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Uncertainty is an intrinsic part of neural computation, whether 
for sensory processing, motor control or cognitive reasoning. For 
instance, it is impossible to determine with certainty the age of a 
person on the basis of a photo, but it is possible to make a reasonable 
guess, and even to estimate the uncertainty associated with that guess. 
Similarly, motor behavior is inherently variable and uncertain. As any 
golfer or tennis player can attest, repeating the same movement twice 
is impossible. However, just as we can estimate the confidence associ-
ated with a guess about the age of a person, we also have a sense of 
how much variability corrupts our movements. Thus, a right-handed 
player would know right away that there would be less variability 
when playing with her right hand compared with playing with her 
left. At the cognitive level, we are also constantly faced with decisions 
in the presence of uncertainty; for instance, whether we should invest 
our money in the stock market or in a house.

An efficient, and under some circumstances optimal, way to per-
form tasks involving uncertainty is to represent knowledge with 
probability distributions and to acquire new knowledge by follow-
ing the rules of probabilistic inference. Indeed, Cox’s theorem1 tells 
us that probability theory provides the only sensible and coherent 
way to reason under uncertainty, whereas the Dutch Book theorem2 
explicitly demonstrates the hazards of acting on beliefs that violate the 
rules of probabilistic calculus (at least for gamblers). The idea that the 
brain performs probabilistic reasoning is commonly referred to as the 
Bayesian approach, as it relies on the so-called Bayes’ rule3. However, 
Bayes did not suggest that human knowledge is acquired through 
probabilistic inference; his focus was purely on the laws of prob-
ability. The idea was alluded to by Richard Price in his introduction 
(and appendix) to Bayes’ paper, but it was most clearly stated by the 

mathematician Pierre Simon Laplace, who wrote two centuries ago, 
“One may even say, strictly speaking, that almost all our knowledge  
is only probable; and in the small number of things that we are able 
to know with certainty, the principle means of arriving at the truth—
induction and analogy—are based on probabilities”4. This deep, and 
prescient, insight explains the use of probabilistic in the title of this 
article, as opposed to the more common term Bayesian (we could 
have used the term Laplacian, but feared the consequences of violat-
ing Stigler’s Law5, which states that “no scientific discovery is named 
after its original discoverer”).

Mach6 and Helmholtz7 were among the first to apply this idea to 
sensory perception, but strong experimental evidence in support 
of this notion has emerged only over the last two decades. These 
experiments have shown that human behavior is highly consistent 
with probabilistic reasoning not only in the sensory domain8–12, but 
also in the motor13–15 and cognitive16–22 domains.

In the last domain, cognitive reasoning, probabilistic inference has 
been applied to a wide variety of problems23. Consider, for example, 
inductive reasoning16. Suppose you are told that chimpanzees and 
gorillas share a particular gene. How likely is it that seals carry that 
gene as well? Or ants? Recent studies18 strongly suggest that humans 
use probabilistic inference to answer such questions. Moreover, they 
appear to rely on prior knowledge (in this example, knowledge of 
animal evolutionary development). Other cognitive functions, such 
as semantic memory20, theory-based causal reasoning19, language 
comprehension21 and language production22, have also been formal-
ized in this framework.

Although it is well-established that humans and monkeys (and 
other animals) perform probabilistic inference, it is less clear how 
inference is implemented at the level of neural circuits. Recently, 
however, neural theories of probabilistic inference have started to 
emerge, along with new experimental tests. Here we briefly review 
these advances and discuss some of the main challenges.

Probabilistic inference for multisensory integration
Multisensory integration provides one of the best illustrations of the 
power of the probabilistic approach. For instance, Ernst and Banks 
studied how human subjects estimate the width of an object by looking  

1Department of Brain and Cognitive Sciences, University of Rochester, Rochester, 
New York, USA. 2Department of Basic Neuroscience, University of Geneva, 
Geneva, Switzerland. 3Gatsby Computational Neuroscience Unit, University 
College London, London, UK. 4Department of Neuroscience, Baylor College of 
Medicine, Houston, Texas, USA. 5Present address: Center for Neural Science 
and Department of Psychology, New York University, New York, New York, USA. 
Correspondence should be addressed to A.P. (alexandre.pouget@unige.ch).

Received 15 May; accepted 13 July; published online 18 August 2013;  
doi:10.1038/nn.3495

Probabilistic brains: knowns and 
unknowns
Alexandre Pouget1–3, Jeffrey M Beck1, Wei Ji Ma4,5 & Peter E Latham3

There is strong behavioral and physiological evidence that the brain both represents probability distributions and performs 
probabilistic inference. Computational neuroscientists have started to shed light on how these probabilistic representations and 
computations might be implemented in neural circuits. One particularly appealing aspect of these theories is their generality: 
they can be used to model a wide range of tasks, from sensory processing to high-level cognition. To date, however, these theories 
have only been applied to very simple tasks. Here we discuss the challenges that will emerge as researchers start focusing their 
efforts on real-life computations, with a focus on probabilistic learning, structural learning and approximate inference.
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at it and touching it (Fig. 1a)11. One could imagine several ways to 
solve this problem. A non-probabilistic approach could involve the 
following steps. First, look at the image and extract a measurement 
of the width of the bar. Second, do the same for touch. Finally, use 
the average of the visual and tactile estimates. The problem, however, 
is that equal weights are given to both modalities, which is rarely 
appropriate. For instance, in complete darkness, any estimate based 
on vision would reflect only noise and should be ignored altogether. 
Thus, rather than equal weights, each cue should contribute to the 
final estimate in proportion to its reliability. This is precisely what 
would happen if we adopted a probabilistic approach and, rather than 
estimating a value, we recovered the probability distribution over the 
width of the bar given visual and tactile information. This distribu-
tion, denoted p(w|wv ,wt) (w is the true width of the object and wv 
and wt are the width measurements obtained from vision and touch, 
respectively), can be obtained by applying Bayes’ rule: 
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The second equality is based on the assumption that the noise corrupt-
ing the visual and tactile measurements are independent (Fig. 1b). If 
that is the case, and the noise distributions are Gaussian and unbiased 
(that is, if the visual and tactile measurements, wv and wt, are equal 
to the true width, w, plus Gaussian noise with variance sv
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and the prior distribution (p(w); Box 1) is flat, one can show that 
p(w|wv ,wt) is also Gaussian, with mean and variance given by 
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Equation (2) captures our initial intuition: the mean of the posterior 
distribution (Box 1) is a compromise between the mean obtained 
from vision and the mean obtained from touch, but weighted by the 
inverse of the variance (that is, the precision) of each cue. Equation (3) 
states that the combined variance is smaller than both the visual and 
the tactile variance—as it should, given that combining cues increases 
the information.

As this example illustrates, the probabilistic approach allows us to 
derive explicit rules for combining evidence. These rules can, in turn, be 
used to probe the extent to which animals use probabilistic reasoning.  
What Ernst and Banks11 (and several prior studies12,24,25) found is that 
human behavior is consistent with equations (2) and (3), providing  

(1)(1)

(2)(2)

(3)(3)

evidence that humans properly take into account uncertainty on a 
trial-by-trial basis, an integral part of probabilistic reasoning.

A unified framework
Multisensory integration is just one area of application of the proba-
bilistic approach. In all areas, however, the goal is the same: compute 
probability distributions over variables of interest s given sensory 
measurements I and prior knowledge p(s). In probabilistic models, 
the variable s is referred to as a latent variable (the width of the bar in 
the previous example) or, more generally, a set of latent variables; a 
terminology we use throughout the paper. Note that latent variable is 
a broad term and need not refer to concrete quantities in the outside 
world. In motor control, s can be a goal (for example, reaching an 
object at a particular location), and, in the cognitive domain, it can 
be relational structures, such as who in our circle of friends gets along 
with whom. In the latter case, the sensory measurements, I, can go 
back a long time, possibly many years.

Probabilistic inference starts with the generative model, a statisti-
cal model of how the measurements, I, are generated (which has to 
be learned by the animal). The generative model consists of a prior 
distribution p(s) and a distribution p(I|s) (known as the likelihood 
function when viewed as a function of s; Box 1). In the previous 
example, the prior, p(w), was assumed to be flat, and the likelihood 
functions corresponded to the functions p(wv|w) and p(wt|w). Bayes’ 
rule then provides a recipe for formulating beliefs about s, in the form 
of the posterior distribution 

p s I p I s p s
p I

( | ) ( | ) ( )
( )

=

The denominator, p(I), ensures that the posterior distribution  
integrates to 1.

The fact that the techniques for doing inference (for computing the 
right-hand side of equation (4)) are the same regardless of domain 
has important implications for computational work. It means that 
there is hope for the emergence of general theories of neural com-
putation that could transfer across domains. It also implies that it is 
worthwhile spending time and effort on general models, rather than 
domain-specific ones. For instance, there are numerous models of 
decision-making based on the drift-diffusion model26–28. Although 
these models have provided us with a great deal of insight into binary 
decision-making, it’s not clear how well they generalize to more  
complex decisions, such as ones in which the reliability of the evidence 

(4)(4)
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Figure 1 The visuo-haptic multisensory experiment of Ernst and Banks11.  
(a) Subjects were asked to estimate the width of a bar that they could see 
and touch. Subjects did not see an actual bar, but saw a set of dots  
floating above the background, as if glued to an otherwise invisible bar.  
In addition, the background dots did not all appear at the same depth, but 
followed a Gaussian distribution with a mean equal to the mean depth of  
the background. The same applied to the dots corresponding to the bar.  
The reliability of the visual input was controlled by the variance of the 
Gaussian distributions in depth. This variance varied from trial to trial and 
acted as a nuisance parameter. Adapted from ref. 11. (b) The posterior 
distribution over the width (p(w|wv,wt), green curve) is proportional to the 
product of the visual (p(wv|w), blue curve) and haptic (p(wt|w), red curve) 
likelihood functions. Note that the posterior distribution is shifted toward the 
more reliable cue (the one with the smaller variance; in this case, vision).
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changes over time, or to motor control or visual processing. However, 
because making a decision is inherently probabilistic, one could use 
more general probabilistic inference algorithms. Similarly, the proba-
bilistic approach can be used for motor control, some aspects of visual 
processing, such as tracking moving objects, and even the general 
problem of determining which set of actions will maximize future 
rewards29,30. Thus, understanding the neural basis of probabilistic 
inference might put us in a position to discover general theories of 
neural computation.

Encoding probabilities with neurons
Before discussing how animals perform probabilistic inference using 
neural circuits, we consider the issue of representation. How do 
populations of neurons represent probability distributions? Until 
fairly recently, the classical assumption was that they didn’t. Instead, 
neural activity was thought to encode a single value, such as the 
direction of motion of an object or the identity of an object (the 
latent variable). For instance, the activity of neurons in V1 is typi-
cally interpreted as encoding orientation, whereas neurons in area 
MT are thought to encode direction of motion. Over the last two 
decades, however, several groups have proposed that neural activity 
encodes functions of latent variables, as opposed to single values. In 
the probabilistic framework, these functions are either probability 
distributions or likelihood functions. If this is the case, then neural 
computations must manipulate whole functions, and must do so 
according to the rules of probabilistic inference. To understand how 
this is done at the neural level, we first need to discuss the format 
of these neural codes; that is, how whole probability distributions  
(or likelihood functions) are represented. Here we briefly review the 
more common proposals.

Probably the most straightforward schemes for encoding probability  
distributions are those that map activity directly onto probability. 
For instance, Barlow31 proposed that the response of a neuron tuned 
to a particular image feature, such as the orientation of a contour,  

is proportional to the log of the probability that the feature is present 
in the neuron’s receptive field (also see ref. 32). More recently, 
Anastasio33 proposed that neuronal responses are proportional to the 
probability rather than to its log (also see refs. 34–37). Several groups 
have explored a variation of these ideas in which, rather than coding 
for the log probability that a feature is present, neurons code for the 
log probability that a feature takes on a particular value38–42. When s 
is a binary variable, a similar coding scheme assumes that the neural 
response is proportional to the log odds (r ∝ log p(s = 1)/p(s = 0))43. 
We refer to these types of code as log probability codes. Although the 
distinction between a code that uses probability versus one that uses 
log probability may seem arcane, it has important ramifications for 
probabilistic inference: for a code that uses probability, adding prob-
abilities is easy, whereas, for one that uses log probabilities, multiply-
ing them is easy. As both addition and multiplication are key steps in 
probabilistic inference, neither code has an obvious advantage over 
the other.

Other investigators have exploited the fact that probability distribu-
tions are functions, and, as such, can be encoded using a variety of 
techniques44,45. A common one is to express functions as the sum of 
other functions, in this context called basis functions. For instance, 
one might use radial basis functions46. This is analogous to what is 
done in Fourier analysis, where a function is expressed as a linear 
combination of sines and cosines. With the basis function approach, 
probability distributions would be represented as a set of coeffi-
cients44,45 and the coefficients would be encoded by neural activity. 
Note that this scheme also works for the log of the probability and 
has been proposed by several groups47–50 (Fig. 2). More specifically, 
log p(s|r) would be represented as 

log ( | ) ( )p s r h si i
i

r = +∑ constant

where hi(s) are the basis functions and the constant is needed to 
ensure proper normalization. When the basis functions are derived 

(5)(5)

Box 1  Terms and definitions

Posterior distribution. Suppose you record the activity of a population of neurons in area MT in response to a visual stimulus moving in direction s.  
The posterior distribution, denoted p(s|r), is the function that tells us the probability of each direction given the observed pattern of activity r.  
This function is obtained via Bayes’ rule, by multiplying the likelihood function with the prior and normalizing; for example, see equation (4) (but note 
that r is replaced by I).

Likelihood function. The likelihood function of s is the function p(r|s) that tells us the probability of the observed pattern of activity r given stimulus s. 
As in the above example, r could be the activity in area MT and s the direction of motion. Notably, when we refer to p(r|s) as the likelihood function,  
we are keeping r constant and varying s. Note that the function p(r|s) can also be treated as a function of r, in which case it is not referred to as the 
likelihood function of s, but as the conditional distribution of r given s.

Prior distribution. The prior distribution over a stimulus, denoted p(s), is the probability distribution before receiving any evidence, that is, before 
observing neural activity r. In our area MT example, p(s) is the prior over direction of motion and is usually taken to be uniform (all directions of  
motion are equally likely). Uniform priors, however, are not the norm. For example, in natural environments, most objects don’t move, and when they  
do move, they are more likely to move slowly than rapidly; in that case, the prior would explicitly favor lower speeds. In general, the prior should reflect 
the frequencies of different values of s in natural environments.

Marginalization. Typically marginalization refers to ‘integrating out’ variables from a joint distribution. For instance, computing p(x) from p(x,y),  
which is done via the integral p(x) = ∫ p(x,y)dy, is known as marginalization. Here we expand that notion so that marginalization includes computing 
p(f(x,y)) from p(x,y). To see that this can be cast as a marginalization, let p(x,y,z) = p(x,y)δ(z – f(x,y)), where δ(·) is the Dirac delta function. Then, 
p(f(x,y)) = p(z) = ∫ p(x,y,z)dxdy.

Cost function. A cost function is a function that specifies the costs and benefits associated with decisions. It is a critical ingredient for turning  
probabilities into decisions. For instance, imagine finding a mushroom that, on the basis of appearance, has a 99% chance of being a Volvariella vol-
vacea and a 1% chance of being a Amanita phalloides. Should you eat it? If you like Volvariella volvacea (which is widely used in Asian cooking and is 
very tasty), you’d probably be tempted to, but you might reconsider your dinner option once you find out that Amanita phalloides is highly toxic. Thus,  
although it is likely that the mushroom will be both tasty (a benefit) and non-toxic (also a benefit), eating it is not necessarily the right decision given 
that a mistake could result in liver failure (a cost). In general, decisions should be based on a combination of probabilities and costs.
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from the likelihood function, log p(r|s) (equation (6)), the result 
is a linear probabilistic population code47,48, and when the basis  
functions hi(s) are Dirac delta-functions, probabilistic population 
codes reduce to log probability codes.

Which code or set of codes the brain uses is an open experimental 
question. However, there is experimental evidence for the scheme 
given in equation (5). Assuming a flat prior, Bayes’ rule tells us that 

p s p s( | ) ( | )r r∝

where p(r|s) is the distribution of neural variability: the variability 
in spike counts in response to repeated presentations of the same 
stimulus. This implies that the code for the posterior distribution, 
p(s|r), can be deduced from the form of the neural variability, p(r|s)47. 
Experimental data51,52 suggest that p(r|s) belongs to a family of dis-
tributions known as the exponential family with linear sufficient sta-
tistics47, leading to the code shown in equation (5) if the prior is flat. 
Thus, linear probabilistic population codes have the advantage that 
they are consistent with the statistics of neural responses. Moreover, 
as the hi(s) can be any set of functions of s, equation (5) can represent 
virtually any posterior distribution, p(s|r).

Finally, some groups have proposed that the brain may represent prob-
ability distributions by the values of a set of samples drawn from the 
encoded distribution34,36,53,54. Spikes, for example, could represent sam-
ples from a distribution over binary random variables, whereas the value 
of the membrane potential could represent samples from a probability 
distribution over real-valued random variables. Whether this type of 
code is mutually exclusive or complementary to other codes is still being 
debated, but this is clearly an interesting and important proposal.

Neural implementation of probabilistic inference
The neural implementation of probabilistic inference has received 
increasing attention over the last several years. Although a thorough 

(6)(6)

review of this literature is beyond the scope of the present perspective, 
we provide a brief overview, with a particular emphasis on models 
using linear probabilistic population codes.

One particularly common form of inference involves combining 
multiple sources of information, as was the case for the multisensory 
experiment that we considered earlier (Fig. 1). The posterior distribu-
tion over the width of the bar is obtained by taking the product of the 
visual and haptic likelihood functions, as in equation (1). For a proba-
bilistic population code, this product can be implemented at the neural 
level by simply taking linear combinations of neural activity (Fig. 3). 
This is because activity is proportional to the log of the probability  
(equation (5)), and logs turn products into sums. Experimental results 
in a multisensory integration task involving the visual and vestibular 
systems are consistent with this prediction55. This approach can be 
generalized to the related problem of accumulating evidence over time 
in decision-making. In this case, instead of combining information 
across sensory modalities, the information is combined across time. 
Mathematically, this still requires a product of likelihood functions, but 
over time instead of across modalities. Thus, at the neural level, neurons 
need to sum their inputs over time; that is, to behave like neural integra-
tors. This predicts that neurons involved in computing the posterior 
distribution over a variable given all the evidence up to the present 
time should linearly integrate their inputs56. This is consistent with the 
responses of neurons in areas such as lateral intraparietal cortex when 
they are accumulating information about direction of motion27,57.
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Figure 2 Probabilistic population code using a basis function decomposition 
of the log probability. Top left, the basis functions, for this example the 
log of the tuning curve, of 15 neurons to a periodic stimulus whose value 
varies from –180 to 180. Top right, pattern of spike counts, calculated over 
a 200-ms interval, across the same neuronal population in response to a 
stimulus whose value is 0. The spike counts were drawn from a Poisson 
distribution with means specified by the tuning curves. To turn spike counts 
into log probability, we first multiply each basis function by its corresponding 
spike count. Given that only three neurons are active on this trial, only 
three basis functions remain (center left, scaled by spike counts). The 
scaled basis functions are then summed to yield the log probability (up to a 
constant). Bottom left, the un-normalized log probability. Bottom right, the 
probability (properly normalized). Note that the two plots on the right (spike 
count versus stimulus and probability versus stimulus) represent the same 
probability distribution, but with a different format, just as a function can be 
represented directly or by its Fourier transform.
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Figure 3 Taking a product of likelihood functions with probabilistic 
population codes. Bottom panels, probabilistic population codes for the two 
likelihoods shown in Figure 1b (the blue and red curves). Summing the two 
population codes (neuron by neuron) yields a population code (top) for the 
product of the two likelihoods (the green curve in Fig. 1b), as required for 
optimal multisensory integration (equation (1)).
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Another important form of inference is known as marginalization, 
an operation found at the heart of almost all probabilistic reasoning. 
Marginalization typically refers to recovering the distribution over a 
variable x, p(x), from a joint distribution over x and other variables, 
for example, p(x,y,z). For instance, suppose you are interested in the 
orientation of a moving bar. The visual information about that bar 
depends on other quantities, such as its contrast, speed and texture. 
As these quantities are not known exactly, they must be inferred, 
resulting in a joint probability distribution. Turning this joint distri-
bution over many quantities into a marginal distribution over just the 
orientation requires integrating out (marginalizing over) all variables 
except orientation. Marginalization is also critical for probabilistic 
function approximation, that is, recovering the probability distribu-
tion over a function of variables, say f (x,y,z), from p(x,y,z), the joint 
distribution over x, y and z (Box 1). An example is computing the 
probability that the sum of two dice is 4. Here the function f (x,y) is 
simply x + y (x is the number on the first die, y the number on the 
second) and the quantity of interest is p(f (x,y)) = 4). This probability 
is obtained by summing the probabilities of all configurations of x and 
y such that x + y = 4, that is, it is the probability that the first die is 1 
and the second is 3 plus the probability that both dice are 2 plus the 
probability that the first dice is 3 and the second is 1.

The generalized notion of marginalization described here is crucial 
for performing probabilistic inference in almost all cases, as many 
operations performed in the nervous system involves computing 
functions46. With probabilistic population code, networks of neurons 
can compute almost exactly the probability distribution of functions 
of variables as long as the functions are linear, the noise is Gaussian 
and the neurons in the circuit use a quadratic nonlinearity with divi-
sive normalization58,59. The same nonlinearity can be used to per-
form approximate inference in hard problems, such as computing the 
probability of each odor in an olfactory scene given the activation of 
the olfactory receptor neurons60. Notably, divisive normalization is 
found in most neural circuits, from insects to mammals, and might 
be involved in optimal and approximate marginalization in a variety 
of settings, including coordinate transformations58, object tracking58, 
visual search59 and causal reasoning58.

A third type of inference is estimation. Given a posterior distribu-
tion p(s|r), we are often interested in the value of s corresponding to 
the peak of this distribution; this is the most probable value of s given 
the neural activity and is called the maximum a posteriori estimate. 
Alternatively, we may want to ignore any prior knowledge that we may 
have and maximize the likelihood. With linear probabilistic population 
codes, both can be implemented using an attractor network. Such an 
implementation is consistent with the response of motor neurons such 
as the ones found in the motor layer of the superior colliculus61,62.

In addition to inference with probabilistic population codes, neural 
implementations have also been explored with other types of codes. In 
codes based on sampling, the neural implementation of marginaliza-
tion uses a straightforward application of Monte Carlo techniques. For 
codes in which neuronal activity is proportional to probabilities33–36, 
the neural implementation of probabilistic inference is conceptually 
straightforward, as the required neural operations are identical to the 
original inferences (see refs. 63,64 for variations of these ideas). For 
example, marginalization involves sums of probabilities, and is imple-
mented by adding neural activities. Similarly, evidence integration and 
cue combination involve products of probability distributions and are 
implemented by multiplying neural activity. The latter does not appear 
to be consistent with the kind of evidence integration that is seen in, for 
example, lateral intraparietal cortex. Moreover, codes in which activity 
is proportional to probability predict that the width of tuning curves 
should be wider when the encoded probability distribution is wider, as 
the two are proportional to one another. This is inconsistent with what 
is seen in primary visual cortex, where the widths of orientation tun-
ing curves are independent of contrast65, even though lower contrast 
implies higher uncertainty, that is, wider probability distributions (see 
Table 1). Nonetheless, it would be interesting to design experiments 
to test further the predictions of this coding scheme.

Future challenges
There are a number of proposals for how networks of neurons rep-
resent probabilities and perform probabilistic inference. However, 
there are multiple challenges that have to be overcome before we can 
develop a comprehensive theory of neural probabilistic inference. 
Here we discuss three. The first two have to do with learning complex 
quantities: the distribution over synaptic weights (rather than just a 
single value) and the structure of a task based on sensory evidence. 
The third involves the issue of applying the probabilistic approach to 
complex, real world situations.

Learning a posterior distribution over weights
Learning in a neural network is often defined as the problem of finding 
the best set of weights given a data set and a cost function (see Box 1 
for a definition of a cost function). For instance, consider a network 
that takes as input images of Chinese characters and produces as output 
a probability distribution over the identity of the characters (Fig. 4). 
Such a network can be trained using a collection of labeled images to 
find a set of weights that optimizes performance. As pointed out by 
MacKay66, however, a probabilistic approach to learning would involve 
computing a posterior distribution over weights, as opposed to a single  
point estimate. Thus, in this probabilistic perspective, learning is just 
another form of probabilistic inference. Bayes’ rule, equation (4),  

Table 1 Neural implementations of probabilistic computations

Probabilistic computation

Neural implementation

Linear probabilistic population codes Codes proportional to probabilities Sampling-based codes

Evidence integration (for example, cue 
combination, temporal accumulation of 
evidence for decision-making)

Linear: sums across populations47 or  
over time56

Nonlinear: products Nonlinear: products of histograms  
of samples53

Estimation (for example, maximum likelihood) Nonlinear: attractor dynamics61,62 Nonlinear: winner take all Nonlinear: average of samples34,53

Kalman filtering (for example, for motor control, 
visual object tracking)

Nonlinear: quadratic nonlinearity  
with divisive normalization58

Nonlinear63,64 Nonlinear: particle filters

Simple marginalization (for example, linear 
coordinate transforms)

Nonlinear: quadratic nonlinearity  
with divisive normalization58

Linear63,64 Linear: sums over histogram53

Incorporating prior knowledge Nonlinear: bias current47 Nonlinear: products Nonlinear: products of histograms  
of samples53

Approximate high dimensional inference  
(for example, olfactory processing)

Nonlinear: for example, divisive 
normalization60

Nonlinear: products and sums32 Nonlinear: Monte Carlo sampling53
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still applies, but with a shift in emphasis: the latent variable s is replaced 
by the weight matrix w and the measurement I is replaced by the data 
D (in the above example, the set of labeled images): 

p p p
p

( | ) ( | ) ( )
( )

w D D w w
D

=

In most models, the learning rule is designed to infer the best or most 
likely weights, typically by maximizing the right-hand side of equa-
tion (7) via gradient ascent. This approach often yields learning rules 
that are roughly consistent with those found in biology, such as long-
term potentiation and long-term depression67, and, in some cases, even 
an approximation to spike timing–dependent plasticity68,69. It misses 
out, though, on what is the main strength of probabilistic approach: 
a notion of uncertainty. In particular, probabilistic approaches tell us 
how much the value of a weight can be trusted. That uncertainty can, 
and should, be taken into account in future computations.

To see how this works, we again consider a network that deciphers 
Chinese characters, but now we assume that we have learned a prob-
ability distribution over weights. As the weights are not known with 
certainty, the distribution over characters must be computed by averag-
ing over them. This can be done as follows. When a Chinese character 
is presented, repeatedly pick a particular setting of the weights from the 
probability distribution over the weights. For each setting, compute the 
distribution over character identity and then average over those distri-
butions. This is an example of what we earlier called marginalization: 
we averaged over the values of a nuisance variable that we didn’t care 
about (the weights) and, in the same way, we averaged over contrast, 
speed and texture to obtain the orientation of a moving bar.

Averaging over the weights is more robust than simply using a point 
estimate of the weights66,70,71, yet this idea has received little attention 
in neuroscience thus far—possibly because it’s not a simple task for 
the brain—as it would require a neural mechanism for representing a 
distribution over weights. The idea that the brain learns and stores a 
posterior distribution over weights represents a strong departure from 
the current approaches, which focus on single values, just as the idea 
that neurons code for distributions rather than values was a departure 
from classical theories of neural coding. Thinking of population activ-
ity as encoding probability distributions has changed our perspective 
on neural coding and neural computation. Similarly, thinking about 
probability distributions over weights could, potentially, have a strong 
effect on our understanding of learning in the brain.

(7)(7)

There are several ways the brain could represent distributions over 
weights. One would be to implement many networks in parallel, with 
the weights in each network sampled from the posterior distribu-
tion. The learning rule would have to involve some form of competi-
tion among synapses to prevent them from converging to the same 
value, although it might be possible to do so by simply adding noise. 
Alternatively, the synapses themselves could represent a distribution 
over weights, in the same way that neural activity can represent a 
distribution over the encoded variable (for example, equation (5)). 
One possibility, which has recently been explored60, would be to use 
a parameterization such that the log of the posterior distribution 
over the weights is a linear function of the synaptic weights, exactly 
analogous to linear probabilistic population codes. It is too early to 
tell which, if any, of these proposals is used in the brain, as we do 
not yet know whether the brain even stores a posterior distribution 
over weights, but we can start to ask whether synaptic learning rules 
in vivo are consistent with what would be predicted by a learning rule 
designed to learn a posterior distribution over weights60.

Structural learning
In nearly all models in neuroscience, there is an implicit assumption 
that the learner knows which variables matter and which actions she 
needs to perform. Consider a perceptual decision-making task in 
which subjects observe moving dots and have to decide whether the 
dots are moving to the right or to the left. Neural models of this task 
almost always consist of a layer of neurons representing the motion 
in the display, and those neurons project to two units (or popula-
tions) that encode the two possible responses. However, when a naive 
subject faces such a task, there are numerous aspects of the display 
that could potentially be relevant (the number of dots, their posi-
tions, their colors, their speeds); similarly, there are numerous ways 
to respond (eye movements, pushing a joystick, making a sound). 
As a result, the subject has to figure out which sensory and motor 
variables matter for the task72. Only after that happens can param-
eters (such as synaptic weights) be tuned to improve performance. 
Structural learning—learning the structure of a task given data73,74—
is a difficult problem: it is based on an impoverished feedback signal 
(typically only a positive reward for correct answers) and the reward 
does not explicitly specify which sensory variables or which motor 
actions matter.

One could argue that this problem could be solved by devoting neu-
ral circuits to every possible combination of input-output relationships. 
However, this would require an astronomical number of circuits, and 
far more neurons and connections than we have in our brains. This 
problem is already severe when considering a very simple task such as 
perceptual decision-making, and it becomes intractable when dealing 
with more complex problems such as learning to drive a car, play chess 
or understanding which factors control the world economy.

The ability to learn very complex models might very well be what 
is specific to the mammalian brain, and particularly the human brain. 
Humans can perform tasks that they could not possibly be prewired 
for74,75, such as learning to program a computer or discovering the 
laws of physics. Thus, understanding structural learning may provide 
deep insight into human cognition.

To take a specific example, suppose you observe a monkey colony 
and you would like to infer the hierarchical structure (that is, who 
dominates whom). From a probabilistic perspective, you should infer 
a probability distribution over possible structures; after all, with a 
finite amount of data, there will always be some uncertainty. A natural 
way to do this is to represent the colony with a graph, with nodes in 
the graph corresponding to individuals and directed links indicating 

W1

W2

Figure 4 Neural network for Chinese character identification. The input 
layer (bottom) corresponds to the image of a particular character. The output 
layer (top) represents the probability distribution over all possible Chinese 
characters (only four are shown for clarity). The matrices W1 and W2 specify 
the values of all the weights in the network; these are adjusted to optimize 
performance. In the probabilistic approach, these weights would be replaced 
by a probability distribution over weights.
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dominance. The posterior distribution over the structure of this graph 
(and, in fact, structure in general) is given by Bayes’ theorem 

p p p
p

( | ) ( | ) ( )
( )

structure structure structureD D
D

=

where D is data, p(D|structure) is the likelihood and p(structure) is 
the prior over structures.

This simple-looking equation hides a great deal of complexity. 
Consider, for example, the graphs that we would need to describe 
the monkey colony. The number of such graphs is exponentially large, 
making it impossible to consider all of them. A natural alternative is 
to initially consider only simple graphs and let their complexity grow 
(if needed) as more observations are made. Formally, this is done by 
assigning higher probability to simple graphs than to complex ones, 
thereby implementing a form of Occam’s razor. An example based on 
the dominance in the monkey colony is shown in Figure 5a. Here each 
graph is the most likely one at any point in the inference process, with 
graphs to the right resulting from more observations. A slightly more 
complex example based on animal taxonomy is shown in Figure 5b. 
In this case, the graph has a tree structure.

Given the complexity of the issues involved, uncovering the neural 
basis of structural learning promises to be a formidable challenge 
for neuroscientists. One obvious issue is that the size of the graph 
grows with increasing observations. A natural way to handle this 
growth in a network would be to use a new set of neurons every 
time a new node appears. However, the vast majority of brain areas 
cannot create new neurons. Instead, the structural learning process 
will have to take over pre-existing neurons. A second issue is that 
the brain does not have the ability to completely rewire itself in a 
task-dependent manner, as the scaffolding of axons and dendrites 
is relatively fixed76. There is, however, some degree of flexibility, as 
synaptic boutons can grow and retract, and a large fraction of exist-
ing synapses are in fact silent (for example, up to 85% of the parallel 
fiber synapses are silent77).

Despite the difficulty of the problem, there are good reasons to 
believe that substantial progress can be made in the near future. Some 
of the computational theories of structural learning are based on 
the same probabilistic framework that has been used to understand 
inference and learning in neural circuits, and involve operations such 
as marginalization72,74. Thus, there is hope that the type of neural 
mechanisms that we have discussed above might also be involved in 
structural learning.

This work might also pave the way to neural theories of how we 
build complex representations on fast timescales. For instance, every 
time we hear a sentence, its syntactic structure has to be represented 
on the fly. Given that we cannot possibly have in our head a repre-
sentation of all possible sentences, we must build these representa-
tions as they are needed. A similar issue arises when dealing with 
visual scenes, as the precise spatial configuration of visual objects 
along with their identity cannot be known in advance. These prob-
lems are very similar to the problem of structural learning, with 
the additional complication that the representations have to be 
created, and erased, extremely quickly. Some authors have argued 
that this will require a computational architecture very similar to 
the one found in computers with, in particular, the ability to allo-
cate and de-allocate memory resources on demand via the use of 
pointers78,79. How such a mechanism would be implemented in 
neural circuits remains unclear, although a few solutions have  
been explored80–82.

Dealing with intractable real-world problems
Most studies in neuroscience have focused on problems with a small 
number of variables, all following simple distributions, for which an 
optimal solution can be easily derived; examples include integration 
of two conditionally independent cues, visual search with simple, 
independent stimuli, and temporal integration of sensory evidence for 
binary decision-making in a stationary environment. For these tasks, 
humans and animals often exhibit near-optimal behavior, in the sense 
that they take into account the uncertainty associated with all signals 
and combine these signals according to their reliability.

Real-life problems, however, are almost always far too complicated 
to allow for optimal behavior. Optimal behavior requires both full 
knowledge of the generative model and the ability to perform exact 
inference, neither of which are possible for most problems of interest. 
For instance, constructing the generative model for speech is impos-
sible to do exactly because of the wide variations across speakers, the 
large number of hidden variables that need to be marginalized out and 
the enormous size of the lexicon. And even if we knew the generative 
model, computing the true posterior probability distribution over 
20,000 words given an audible utterance in a reasonable amount of 
time is simply not possible.

Given the difficulty of real-world problems, one might imagine 
that, when confronted with them, the brain no longer relies on a 
probabilistic approach, but uses instead a set of heuristics or ‘bag of 
tricks’83. This has, in fact, been proposed for visual processing and 
domains such as visual tracking84. However, it is also possible that 
the nervous system relies on probabilistic inference, but uses various 
approximations. This would address one of the most common criti-
cisms of the probabilistic approach, namely, that our behavior is often 
suboptimal85. The probabilistic approach, however, is not about opti-
mality per se86, as optimality is often unattainable. Instead, the proba-
bilistic approach is first and foremost about representing knowledge 
as probability distributions87, and second about developing inference 
and learning algorithms. Recent work has started to investigate the 
neural implementation of one particular approximation scheme, vari-
ational approximations60, but the next few years will likely witness a 
flurry of work in this area, particularly at the behavioral level.

In addition to using approximations, it is common in the proba-
bilistic approach to take advantage of domain-specific prior knowl-
edge. In essence, this approach tames unwieldy likelihood functions 

a

b

Figure 5 Incremental structural learning. As data is observed, new units 
and new links are added to capture the structure of the model that best 
accounts for the data. Shown is the most likely graph at any point during 
training, and not a distribution over graphs. Indeed, computing the full 
posterior over graphs is often intractable, in which case one settles for  
the more likely set of graphs (of which we show only the most likely).  
(a) Dominance relations in a monkey colony. Each link represents a pair of 
monkeys in which one actively dominates another. (b) Animal taxonomy,  
in which case the graph is a tree.
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by using priors that severely limit the distribution of latent variables. 
For instance, the ability of human babies to acquire language with-
out much feedback from parents suggests that they are born with a 
highly structured prior over words and sentences (it should be noted, 
however, that Chomsky has argued that language acquisition is not a 
probabilistic process88, but this view has been challenged by propo-
nents of probabilistic approaches89).

In sum, there are a variety of approximate probabilistic approaches 
to hard inference problems. However, whether organisms continue to 
be probabilistic on hard problems or, alternatively, whether organisms 
abandon the probabilistic approach altogether when the problems 
become especially difficult can only be answered experimentally.

Discussion
Over the years, neuroscience has divided into a myriad of subfields, 
such as sensory processing, motor control, decision-making, reinforce-
ment learning, language processing and high-level cognition. However, 
all neural circuits share similar features and, in neocortex, the detailed 
circuitry is remarkably well preserved across areas. It is therefore quite 
possible that these circuits share common computational principles. 
This is precisely what the probabilistic approach can bring to the table. 
Most, if not all, of the computations performed by the brain can be 
formalized as instances of probabilistic inference. Sensory process-
ing, motor control, decision-making, learning and virtually all higher 
cognitive tasks fall into this class. By treating them as probabilistic 
inference problems, we may be able to derive general principles that 
apply to all areas of the brain. Encouragingly, several theories of proba-
bilistic inference have started to emerge, and most, if not all, can be 
implemented in relatively simple and biologically plausible circuits.

Given that nearly all of the problems faced by the brain can be 
formulated as probabilistic inference, one might wonder if there is an 
alternative. It is not immediately clear that there is, as neural repre-
sentations can always be deemed probabilistic. Indeed, the notion of 
probabilistic population codes relies only on the assumption that the 
brain has knowledge of a likelihood function p(r|s) (Box 1) and can 
use it to compute posteriors (equation (6)). However, we must be care-
ful; the fact that one can compute p(s|r) does not imply that the brain 
is set up to perform probabilistic inference. This is something we can 
see very clearly in models. For instance, one could take a standard 
neural network model of object recognition such as LeNet90, present a 
particular set of stimuli, such as oriented Gabor patches, and compute 
p(r|s) for those stimuli. The fact that we could determine this distri-
bution might lead us to conclude that LeNet contains a probabilistic 
representation of orientation. However, this is not what this model 
was built for: it was built to recognize objects, not perform inference 
over the orientation of Gabor patches. Thus, the relevant question isn’t 
whether or not neurons represent probability distributions (as we just 
pointed out, they always do), but to what extent the brain uses them. 
If it does, then the only way to understand what the brain is doing is 
by formalizing neural computation in terms of probabilistic inference. 
If it doesn’t, then the probabilistic approach will be a relatively useless 
exercise and one should adopt more mechanistic approaches90,91.

In summary, there are two fundamental questions on the probabi-
listic agenda. What is the functional form of the probabilistic repre-
sentations p(s|r) and to what extent does the rest of the brain make 
use of those representations? To answer the first question, we need to 
present stimuli over and over again, measure the neuronal responses, 
and estimate p(r|s). To answer the second question, we need to a com-
pare behavioral variability to the amount of uncertainty associated 
with the distribution p(r|s) (after suitably incorporating the prior). 
The amount of uncertainty in a given area should correspond, at least 

approximately, to behavioral variability. If this is not the case, then 
the brain must either be adding noise or making approximations (or 
both92), and the problem is to determine whether approximations are 
being used and, if so, what they are. When these approximations are 
particularly severe, the algorithms used by the brain may no longer 
be deemed to be probabilistic, although it remains to be seen whether 
a categorical distinction between probabilistic and non-probabilistic 
algorithms is justified or useful.

Finally, we should point out that probabilistic inference is not the 
whole story, as it doesn’t come with a cost function (Box 1). That must 
be derived or estimated using other methods. The good news, how-
ever, is that having probability distributions over variables of interest 
means that cost functions can be incorporated in a rational manner. 
Experimentally, this is a potential pitfall of the probabilistic approach: 
many data sets can be used to support the claim that humans are opti-
mal, as long as one uses the appropriate cost function (or prior distri-
bution)85. This problem, however, can be alleviated by using Bayesian 
model comparison, which automatically controls for the large number 
of parameters that comes with an overly complex cost function59,93. 
Despite its shortcomings, we believe that the probabilistic approach 
will continue to provide deep insights into how the brain works, not 
only in mammals, but also in invertebrates.
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