gain in expected
value from T to T +1.

The online model replicates the results derived from the
offline version with myopic estimates as well as when retro-
spective experiences are incorporated (Figure 5). The abso-
lute value of this model’s planning estimates are larger, since
the agent is receiving new prospective samples at each itera-
tion. Additionally, we frame our results in terms of probabil-
ity of expansion at each layer rather than planning depth.

Discussion
In this paper, we presented a normative framework for opti-
mizing the depth of decision tree search. The model is based
on using Bayesian inference to compute the value of planning
from a combination of retrospective samples and myopic es-
timates. We began by showing that this model makes rea-
sonable depth predictions without retrospective experience,
primarily driven by cost per measurement and the number of
actions. We also explained how the effect of the gap size be-
tween the top two myopic evaluations is in line with these re-
sults. We then introduced retrospective experience, and found
that planning depth decreases as the agent gains experience

Figure 5: Online planning results for a fixed number of al-
ternatives (N = 10). (A) Probability of expanding to the next
search iteration as a function of current depth (T ) and cost
per measurement (c). (B) Probability of expansion as a func-
tion of average number of retrospective measurements per ac-
tion for a single cost (c = 0.01). The dashed line indicates
the probability of expansion without retrospective experience.
(C) Probability of expansion as a function of retrospective
and prospective variance in the generative model for the same
cost as in (B).

and increases with the uncertainty of the model’s evaluations
unless prospective uncertainty is so high that deeper planning
is no longer worthwhile. Finally, we derived an online ver-
sion of the model and showed results consistent with its of-
fline counterpart.

We must also evaluate how this framework might interact
with planning in real tasks. Since we have conceptualized
this as a metacognitive algorithm, the most natural extension
is that the agent uses this approximation to quickly learn use-
ful heuristics prior to planning. This heuristic can be a sim-
ple depth estimate given by the offline variant of the model
prior to planning, or more nuanced components of a plan-
ning algorithm, such as a stopping rule, given by the iterative,
online variant of the model. Another option is that this frame-
work is actually implemented by the brain, in which case
task-specific features and structure need to be incorporated
into the model’s evaluations. In either case, the model must
be adapted to well-characterized planning tasks to verify that
previous conclusions in the field, such as uncertainty arbitra-
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tion and pruning, hold (Daw et al., 2011; Huys et al., 2012).
Further, a primary motivation for developing this algorithm is
to explain human behavior in more complex tasks with large
data sets (Kuperwajs, van Opheusden, & Ma, 2019).

The method by which our model approximates the effects
of search bears resemblance to the information sampling lit-
erature. In multi-armed bandit problems, people must choose
between a set of alternatives that each have unknown reward
in order to maximize total expected reward. Bayesian analy-
ses of bandit problems exist, but typically provide a closed-
form solution and focus on the tradeoff between exploration
and exploitation (Steyvers, Lee, & Wagenmakers, 2009). In
contrast, our framework focuses solely on determining high-
value decisions. More recently, related work has claimed
that simple decisions are made by integrating noisy evidence
that is sampled over time in a Bayesian manner (Callaway,
Rangel, & Griffiths, 2021; Jang, Sharma, & Drugowitsch,
2021). Our framework can be viewed as an approximation
to planning via an optimal information sampling algorithm,
and shares many features with these models. Conceptually,
the main difference is in domain application, as prior work
has explained fixation data in choice tasks with few alterna-
tives while our model aims to derive intuitive rules to guide
sequential decision-making. This is particularly relevant to
the form that our model will take when interacting with a for-
ward search algorithm in complex planning tasks.

While we have presented two model variants here, a more
sophisticated variant of our model would determine online
which action to expand the search frontier for, thereby op-
timizing both the depth and direction in which planning is
beneficial. This can be thought of as best-first search, which
combines breadth and depth by expanding the most promis-
ing node of the tree at each iteration. In future work, we plan
to distinguish between how all three of these variants interact
with human behavior in planning tasks.
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