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Abstract
Causal inference in sensory cue combination is the process of determining whether multiple sen-
sory cues have the same cause or different causes. Psychophysical evidence indicates that humans
closely follow the predictions of a Bayesian causal inference model. Here, we explore how Bayesian
causal inference could be implemented using probabilistic population coding and plausible neural
operations, but conclude that the resulting architecture is unrealistic.
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1. Introduction

The ventriloquist effect, whereby people misattribute a skilled performer’s
voice to a puppet (Howard and Templeton, 1966), is sometimes described as
an illusion arising from near-optimal cue combination (Alais and Burr, 2004;
Banks, 2004). The reasoning is that, because auditory localization is less pre-
cise (less reliable) than visual localization, the estimated location of origin of
the speech will be closer to the visual than to the auditory event, leading the ob-
server to attribute the speech to the puppet. If this cue integration explanation
were correct, then the ventriloquist effect would occur even when the spa-
tial disparity was large and the puppet’s mouth movements would not match
the performer’s speech. However, in simplified experimental settings, ventril-
oquism breaks down at large spatial disparities (Slutsky and Recanzone, 2001;
Wallace et al., 2004), and experience with dubbed movies suggests that mis-
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matches in speech content reduce the illusion. In a more complete explanation
of the ventriloquist effect, the observer first has to infer whether the auditory
and the visual stimulus have a common cause and, only to the extent that they
do, localize this cause at either the performer or the puppet. When disparity
in space or speech content between auditory and visual signals is large, the
observer will not believe that there is a common cause and simply perceives
two separate events. Several years ago, two independent groups worked this
idea out as a Bayesian model, called the causal inference model (Kording et
al., 2007; Sato et al., 2007). In this model, which can be applied both to mul-
tisensory and to within-sensory cue combination, the observer computes the
probability that the noisy measurements (cues) on a given trial were produced
by the same cause (e.g. event location). The model provided a good fit to data
from an experiment in which the subject reported whether a flash and a sound
came from the same location or not (Kording et al., 2007; Wallace et al., 2004).
In particular, the model quantitatively described how the proportion of ‘com-
mon cause’ reports depended on the spatial disparity between the stimuli. The
causal inference model also predicted estimates of either the auditory or the
visual stimulus location. When the probability of a common cause equals 1,
this component of the model reduces to the well-known Bayesian model for
cue integration (Clark and Yuille, 1990; Trommershauser et al., 2011). Thus,
the causal inference model provides a more complete account of multisensory
phenomenology than the cue integration model. Causal inference likely also
plays a role in scene segmentation, whether visual (Shams and Beierholm,
2010) or auditory (Bregman, 1990).

Although more behavioral experiments are needed to test the causal infer-
ence model, one theoretical challenge is clear: to determine how the computa-
tion of the probability of a common cause based on two noisy measurements
can be implemented in neural circuitry. Less ambitiously, one might simply
ask for a neural network to produce the same decision as the Bayesian model.
However, it might be important for an organism to know not only whether a
common cause was more likely than not, but also whether the probability of
a common cause was, say, 51 or 99%. For example, if multiple pieces of in-
formation about the unity of the cause (say based on spatial disparity, based
on temporal disparity, and based on speech content) had to be combined, then
crucial information would be lost if each stream of information only outputted
a 0 or a 1. Thus, we argue that not just the decision, but also the posterior
probability of a common cause, must be accurately encoded.

Many proposals have been made for relating probability distributions to
neural activity (Anastasio et al., 2000; Anderson, 1994; Barlow, 1969; Berkes
et al., 2011; Deneve, 2008; Fiser et al., 2010; Hoyer and Hyvarinen, 2003;
Jazayeri and Movshon, 2006; Ma et al., 2006; Pouget et al., 2003; Rao, 2004;
Shi et al., 2010; Vilares and Kording, 2011; Zemel et al., 1998). Here, we
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use the framework that has been most successful so far in offering plausible,
self-consistent neural implementations of Bayesian computations (Beck et al.,
2008, 2011; Ma et al., 2006, 2011). In this framework, called probabilistic
population coding (Ma et al., 2006), a population of neurons encodes a like-
lihood function of a world state variable on every trial. We will first review
the formalisms of Bayesian causal inference and probabilistic population cod-
ing. We will then use the latter to construct a neural implementation of the
former.

2. The Causal Inference Model

The causal inference model is a Bayesian model of perception that applies
when the observer receives multiple measurements that may or may not have
the same cause. We restrict ourselves here to the case of two measurements,
meaning that the number of possible causes is 1 or 2. An example would be to
determine whether or not a synchronous flash and sound came from a common
location. We first specify the statistical structure of the task, also called the
generative model (Fig. 1). For simplicity, we assume that the probability that
there is one cause in the world, p(C = 1), equals 0.5, and so does, therefore,
p(C = 2). When C = 1, the common cause is a stimulus whose value is drawn
from a stimulus distribution, p(s). We assume this distribution is Gaussian
with mean 0 and standard deviation σs , because that will make the calculations
easier. (Another convenient choice could be the uniform distribution, were
it not that this distribution cannot be normalized on the entire real line, and
limiting it to an interval would make it much less convenient.) The stimulus
produces two conditionally independent measurements, denoted x1 and x2,
drawn from Gaussian distributions, both with mean s, but with potentially
different standard deviations σ1 and σ2, respectively. When C = 2, there are
two stimuli, s1 and s2, both drawn independently from the same distribution

Figure 1. Generative model of causal inference. Nodes represent variables, arrows condi-
tional dependencies. The common-cause variable C is of interest to the observer. When C = 1
(common cause), s1 equals s2. When C = 2 (different causes), s1 and s2 are independent. In-
dependent Gaussian noise corrupts the scalar measurements x1 and x2. In the neural version of
this model, the measurements are replaced by population patterns of activity, r1 and r2.
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p(s). Measurements x1 and x2 are then drawn from Gaussian distributions
with means s1 and s2, and standard deviations σ1 and σ2, respectively.

The next step in our modeling process is to derive the observer’s decision
rule. On a given trial, the observer receives measurements x1 and x2 and is
interested whether or not they have a common cause, that is, whether C = 1 or
C = 2. The Bayesian observer makes this decision by calculating the proba-
bilities of both hypotheses, C = 1 and C = 2, based on the measurements and
perfect knowledge of the generative model. These probabilities sum to 1 and
can therefore be characterized by a single number. It is convenient to express
them as a log posterior ratio:

d = log
p(C = 1|x1, x2)

p(C = 2|x1, x2)
. (1)

Defining this ratio will simplify calculations and is convenient because the
sign of d determines whether C = 1 or C = 2 is more probable. For ex-
ample, if, on a given trial, C = 2 has twice the probability of C = 1, then
d = log(0.5) = −0.69. The inverse relationships are p(C = 1|x1, x2) = 1

1+e−d

and p(C = 2|x1, x2) = 1
1+ed . Applying Bayes’ rule to equation (1), we

find

d = log
p(x1, x2|C = 1)

p(x1, x2|C = 2)
+ log

p(C = 1)

p(C = 2)
= log

p(x1, x2|C = 1)

p(x1, x2|C = 2)
.

This is the logarithm of the ratio of the likelihoods of C = 1 and C = 2.
We first consider p(x1, x2|C = 1), the probability of the measurements x1
and x2 if there is a common cause. Since we do not know the stimulus
s, we have to take into account every possible value of s. The probabil-
ity of x1 and x2 given C = 1 in combination with a particular s would be
p(x1, x2|s)p(s|C = 1) = p(x1, x2|s)p(s). To find the total probability across
all s, we integrate:

p(x1, x2|C = 1) =
∫ ∞

−∞
p(x1, x2|s)p(s)ds. (2)

We now make use of the conditional independence of the measurements to
write:

p(x1, x2|C = 1) =
∫ ∞

−∞
p(x1|s)p(x2|s)p(s)ds. (3)

In this equation, p(x1|s) and p(x2|s) should be interpreted as functions of s:
they express the sensory evidence on this trial and are called the likelihood
functions of the stimulus. Thus, equation (3) expresses how the likelihood of
C = 1 is computed from the likelihood functions of s.
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We now turn to p(x1, x2|C = 2). The logic is analogous, except that we
have to integrate over two stimulus variables, s1 and s2:

p(x1, x2|C = 2)

=
∫ ∞

−∞

∫ ∞

−∞
p(x1, x2|s1, s2)p(s1, s2|C = 2)ds1 ds2

=
(∫ ∞

−∞
p(x1|s1)p(s1)ds1

)(∫ ∞

−∞
p(x2|s2)p(s2)ds2

)
. (4)

As a result, the log posterior ratio is

d = log

∫ ∞
−∞ p(x1|s)p(x2|s)p(s|C = 1)ds

(
∫ ∞
−∞ p(x1|s1)p(s1)ds1)(

∫ ∞
−∞ p(x2|s2)p(s2)ds2)

. (5)

After evaluating the integrals (see Appendix), this becomes

d = J1J2

J1 + J2 + Js

(
x1x2 − 1

2

J1x
2
1

J1 + Js

− 1

2

J2x
2
2

J2 + Js

)

+ 1

2
log

(
1 + J1J2

Js(J1 + J2 + Js)

)
, (6)

where we have introduced the notation J1 = 1
σ 2

1
, J2 = 1

σ 2
2

, and Js = 1
σ 2

s
for the

three precision (reliability) variables.
In Fig. 2(a), we plot the log likelihood ratio as a color code against the

measurements, x1 and x2. The diagonal corresponds to trials on which the

Figure 2. (a) The strength of the evidence in favor of a common cause, as expressed by the
log likelihood ratio, as a function of the measurements x1 and x2. The d = 0 contour lines are
shown in black. Two aspects of interest are the band around the diagonal and the structure within
this band. Parameters were σ1 = 3, σ2 = 10, and σs = 10. (b) Proportion reports of a common
cause as a function of stimulus disparity (s2 minus s1). This figure is published in colour in the
online version.
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measurements happen to be identical to each other. The hypothesis C = 1
becomes more likely relative to C = 2 when a pair of measurements lies closer
to the diagonal. This is intuitive: when two measurements are similar, they are
likely to have a common cause. In addition, we observe that the farther from
0 such a pair of similar measurements lies, the more likely they are to have
a common cause. This is because we chose a stimulus distribution that peaks
at 0. Even when there are two causes, the two stimuli and therefore the two
measurements will tend to both lie near 0 and therefore close to each other.
When measurements lie close to each other but far from 0, this is harder to
explain as a consequence of the stimulus distributions, and it is therefore more
likely that they have a common cause. (This also shows that the value of σs

matters for the observer’s decision.)
We model the final step in the decision process using a maximum-a-

posteriori (MAP) rule: the observer chooses the hypothesis with the highest
posterior probability. Applying the MAP decision rule maximizes expected ac-
curacy and is in that sense optimal. In our task, the MAP observer reports that
there was a common cause when d is positive. The observer’s confidence in the
decision can then be measured as the absolute value of d . Thus, in Fig. 2(a), the
diagonal corners would correspond to high confidence in a ‘common cause’
decision (Ĉ = 1), and the off-diagonal ones to high confidence in a ‘different
causes’ decision (Ĉ = 2).

Across many trials, we can compute the probability that the MAP observer
reports ‘common cause’ (Ĉ = 1) as a function of the true stimuli on a given
trial, which we denote s1 and s2. This is equal to the probability that d is
positive when x1 and x2 are generated by s1 and s2, respectively. We performed
Monte Carlo simulation to calculate this probability. This entails randomly
drawing pairs of x1 and x2 from their respective distributions p(x1|s1) and
p(x2|s2) and counting for what proportion of these draws d > 0 holds. The
resulting probability of reporting ‘common cause’ is plotted as a function of
stimulus disparity, s2 − s1, in Fig. 2(b). We see that the larger the disparity
between the two stimuli, the less frequently the observer reports that there is
a common cause. This matches with empirical findings and the model also
offers a good quantitative fit (Kording et al., 2007; Sato et al., 2007).

The causal inference model has not yet been tested in situations where the
reliabilities of one or both cues are varied unpredictably from trial to trial,
as is done in some cue integration experiments (Alais and Burr, 2004; Ernst
and Banks, 2002; Landy and Kojima, 2001). Such unpredictable variations in
reliability allow for a very strong test of the model, as they force the subject to
take into account knowledge of σ1 and σ2 on every trial.
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3. From a Behavioral to a Neural Model

The Bayesian model of causal inference outlined above is rather abstract: it
largely regards the brain as a black box and simply represents observations
as scalar variables following Gaussian distributions. While this model is ad-
equate for describing behavior, it lacks mechanistic underpinnings. To find a
neural implementation of the causal inference model, our starting point is that
sensory information is represented in the brain through the spiking activity of
populations of neurons. We then ask what kind of neural circuit can operate
at the level of spike counts to produce behavior consistent with the Bayesian
model and even compute, on each trial, the posterior probability of a common
cause.

At the neural level, the observer’s observations consist of a pattern of spike
counts in a neural population, and the variability of this pattern across trials,
for given stimuli, constitutes a generative model. We start by discussing a sin-
gle population representing a stimulus. If r is the pattern of activity (a vector of
spike counts, one for each neuron; Fig. 3), then p(r|s) quantifies the variabil-
ity and is also called the noise distribution. For simplicity, we now assume that
r is the activity in a population of independent Poisson neurons with Gaussian
tuning curves; we will examine generalizations later. The tuning curve of the
ith neuron is

fi(s) = gAie
− (s−spref,i )

2

2σ2
tc,i , (7)

where g is a scaling factor, called gain, that is the same for all neurons in the
population; Ai is this neuron’s firing amplitude at unit gain; spref,i is the neu-
ron’s preferred stimulus; and σtc,i is the width of its tuning curve. We consider
a general scenario in which stimulus reliability might change from trial to trial
and affects neural population activity through gain, g (Ma et al., 2006). We de-
note the distribution of gain by p(g). The noise distribution of the population

Figure 3. A population pattern of activity r encodes, on a single trial, a neural likelihood
function of the stimulus. Note that although both plots have a roughly Gaussian shape, their
interpretations are completely different and their widths will in general not be equal. This figure
is published in colour in the online version.
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for given g is:

p(r|s, g) =
n∏

i=1

p(ri |s) =
n∏

i=1

1

ri !e
−fi(s)fi(s)

ri

=
(

n∏
i=1

1

ri !

)
e−∑

i fi (s)e
∑

i ri logfi(s). (8)

We make the common assumption that
∑

i fi(s) is approximately independent
of s, so that we can replace it by a constant K . We also substitute equation (7)
for the tuning curves, to find:

p(r|s, g) ≈ K

(
n∏

i=1

1

ri !

)
e
∑

i ri loggAi e
− 1

2

∑
i ri

(s−spref,i )
2

σ2
tc,i .

As in the behavioral model, the Bayesian observer (equations (3) and (4)) uses
the likelihood function of s to compute the likelihood and posterior over C.
The neural likelihood function of s is p(r|s) as a function of s (Fig. 3). Since
gain is a random variable, this likelihood function is computed by marginaliz-
ing (averaging) p(r|s, g) over gain:

p(r|s) =
∫

p(r|s, g)p(g)dg

≈
∫

K

(
n∏

i=1

1

ri !

)
e
∑

i ri log(gAi)e
− 1

2

∑
i ri

(s−spref,i )
2

σ2
tc,i p(g)dg

= K

(
n∏

i=1

1

ri !

)
e
− 1

2

∑
i ri

(s−spref,i )
2

σ2
tc,i

∫
e
∑

i ri log(gAi)p(g)dg.

Importantly, the integral over g does not contain the stimulus and is therefore
a constant in the likelihood function of s. Working out the factor containing
s, we can see that the likelihood function is an unnormalized Gaussian. This
Gaussian has a mean

x =
∑

i

ri spref,i

σ 2
tc,i∑

i
ri

σ 2
tc,i

≡ wpref · r
wtc · r

, (9)

which is also the maximum-likelihood estimate. (Equation (9) does not hold
when the population is completely silent. Then, the likelihood function is com-
pletely flat.) The inverse variance of the normalized likelihood function (a
measure of its width) is

1

σ 2
=

∑
i

ri

σ 2
tc,i

≡ wtc · r. (10)
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In equations (9) and (10), the weight vectors wpref and wtc are constants whose
values are determined by the neurons’ preferred stimuli and tuning widths.
The inner product of these weight vectors with the spike counts of the neurons
produces the maximum-likelihood estimate and likelihood width on a single
trial. Biologically, these weights could be implemented as synaptic strengths.
If the tuning curve width were independent of neuron, x would be the well-
known center-of-mass or population vector decoder. The symbols x and σ

have been re-introduced for a reason: the likelihood function of s is now

L(s) = p(r|s) = K̃e
− (s−x)2

2σ2 , (11)

which, up to the constant factor K̃ which contains all s-independent factors,
is identical to the likelihood function of s in the behavioral model. In other
words, the scalar measurements x1 and x2 that we used before are the values
where the neural likelihood functions over s1 and s2, respectively, peak. We
see in equation (10) that the inverse variance, 1/σ 2, is encoded in the pop-
ulation as a weighted sum of the spike counts: this means that trial-to-trial
variations in certainty could in principle be taken into account in downstream
computation. Representing a neural likelihood function, such as the one in
equation (11), in neural activity is known as probabilistic population coding
(Ma et al., 2006).

We can now reformulate the causal inference model in neural terms. The
cues are represented in two populations, r1 and r2, each with their own K̃ , x,
and σ 2. The neural version of the log posterior ratio over C is:

d = log

∫ ∞
−∞ p(r1|s)p(r2|s)p(s|C = 1)ds

(
∫ ∞
−∞ p(r1|s1)p(s1)ds1)(

∫ ∞
−∞ p(r2|s2)p(s2)ds2)

.

Substituting equation (11) for both populations, we see that the constant fac-
tors K̃1 and K̃2 drop out, implying that the distributions of the gains, p(g1)

and p(g2), do not need to be known for the observer to be optimal. The
log posterior ratio is identical to the one in the behavioral model, except
that we have now made the identifications in equations (9) and (10). This
means we can immediately jump to the final expression, equation (6), but
now substitute equations (9) and (10), keeping in mind that J1 = 1

σ 2
1

and

J2 = 1
σ 2

2
:

d = (wpref,1 · r1)(wpref,2 · r2)

wtc,1 · r1 + wtc,2 · r2 + Js

− 1

2

(wtc,2 · r2)(wpref,1 · r1)
2

(wtc,1 · r1 + Js)(wtc,1 · r1 + wtc,2 · r2 + Js)
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− 1

2

(wtc,1 · r1)(wpref,2 · r2)
2

(wtc,2 · r2 + Js)(wtc,1 · r1 + wtc,2 · r2 + Js)

+ 1

2
log

(
1 + (wtc,1 · r1)(wtc,2 · r2)

Js(wtc,1 · r1 + wtc,2 · r2 + Js)

)
, (12)

where now all subscripts 1 and 2 refer to the two populations, not to indi-
vidual neurons. This complicated expression is the optimal neural decision
variable for causal inference when neural activity is independent Poisson
and tuning curves are Gaussian. We have made only one approximation,
namely that

∑
i fi(s) is independent of s; other than that, this result is ex-

act.
Equation (12) also returns the correct answer when one or both populations

are completely silent, namely d = 0.
In principle, one could implement causal inference with neurons by having

neurons perform all operations in equation (12). The building blocks are four
linear operations, so for convenience we let this preprocessing be done by four
corresponding neurons:

z11 = wpref,1 · r1, z12 = wtc,1 · r1,
(13)

z21 = wpref,2 · r2, z22 = wtc,2 · r2.

Then the log posterior ratio simplifies to

d = z11z21

z12 + z22 + Js

− 1

2

z22z
2
11

(z12 + Js)(z12 + z22 + Js)

− 1

2

z12z
2
21

(z22 + Js)(z12 + z22 + Js)

+ 1

2
log

(
1 + z12z22

Js(z12 + z22 + Js)

)
.

Each of the first three terms is a rational function of neural activities, with a
polynomial of up to order 3 in the numerator and a polynomial of up to order
2 in the denominator. It is plausible that neurons can perform quadratic opera-
tions (Andersen et al., 1985; Ben Hamed et al., 2003; Boussaoud et al., 1993;
Bremmer et al., 1997; Groh et al., 2001; Trotter et al., 1996) and therefore
also multiplications. The division itself could be implemented using divisive
normalization, which has been suggested to be widespread in cortex (Caran-
dini and Heeger, 2011; Heeger, 1992). The fourth term is problematic, since it
is not clear neurons can calculate logarithms, and a Taylor series expansion is
not obviously meaningful.
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This problem could be solved by approximating the fourth term by its trial
average, so that the approximate decision variable would be equal to

dapprox = z11z21

z12 + z22 + Js

− 1

2

z22z
2
11

(z12 + Js)(z12 + z22 + Js)

− 1

2

z12z
2
21

(z22 + Js)(z12 + z22 + Js)
+ constant (14)

and the optimal decision rule would be dapprox > 0. To examine the goodness
of this approximation, we performed a simulation.

4. Simulations

We simulated two input populations, each consisting of 100 independent Pois-
son neurons with Gaussian tuning curves, preferred stimuli spref,i randomly
drawn from a uniform distribution on [−70, 70], tuning curve widths σtc,i
randomly drawn from a uniform distribution on [5, 35], and normalized am-
plitudes Ai randomly drawn from a uniform distribution on [0,1]. A typical set
of tuning curves is shown in Fig. 4(a). The probability of a common cause was
0.5. We chose the stimulus distribution to have a mean of 0 and a standard de-
viation of 10. We verified that the assumption that

∑
i fi(s) is approximately

independent of s is satisfied over the relevant range [−30, 30]. Gain g was
drawn independently for both populations from a gamma distribution with
mean 1 and scale parameter 3. This means that the reliability of each stimulus
varied unpredictably from trial to trial.

We simulated 100 000 trials. On each trial, we computed the log posterior
ratio using equation (12). The histogram of each of the four terms in that ex-
pression separately across all trials is shown in Fig. 4(b). Visually, it appears
that the fourth terms vary less than the other three. Indeed, averaged across 10
runs of 105 trials each, the standard deviations of the four terms were 5.22,
2.48. 3.63, and 0.37, respectively. This justifies approximating the fourth term
by its trial average. This approximation leads to a decent approximation of the
posterior probability of C = 1 (Fig. 4(c)). The ‘distance’ between the optimal
posterior and the approximate posterior can be quantified by the Kullback–
Leibler divergence (Cover and Thomas, 1991). We quantified information loss
as the ratio of the trial-averaged Kullback–Leibler divergence to the mutual in-
formation between C and neural activity (Beck et al., 2011; Ma et al., 2011).
For the parameters chosen and averaged over 20 runs, the information loss due
to the approximation of the fourth term was 12%. Decisions based on dapprox
coincided with decisions based on d on 91% of trials, and thus, the accuracy of
the approximate observer was nearly the same as that of the optimal observer.
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Figure 4. (a) Example set of tuning curves in an input population of sensory neurons used in
the simulation. (b) Contribution of each of the four terms of the log likelihood ratio in equa-
tion (11). The fourth term has a much lower variance than the first three and we approximate it
by its trial average. (c) Comparison of the posterior probability of a common cause estimated
by an approximate network and the optimal posterior probability. Red lines indicate the de-
cision criteria. Points in off-diagonal quadrants indicate deviations from the optimal observer.
(d) Comparison of the proportion reports of a common cause as a function of stimulus disparity
between the approximate network and the optimal observer.

By contrast, when we approximate any of the first three terms by its trial aver-
age, the approximation is extremely poor. For example, approximating the first
term yields an information loss of 1600%, a coincidence rate of only 57%, and
a drop in observer accuracy from 71 to 53%. Returning to the approximation
of the fourth term, the probability of reporting a common cause is shown as
a function of stimulus disparity in Fig. 4(d) for the optimal and approximate
observer. As can also be seen in Fig. 4(c), the approximate observer reports, at
every disparity, a common cause more often than the optimal observer. (Note
that smaller disparities are more common than bigger ones.) All quantitative
results reported here are specific to the parameters chosen, but the qualitative
conclusions are robust under changes in parameters. We expect that in prac-
tice, when parameters have to be fitted to subject data, it is very difficult to
distinguish between the optimal and the approximate strategy.
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5. Generalizations

Some of our assumptions are easily generalized. Using a prior probability of
a common cause different from 0.5 would simply introduce another constant
term in the log posterior ratio. Another generalization is from independent
Poisson variability to the exponential family with linear sufficient statistics
(Ma et al., 2006), which allows for Fano factors different from 1, continuous
firing rates, tuning curves of arbitrary shapes, and correlated noise between
neurons. The expression for such variability, also called Poisson-like variabil-
ity, is

p(r|s, g) = ϕ(r, g)eh(s)·r.

It is easily verified that equation (8) is a special case. For Poisson-like vari-
ability, like for independent Poisson variability with constant

∑
i fi(s), the

distribution over gain g is irrelevant for the optimal decision rule. The final
effect of generalizing to Poisson-like variability would only be that the linear
weights in equation (13) would change.

6. Circuit

The computation in equation (14) can, in principle, be realized using the
circuit diagram in Fig. 5, which contains three types of operations: linear com-
binations, quadratic nonlinearities and multiplications (counted as one type
because ab = ((a + b)2 − a2 − b2)/2), and divisive normalization. This re-
sults in a network that can, on each trial, reproduce, in good approximation,
not only the optimal decision (the sign of d) but also decision confidence (the
absolute value of d), even as the reliabilities of the two stimuli are unequal and
vary unpredictably from trial to trial.

Although the network in Fig. 5 implements near-optimal causal inference,
we mostly view it as an exposition of the limitations of a naïve probabilis-
tic population coding approach than as a plausible circuit to look for in the
brain. First, it is unclear how a complex network like this can be learned in
limited time using biologically plausible learning rules. Second, in spite of
the complexity of the network proposed here, it can only handle causal infer-
ence on two stimuli. If one were to take this approach for inferring whether
a larger number of stimuli have a common cause (Wozny et al., 2008), the
number of operations needed would increase faster than linearly in the num-
ber of stimuli. Third, implementing a somewhat different but closely related
task like same-different judgment, where in the C = 2 condition stimuli are
drawn from a distribution around a common but trial-dependent mean (Van
den Berg et al., 2011), would ostensibly call for an entirely different circuit.
Thus, our approach seems insufficiently general. Finally, causal inference does
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Figure 5. Circuit diagram of a network that can approximate the posterior probability of a com-
mon cause using linear combinations, quadratic operations, and divisive normalization. Input is
assumed Poisson-like.

not only entail the computation of the probability of a common cause. In many
cue combination tasks, a stimulus has to be estimated while the observer does
not know whether or not there is a common cause (Kording et al., 2007).
This would add another layer of complexity beyond the computation of the
posterior of C discussed here. To illustrate this: the mean of the posterior dis-
tribution of the first stimulus, s1, is a weighted average of the posterior mean
under the hypothesis that there is a common cause and the posterior mean
under the hypothesis that there is not, with weights given by the posterior
probabilities of C = 1 and C = 2:

ŝ1 = p(C = 1|x1, x2)ŝ1,C=1 + p(C = 2|x1, x2)ŝ1,C=2

= 1

1 + e−d

x1
σ 2

1
+ x2

σ 2
2

1
σ 2

1
+ 1

σ 2
2

+ 1
σ 2

s

+ 1

1 + ed

x1
σ 2

1

1
σ 2

1
+ 1

σ 2
s

.

Naively substituting equations (9), (10), and (14) would give rise to an unman-
ageably complex expression.
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7. Discussion

The question how Bayesian computation is implemented in the brain is a cen-
tral one in systems neuroscience. In previous work, we showed that optimal
cue integration (with C always equal to 1) can, in a probabilistic population
coding framework, be implemented using linear operations (Beck et al., 2008;
Ma et al., 2006). The simplicity of these operations is one of the most appeal-
ing aspects of the framework. However, many generative models are much
more complex than that of cue integration. A large part of this complexity is
due to the presence of confounding or intermediate variables that need to be
averaged out, such as the stimulus variables in equations (3) and (4). In earlier
work, it was shown that this averaging process, called marginalization, can
be implemented using a combination of three basic constituent elements: lin-
ear operations, quadratic operations, and divisive normalization (Beck et al.,
2011; Ma et al., 2011). Here we have seen another example of such an im-
plementation. Conceptually, this approach still very attractive, since prevalent
operations in cortex, namely quadratic operations and divisive normalization,
are linked to a prevalent operation in Bayesian inference, namely marginal-
ization. However, for causal inference, we needed a large number of specific
combinations of the constituent elements to realize the optimal decision rule,
making the resulting architecture highly unrealistic. This is not due to ex-
cessive complexity of the generative model, but to our approach of literally
translating the Bayesian decision rule, equation (6), to a neural rule using the
‘dictionary’ of equations (9) and (10).

A more promising direction, still using probabilistic population codes,
might be to use variational methods (Bishop, 2006), to construct neural circuits
that not only require fewer operations but are also more generally applicable.
Instead of having one circuit for each task, it is likely that the brain em-
ploys general-purpose, heuristic inference machinery that can perform near-
optimally in a large palette of related tasks, with only minor task-specific
adjustments. Thus, the task-specific approach we took here might soon be su-
perseded by a search for neural implementations of canonical approximate
inference algorithms. Alternatively, frameworks other than probabilistic pop-
ulation codes (Anastasio et al., 2000; Anderson, 1994; Barlow, 1969; Berkes
et al., 2011; Deneve, 2008; Fiser et al., 2010; Hoyer and Hyvarinen, 2003;
Jazayeri and Movshon, 2006; Rao, 2004; Shi et al., 2010; Zemel et al., 1998)
might be able to provide biologically plausible approximations to optimal in-
ference in tasks that require marginalization, but none have so far.
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Appendix

The Integral of the Product of Gaussians

Let p1(x), . . . , pN(x) be a set of N Gaussian probability density func-
tions over x, with respective means μ1, . . . ,μN , and standard deviations
σ1, . . . , σN . The integral over the real line of the product of these Gaussians
can be evaluated as

∫ ∞

−∞

N∏
i=1

pi(x)dx

=
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We can apply this expression to numerator and denominator in equation (5).
The numerator becomes

p(x1, x2|C = 1)

= 1
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The denominator becomes

p(x1, x2|C = 2)

= 1

2π

√
1

σ 2
1 σ 2

2

1

σ 2
s

√√√√ 1
1
σ 2

1
+ 1

σ 2
s

1
1
σ 2

2
+ 1

σ 2
s

× exp

(
−x2

1

2

1
σ 2

1

1
σ 2

s

1
σ 2

1
+ 1

σ 2
s

− x2
2

2

1
σ 2

2

1
σ 2

s

1
σ 2

2
+ 1

σ 2
s

)
.

Substituting in equation (5) and simplifying yields equation (6).


