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1 Decision rules of the optimal observer 
Since equal reliabilities (Experiment 1) are a special case of unequal reliabilities (Experiment 2), 
we treat the latter first. 
 

1.1 Unequal reliabilities 
The generative model of the task is given in Figure 2A. The variables are as follows: C is a 
binary variable that denotes sameness (+1 for same, –1 for different), s denotes the vector of N 
orientations presented, and x denotes the corresponding vector of N internal representations. 

Each xi is drawn from a Gaussian distribution with mean si and standard deviation i. The 
Gaussian assumption is common, and reflects the presence of many independent, unbiased 
sources of noise (1). Although orientation space is circular, we can treat it as the real line, 

because the internal representations are close to the true stimulus and i is much smaller than the 
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circle circumference. We refer to 1/i
2 as the reliability of the ith observation. When the stimuli 

are the same, each orientation si is equal to . When the stimuli are different, each si is drawn 

independently from a Gaussian distribution with mean  and standard deviation s. Regardless of 

sameness, the value of  is drawn from a uniform distribution on [L,L) (one could take L=/2 
here, but any L works). 

Optimal (Bayesian) observers base their decision on the posterior probability distribution 
over the variable of interest, here C, given single-trial observations, here x=(x1,…,xN)T. Since C 
is a binary random variable, this posterior reduces to a single number, which can be expressed in 
many ways. A particularly convenient way is to express it as a log posterior ratio: 
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Evaluating the likelihoods in this expression, p(x|C) for C=±1, requires marginalization over the 

stimulus orientations, s=(s1,…,sN)T, and their mean, : 
 

        | | | ,p C p p C p d d   x x s s s . (S2) 

 

We assume that the standard deviation, i, of the noise associated with a stimulus is known to the 
observer for each stimulus and each trial, as would be the case in a Poisson-like population code 

(2). Therefore, we do not need to marginalize over i, but can treat it as a known parameter. We 
now evaluate Eq. (S2) by substituting the known distributions. If 1 denotes the column vector of 

length N with all entries equal to 1, and (x) is the Dirac Delta distribution, then 
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In the rest of this document, all sums and products run from 1 to N unless mentioned otherwise. 
We rewrite the sum in the exponent as 
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If all reliabilities are equal, so that i =, then V1 simplifies to  
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Here, Var x is defined as
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item comes with its own reliability, we substitute Eq. (S4) into Eq. (S3) to find 
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where in the second equality, we assumed that the domain of  is large compared to  
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and so the integral can be evaluated over the entire real line. This assumption is justified here, 
because in our task the maximum-likelihood estimate of a stimulus is distributed around the true 
value of the stimulus in a range that is much narrower than the entire circular space.  

Starting from Eq. (S2), we repeat this calculation for the hypothesis that the stimuli are 

different, that is C = 1: 
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The log likelihood ratio, the first term on the right-hand side of Eq. (S1), now becomes  
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where w and w are column vectors with entries 
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Therefore, the log posterior ratio, d, is a quadratic form in x. In matrix notation, we can write 
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where p(C=1)=psame and A() is a symmetric, reliability-dependent matrix with entries 
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Maximum-a-posteriori estimation amounts to responding “same” whenever d is positive. This 
leads to Eq. (2) in the main text. 
 

1.2 Equal reliabilities 
When all reliabilities are equal, i= and therefore wi=w and iw w  , as in Experiment 1, the 

entries of A reduce to   1
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Thus, the decision rule amounts to comparing the variance to a criterion that depends in a 
specific way on the common reliability of the items (hidden in w and w ) and on set size, N. 
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2 Response probabilities of the optimal observer 
In the previous section, we derived the decision rules of the optimal observers for both 
experiments. However, these decision rules cannot be tested directly, since as experimenters we 
do not have access to the internal observations x. We only know the presented stimuli, s, and the 
subject’s response on each trial. To obtain testable model predictions, we compute the theoretical 
probability of a “same” response given by the optimal observer, when the observations x are 
drawn from the generative model for given s. In the resulting model predictions, x is no longer 
present. The complete model thus consists of two parts “merged together”: the generative model, 
producing a theoretical (or simulated) set of observations, and the inference model, which 
describes the decision made by the optimal observer based on those observations.  

Formally, we denote the observer’s estimate of C by Ĉ ; for the optimal observer, it 
equals the sign of d. The optimal observer responds according to this estimate. Eq. (S5) 
determines the optimal decision rule on a single trial.  We denote the probability of the optimal 

observer responding Ĉ  when the experimenter presents a specific stimulus set s by  ˆ |p C s . It is 

obtained by averaging over the hypothetical observations x generated by s: 
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C d
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where  is the Kronecker delta. In words, the probability of responding ˆ 1C   is equal to the 
proportion of observations drawn from p(x|s) for which d(x) is positive. For many 
psychophysical tasks, an integral like that given in Eq. (S8) is analytically intractable, and needs 
to be approximated, for example, by Monte Carlo simulation. In the present task, an analytical 
treatment is possible. 
 

2.1 Equal reliabilities 
We first consider the case of Experiment 1, with the decision rule given by Eq. (S7). We are 
interested in the probability that this inequality is satisfied for x drawn from a multivariate 

normal distribution with mean s and covariance matrix 2I, denoted x~N(s,2I), with I the 

identity matrix. We write Var x=xTA'x, where the components of A' are A'ij=ij/N1/N2. This 

matrix has N1 eigenvalues equal to 1, and one eigenvalue equal to 0. Therefore, for an 
orthogonal matrix M and diagonal matrix D=diag(1,1,…,1,0), we can write MTA'M=D. Let Y be 

Y=MTx. Since M is orthogonal, y~N(,2I), with =MTs. Since 
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it follows that xTA'x/2 follows a non-central chi-squared distribution with N1 degrees of 
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freedom. This variable is equal to wNVar x. The noncentrality parameter of the sum on the left of 

Eq. (S9) is 
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Therefore, we have 
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From Eq. (S7), the probability of responding “same” equals the probability that   
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2.2 Unequal reliabilities 
We next consider the case of Experiment 2, where reliability can differ between stimuli. Then x 

follows a multivariate normal distribution with mean s and covariance matrix  =diag(1
2,… 

N
2). We define a random variable Q(x)=xTBx, where B is a non-negative definite and 

symmetric matrix. We denote mean and standard deviation of Q by Q and Q, respectively. Liu, 
Tang, and Zhang (3) have found the following approximation to the distribution of Q: 
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where the variables l, , t, , and  are defined as follows: 
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Numerical simulation shows that for our purposes, this is a very good approximation. In order to 
apply this approximation to xTAx from Eq.(S5), A has to be both symmetric and non-negative 
definite. Since A is obviously symmetric, what remains to be shown is that in our case, A is non-
negative definite. 
 

2.3 Proof that A is non‐negative definite in the unequal‐reliabilities case 
The matrix A specified by Eq. (S6) can be written as 
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To show that A is non-negative definite (positive semidefinite), we prove that its eigenvalues are 

non-negative. In Experiment 2, m of the i’s are equal to low, and Nm are equal to high. 

Without loss of generality, we arrange them as =(low,…,low, high,…,high), i.e., the first m 

correspond to low-reliability stimuli, and the last Nm to high-reliability ones. Consequently, 

w1=…=wm=wlow=1/low
2 and wm+1=…=wN=whigh=1/high

2. The (i,j)th term of A is given by Eq. 
(S6). Note that 
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we see that 1=(1,…,1)T is an eigenvector with eigenvalue 0. We now define a set of m1 vectors 
vk, with k=2,…,m, as follows: 

 1
k
i i ikv    . 

 

For example, v3=(1,0,1,0,…0)T. These vectors are eigenvectors of A with eigenvalues 

low loww w  , since 
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    
 

    



 

  

  

 

Av

 




 




  




    ow low 1 low low .k
i ik iw w w v     

 

 

Similarly, the Nm1 vectors vk  with k=m+2,…,N , whose ith entries are , 1
k
i i m ikv     are 

eigenvectors with eigenvalues high highw w  . That leaves one eigenvalue to find. Consider the 

vector v=(Nm,…, Nm,m,…,m)T. We will show that this vector is an eigenvector. We first 
calculate the product of any of the first m rows of A with v, making use of Eq. (S13) 



10 
 

 

   

      

    

1 1

2 2
low high low highlow low

low low

low high low high low high low hig

m N

ij iji
j j m

k k k k
k k k k

k k k
k k k

N m A m A

w w w ww w
N m w w m N m m N m

w w w w

w w w w w w w w
N m N m m N m

w w w

  

  

   
              
   
   

 
         
 
 

 

   

  

Av

 


 

   

 

 

        

 
     

h

low high low high

2 2 2 2 2 2
low high low s high s

2 2

2 2 2 2 2
low high low high s

1 1

.

k
k

k k
k k

s

w

w w w w
N N m

w w

N N m
m N m m N m

N
N m

m N m m N m N

     


    

 
 
 
 
 

 
    
 
 
 
   
       

 
  
      



 
 



 

 
Similarly, for any of the last N–m rows of A, we get 
 

 
     

2 2
s

2 2 2 2 2
low high low high s

i

N
m

m N m m N m N


    

 
  
      

Av . 

 

Thus, 
     

2 2
s

2 2 2 2 2
low high low high s

N

m N m m N m N


        

 is the final eigenvalue of A. Since 

all eigenvalues are non-negative, A is non-negative definite, and therefore we may apply the 
approximation discussed in Section 2.2. 
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3 Suboptimal models 

3.1  Response probabilities  for  the  single‐criterion  and blockwise‐criterion 
models 

Calculating a model’s predictions for the probability of responding “same” given a set of 
presented orientations s consists of two steps: to determine the decision rule for responding 
“same”, and to apply this decision rule to the set of internal representations on each individual 
trial. In non-optimal observer models, the first step (decision rule) is different, but the second 
step (calculating the probability with which the decision is satisfied) is identical. In particular, as 
long as the decision rule is of the form 
 

 T kx Bx , (S14) 
 
with B a non-negative definite, symmetric matrix, we can still use Eq. (S12) to approximate the 
model response probabilities. The only difference from the optimal model is that different 
expressions must be substituted for B and/or k. In the special case that the decision rule is Var 
x<k and the reliabilities are equal, the model response probabilities are given by an exact 
expression analogous to Eq. (S11), 
 

     2
1

ˆ 1| Pr VarNp C wN wk   s s . 

 

3.2 Single‐criterion model for Experiment 2 
In Experiment 2, the SC observer assumes in the decision rule that all reliabilities are equal, 

i=assumed for all i. In other words, this observer does not weight the observations by their 
correct respective reliabilities. We will show here that this model is equivalent to one in which 
the observer compares the sample variance to a single criterion. 

The decision rule is the same one as in Experiment 1, Eq. (S7), but with assumed instead 

of . This rule can be rewritten as 
 

  
2 2 2
assumed assumed s same

2 2
s assumed same

Var 1 1 log 1 2log
1

p
N

N p

  
 

    
             

x . (S15) 

 

Since assumed is a free parameter, the right-hand side can assume any value on the real line. To 
see this, first note that this expression is continuous. Then compute the two limits 
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 

 

2
assumed

2
assumed

ass

2 2 2
assumed assumed s same

2 2
s assumed same

2 2 2
assumed assumed s same

2 20
s assumed same

lim 1 1 log 1 2log
1

lim 1 1 log 1 2log
1

1
lim

p
N

N p

p
N

N p

N

N







  
 

  
 





    
              

    
            




2
umed

2
2 s
assumed 20

assumed

log 1 0




 
  

 

 

 
Therefore, we can simply replace the entire right-hand side by a single free parameter k, i.e., Var 
x<k, thereby justifying the terminology “single-criterion model”. (Note that in order to obtain 

model predictions, we still need to fit the parameters low and high.) Thus, the SC model has only 
two variants: with and without lapse rate. 
 

3.3 Blockwise‐criterion model for Experiment 2 
In Experiment 2, the BC model is the model in which assumed may vary by block type (LOW, 
MIXED, or HIGH). Then, the decision rule is equivalent to Var x<kblock, where each block type 
has its own free parameter kblock. This model is analogous to the BC model in Experiment 1, with 
reliability condition (LOW, MIXED, or HIGH) taking the place of set size. As in the SC model, 
there are only two variants: with and without lapse rate. 
 

3.4 Maximum‐absolute‐difference models 
For the MAD models, the response probabilities cannot be calculated analytically. We estimated 
these probabilities numerically, by simulating 10,000 sets of N internal representations for each 
of the 2700 experimental trials, and applying the model’s decision rule to each set; the frequency 
of “same” responses was an estimate of the probability of responding “same” on the given trial. 
 

4 Bayesian model comparison 

We denote by p(Ĉi|si,M,) the probability predicted by model M with parameters  of the 
subject’s actual response on the ith trial, Ĉi, when the presented stimuli are si. We computed the 

log probability of the data given M by marginalizing over . For the prior over parameters, we 

assumed a uniform distribution, p()=1/Vol, where Vol is the volume of parameter space. We 
calculated the parameter likelihood by assuming that the data are conditionally independent 

across trials: p(data|M,)=i p(Ĉi|si,M,). For the MAD models, we approximated the 
marginalization through a Riemann sum; the parameter ranges were 1 to 40 for the decision 

criterion, 0.1 to 20.1 for , and 0 to 0.5 for the lapse rate, each in 35 steps. For the other 
models, since analytical expressions were available, we used the Laplace approximation (4); the 

sizes of the parameter ranges were 20 for , 20 for the assumed s, 0.4 for psame, and 0.4 for the 
lapse rate. 
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5 Simulations of animal cognition experiments 
To examine whether the proportion of “different” responses from the optimal observer correlates 
with the entropy of the stimulus set, we simulated the stimulus sets used by Young et al. (5) (see 
Table 2 in their paper) and used these as input to the optimal-observer model. These sets always 
contained 16 items, with several subsets of identical items (e.g., 4 subsets of 4 identical items 
each). In our simulations, for each subset, a random stimulus value was drawn from a Gaussian 
distribution (with σs=5) and assigned to all items in that subset. A total of 1000 trials were 
simulated per stimulus set. On each trial, stimulus observations were simulated by adding 
Gaussian noise to the stimulus orientations (σ=10) and a response was generated by applying the 
decision rule from the optimal-observer model. Entropy and “scaled logit of percent different 
responses” were computed as described by Young et al. (5). To examine the effect of set size on 
the proportion of different responses in the optimal-observer model, we simulated 1000 trials per 
set size, with σs=8 and σ=8. To examine the effect of stimulus visibility, we varied internal noise, 
σ, and simulated 1000 trials per noise level (with σs=5, N=8, psame=0.6, and a guessing rate of 
0.25). While model parameters were separately chosen for each experiment, the observed trends 
were robust under a wide range of parameters values. 
 

6 Experiment 1 (color) 
 
Methods 
The methods for Experiment 1, color, were identical to the Experiment 1 for orientation, except 
for the following differences. Stimuli consisted of a set of colored discs with a radius of 0.4 deg. 
The colors of the discs were drawn independently from 180 color values uniformly distributed 
along a circle of radius 50 in CIE 1976 (L*,a*,b*) color space. This circle had constant 
luminance (L*=58) and was centered at the point (a*=12, b*=13). The stimuli were presented on 
a grey background of luminance 10 cd/m2. Set size was chosen randomly on each trial. In the 
models, “blockwise criterion” was now defined as one criterion per set size, rather than per 
block. The experiment consisted of 3 sessions with 6 blocks of 150 trials. Two authors and five 
paid, naive subjects participated in the experiment.  
 
Results 
The SC models can be ruled out but not the BC models (Fig. S1A-B; log likelihood differences 
between the optimal model and the SC, BC, MAD-SC, and MAD-BC models were 8.7±4.9, 

3.9±2.5, 27.3±6.3, and 0.8±2.3, respectively). Even though the BC model just edges out the 
optimal model, the decision criteria and noise levels from the best BC model are very close to 
those predicted by the best optimal-model variant (Fig. S1C; p>0.1 for all six t-tests). Finally, the 
noise level exhibits a weak dependence on set size (Fig. S1C; power law fit yields a power of 
0.23±0.04). 
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7 Supplementary Tables 
 
Table S1. Overview of model parameters. The models have the same parameters in both 
experiments, except that in Experiment 1, σ=(σN=2, σN=4, σN=8) and k=(kN=2, kN=4, kN=8), while in 
Experiment 2, σ=(σlow, σhigh) and k=(kLOW, kMIXED, kHIGH).  
 

Model Free parameters 
Optimal  σ 
Optimal σ, λ 
Optimal σ, σs 
Optimal σ, σs, λ 
Optimal σ, psame 
Optimal σ, psame, λ 
Optimal σ, psame, σs 
Optimal σ, psame, σs, λ 
Single-criterion σ, k 
Single-criterion σ, k, λ 
Blockwise-criterion σ, k 
Blockwise-criterion σ, k, λ 
MAD with single criterion σ, k 
MAD with single criterion σ, k, λ 
MAD with blockwise criterion σ, k 
MAD with blockwise criterion σ, k, λ 

 
Table S2. Overview of maximum-likelihood parameter values of the best fitting optimal 
models in Experiment 1. An empty cell indicates that the respective parameter was not a free 
parameter in the best-fitting model variant. 
 

 psame σs λ 
AK 0.58 6.55 0.06
DS 0.42  0.04
HB    
MH   0.12
ML 0.40 11.5  
RB  11.3  
RC   0.06
TR 0.46  0.11
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Table S3. Overview of maximum-likelihood parameter values of the best-fitting optimal 
models in Experiment 2. An empty cell indicates that the respective parameter was not a free 
parameter in the best-fitting model variant.   
 

 psame σs λ 
BN 0.53  0.08
DB   0.11
DS  19.5 0.22
HB 0.45  0.11
KJ 0.45  0.07
MH 0.44  0.11
ML 0.35 13.7  
MV 0.46  0.04
RB 0.54 7.73  
RC 0.55   

 

8 Supplementary Figures 

Fig. S1 Comparison of models in Experiment 3. Circles and error bars represent mean and s.e.m. of subject data. Shaded
areas represent s.e.m. of model fits. (A) Proportion “different” responses as a function of sample standard deviation for
optimal and suboptimal models. (B) Bayesian model comparison. Each bar represent the log likelihood of the optimal
model minus that of a suboptimal model. (C) The decision criteria (left) and the internal noise levels (right) for the best-
fitting BC model are nearly identical to those of the best-fitting optimal-observer model. This suggests that the human
criteria are close to optimal.
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Fig. S2. A comparison of the decision strategies of the optimal and BC models in Experiment 2. (A)
Distributions of the decision variable of the optimal model. As the number of high-reliability stimuli
in the display, Nhigh, increases, the distributions become more separable, making the task easier. The
optimal observer sets his criterion (dashed line) in such a way that performance is maximized. (B)
Distributions of the decision variable of the BC model (Var x). This model uses the same criterion
regardless of Nhigh (dashed line). Hence, it cannot maximize performance for all values of Nhigh. The
same holds for the SC, MAD-SC, and MAD-BC models. The distributions differ between the models
because the decision variables do.
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