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1 Decision rules of the optimal observer
Since equal reliabilities (Experiment 1) are a special case of unequal reliabilities (Experiment 2),
we treat the latter first.

1.1 Unequal reliabilities

The generative model of the task is given in Figure 2A. The variables are as follows: C is a
binary variable that denotes sameness (+1 for same, —1 for different), s denotes the vector of N
orientations presented, and x denotes the corresponding vector of N internal representations.
Each x; is drawn from a Gaussian distribution with mean s; and standard deviation o;. The
Gaussian assumption is common, and reflects the presence of many independent, unbiased
sources of noise (1). Although orientation space is circular, we can treat it as the real line,
because the internal representations are close to the true stimulus and o; is much smaller than the



circle circumference. We refer to 1/ 072 as the reliability of the i observation. When the stimuli
are the same, each orientation s; is equal to 4 When the stimuli are different, each s; is drawn
independently from a Gaussian distribution with mean x and standard deviation o;. Regardless of
sameness, the value of x is drawn from a uniform distribution on [-L,L) (one could take L=m/2
here, but any L works).

Optimal (Bayesian) observers base their decision on the posterior probability distribution
over the variable of interest, here C, given single-trial observations, here x=(x1,...,xN)T. Since C
is a binary random variable, this posterior reduces to a single number, which can be expressed in
many ways. A particularly convenient way is to express it as a log posterior ratio:

=1 =1

(S1)

p(C=—1|x) p(x|C=—1)
Evaluating the likelihoods in this expression, p(x|C) for C=*1, requires marginalization over the
stimulus orientations, s=(s,.. .,SN)T, and their mean, y

p(xIC)=|[ p(x|s)p(s|C, ) p(pe)dsd . (S2)

We assume that the standard deviation, o;, of the noise associated with a stimulus is known to the
observer for each stimulus and each trial, as would be the case in a Poisson-like population code
(2). Therefore, we do not need to marginalize over o;, but can treat it as a known parameter. We
now evaluate Eq. (S2) by substituting the known distributions. If 1 denotes the column vector of
length N with all entries equal to 1, and &x) is the Dirac Delta distribution, then

p(x|C:I):i”p(x|s)5(s—/¢1)dsdy

1
zsz(x|s:y1)d,u

] (x-n) (S3)
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In the rest of this document, all sums and products run from 1 to N unless mentioned otherwise.
We rewrite the sum in the exponent as
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If all reliabilities are equal, so that o; =0, then V; simplifies to
2
1 1 NVar x
2
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Here, Var x is defined as Var x :ﬁz% —F(Zx,] . For the general case, in which each

item comes with its own reliability, we substitute Eq. (S4) into Eq. (S3) to find

i O;

: : : : 1?2
where in the second equality, we assumed that the domain of  is large compared to [z —2] ,
and so the integral can be evaluated over the entire real line. This assumption is justified here,
because in our task the maximum-likelihood estimate of a stimulus is distributed around the true
value of the stimulus in a range that is much narrower than the entire circular space.

Starting from Eq. (S2), we repeat this calculation for the hypothesis that the stimuli are

different, that is C = —1:
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where w and w are column vectors with entries

Therefore, the log posterior ratio, d, is a quadratic form in x. In matrix notation, we can write

2,
2 : 17{/1 Zﬂ/] l_psame

i

where p(C=1)=psme and A(o) is a symmetric, reliability-dependent matrix with entries

A, =(w—-w ﬂ/ﬂ/ kit (S6)
ij t :

ZWk

§1

Maximum-a-posteriori estimation amounts to responding “same” whenever d is positive. This
leads to Eqg. (2) in the main text.

1.2 Equal reliabilities

When all reliabilities are equal, =0 and therefore w=w and W, =W, as in Experiment 1, the

entries of A reduce to 4, :(w—ﬂ/)(éﬁ—%j, and the quadratic form x'Ax becomes

N (w— ﬂz) Varx . The decision rule, which describes when the optimal observer responds “C=1",

takes the form

NVarx<

{(N l)log +2log—Luame } (S7)
w—w ~ Psame

Thus, the decision rule amounts to comparing the variance to a criterion that depends in a
specific way on the common reliability of the items (hidden in w and W ) and on set size, N.



2 Response probabilities of the optimal observer

In the previous section, we derived the decision rules of the optimal observers for both
experiments. However, these decision rules cannot be tested directly, since as experimenters we
do not have access to the internal observations x. We only know the presented stimuli, s, and the
subject’s response on each trial. To obtain testable model predictions, we compute the theoretical
probability of a “same” response given by the optimal observer, when the observations x are
drawn from the generative model for given s. In the resulting model predictions, x is no longer
present. The complete model thus consists of two parts “merged together”: the generative model,
producing a theoretical (or simulated) set of observations, and the inference model, which
describes the decision made by the optimal observer based on those observations.

Formally, we denote the observer’s estimate of C by C; for the optimal observer, it

equals the sign of d. The optimal observer responds according to this estimate. Eq. (S5)
determines the optimal decision rule on a single trial. We denote the probability of the optimal

observer responding C when the experimenter presents a specific stimulus set s by p(é | s) Ctis

obtained by averaging over the hypothetical observations x generated by s:
p(é | s) = Ip(é \ x)p(x |s)dx = j&CA,Sgn(d(x))p(x |s,6)dx, (S8)

where ¢ is the Kronecker delta. In words, the probability of responding C=1is equal to the
proportion of observations drawn from p(x|s) for which d(x) is positive. For many
psychophysical tasks, an integral like that given in Eq. (S8) is analytically intractable, and needs
to be approximated, for example, by Monte Carlo simulation. In the present task, an analytical
treatment is possible.

2.1 Equal reliabilities

We first consider the case of Experiment 1, with the decision rule given by Eq. (S7). We are
interested in the probability that this inequality is satisfied for x drawn from a multivariate
normal distribution with mean s and covariance matrix oZI, denoted x~N (s,oZI), with I the
identity matrix. We write Var x=x'A'x, where the components of A" are 4';=8;/N-1/N*. This
matrix has N—1 eigenvalues equal to 1, and one eigenvalue equal to 0. Therefore, for an
orthogonal matrix M and diagonal matrix D=diag(1,1,...,1,0), we can write M'A'M=D. Let Y be
Y=M"x. Since M is orthogonal, y~N (u, o’I), with u=MTs. Since

2 1 1 1
> L=—Y'DY=—x'MDM'x=—x"A'x, (S9)
i-1 O o o o

it follows that x' A'x/¢” follows a non-central chi-squared distribution with N—1 degrees of



freedom. This variable is equal to wNVar x. The noncentrality parameter of the sum on the left of

N-1,,2
Eq. (S9) is Z’u—’z , which can be rewritten as

i=l1

'S /u T 1 1 T 1 5
Z—: zp Dp=—s MDM s=—s A's=wN Vars.
o’ o’

Therefore, we have

wN Varx ~ yr_ (wN Vars). (S10)

From Eq. (S7), the probability of responding “same” equals the probability that

wN Var x is less than

[(N l)log +2log1 Prame } Using Eq. (S10), this probability is

same

w—w

obtained from a cumulative chi-squared distribution:

1_ psame

p(C=1Is)=Pr| 7, (wN Vars)<—— (N - l)log +2log—Lume Il (s11)
w—w

2.2 Unequal reliabilities

We next consider the case of Experiment 2, where reliability can differ between stimuli. Then x
follows a multivariate normal distribution with mean s and covariance matrix Z=diag(012,...
on’). We define a random variable O(x)=x'Bx, where B is a non-negative definite and
symmetric matrix. We denote mean and standard deviation of Q by up and op, respectively. Liu,
Tang, and Zhang (3) have found the following approximation to the distribution of Q:

Pr(xTBx<k)zPr(;(,2(5)<tJZ+,ul) (S12)

where the variables /, 6, t, 0,, and u, are defined as follows:
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Numerical simulation shows that for our purposes, this is a very good approximation. In order to
apply this approximation to x' Ax from Eq.(S5), A has to be both symmetric and non-negative
definite. Since A is obviously symmetric, what remains to be shown is that in our case, A is non-
negative definite.

2.3 Proof that A is non-negative definite in the unequal-reliabilities case
The matrix A specified by Eq. (S6) can be written as
ww' o oww'

A = diag (W — ¥ _ww_
iag(w W)+ P ——

To show that 4 is non-negative definite (positive semidefinite), we prove that its eigenvalues are
non-negative. In Experiment 2, m of the o;’s are equal to oOjow, and N—m are equal to Giigh.
Without loss of generality, we arrange them as 6=(0iow,. - .,0low> Ohigh,- - -,Ohigh), I.e., the first m
correspond to low-reliability stimuli, and the last N—-m to high-reliability ones. Consequently,
WI=. . = W= Wiow=1/Olow” and Wy1=...=wx=Whigh=1/0nigr". The (i,/)" term of A is given by Egq.
(S6). Note that



N N
(A1) =>4, =w - +) | === |=0, (S13)

ij ~
j=l j=1 ZWk ZWk

we see that 1=(1,...,1)" is an eigenvector with eigenvalue 0. We now define a set of m—1 vectors
Vk, with £=2,...,m, as follows:

For example, V3:(1,0,—1,0,...0)T. These vectors are eigenvectors of A with eigenvalues

Wigw = Wiow » SINCE

N N
(Avk ),- - ZAijvf = ZAij (51'1 _é‘_jk)

N w, ww
= (=), e (8, -0
le:( )/ Zk:kzklwk(ﬂ ﬂf)
il . WWw,  ww
=; (V"z_“’t)é/(5;1_5/k)+ ZV;";_Z"‘; (5/1 5fk)
k

k
= (Wlow _ﬁ}low)(é‘il _§ik):(wlow _ﬂ}low)vik‘

Similarly, the N-m—1 vectors v* with k=m+2,....N , whose i entries are v =&, , —&, are

i,m+1

eigenvectors with eigenvalues w,,, —w,,, . That leaves one eigenvalue to find. Consider the

vector v=(N-m,..., N—-m,—m, ...,—m)T. We will show that this vector is an eigenvector. We first
calculate the product of any of the first m rows of 4 with v, making use of Eq. (S13)
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Similarly, for any of the last N—m rows of 4, we get

(Av)i -

NZ 2
n{(mof)w +(N—m)a§igh)(maliw +(N—m)oy,, +Nof)]'

2 2
Thus, No, is the final eigenvalue of 4. Since
(mof)w +(N_m)o-§igh)(mo-liw +(N_m)o-§igh +No'sz)

all eigenvalues are non-negative, 4 is non-negative definite, and therefore we may apply the
approximation discussed in Section 2.2.
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3 Suboptimal models
3.1 Response probabilities for the single-criterion and blockwise-criterion
models

Calculating a model’s predictions for the probability of responding “same” given a set of
presented orientations s consists of two steps: to determine the decision rule for responding
“same”, and to apply this decision rule to the set of internal representations on each individual
trial. In non-optimal observer models, the first step (decision rule) is different, but the second
step (calculating the probability with which the decision is satisfied) is identical. In particular, as
long as the decision rule is of the form

x'Bx<k, (S14)

with B a non-negative definite, symmetric matrix, we can still use Eq. (S12) to approximate the
model response probabilities. The only difference from the optimal model is that different
expressions must be substituted for B and/or k. In the special case that the decision rule is Var
x<k and the reliabilities are equal, the model response probabilities are given by an exact
expression analogous to Eq. (S11),

p(é =1| s) = Pr(;(f,_l (WN Vars) < wk).

3.2 Single-criterion model for Experiment 2
In Experiment 2, the SC observer assumes in the decision rule that all reliabilities are equal,
O=0assumed fOr all i. In other words, this observer does not weight the observations by their
correct respective reliabilities. We will show here that this model is equivalent to one in which
the observer compares the sample variance to a single criterion.

The decision rule is the same one as in Experiment 1, Eq. (S7), but with cyssumed 1nstead
of o This rule can be rewritten as

o’ o’ o’ p
Varx < —sumed | ] 4 Zasumed ) (A7) ]og| 1+ > +2]log——me— |, S15
N 0-2 ( ) 8 ’ © 1- Psame ( )

s assumed

Since Oussumed 18 @ free parameter, the right-hand side can assume any value on the real line. To
see this, first note that this expression is continuous. Then compute the two limits

11
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2 2 2
lim O assumed 1+ o-assuzmed (N _ l) log 1+ 2o-s +2 log Piame
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s assumed

2
= M 2lim O'jssumed log(l + 2(75 J =0
N med assumed

Oassumed !

Therefore, we can simply replace the entire right-hand side by a single free parameter £, i.e., Var
x<k, thereby justifying the terminology “single-criterion model”. (Note that in order to obtain
model predictions, we still need to fit the parameters oiow and oiigh.) Thus, the SC model has only
two variants: with and without lapse rate.

3.3 Blockwise-criterion model for Experiment 2

In Experiment 2, the BC model is the model in which cussumeq may vary by block type (LOW,
MIXED, or HIGH). Then, the decision rule is equivalent to Var x<kyjock, Where each block type
has its own free parameter kpjock. This model is analogous to the BC model in Experiment 1, with
reliability condition (LOW, MIXED, or HIGH) taking the place of set size. As in the SC model,
there are only two variants: with and without lapse rate.

3.4 Maximum-absolute-difference models

For the MAD models, the response probabilities cannot be calculated analytically. We estimated
these probabilities numerically, by simulating 10,000 sets of N internal representations for each
of the 2700 experimental trials, and applying the model’s decision rule to each set; the frequency
of “same” responses was an estimate of the probability of responding “same” on the given trial.

4 Bayesian model comparison

We denote by p(Cils;,M,0) the probability predicted by model M with parameters @ of the
subject’s actual response on the i™ trial, C;, when the presented stimuli are s;. We computed the
log probability of the data given M by marginalizing over 6. For the prior over parameters, we
assumed a uniform distribution, p(0)=1/Volg, where Volg is the volume of parameter space. We
calculated the parameter likelihood by assuming that the data are conditionally independent
across trials: p(data|M,0)=I1; p(Cis;,M,0). For the MAD models, we approximated the
marginalization through a Riemann sum; the parameter ranges were 1 to 40 for the decision
criterion, 0.1° to 20.1° for o, and 0 to 0.5 for the lapse rate, each in 35 steps. For the other
models, since analytical expressions were available, we used the Laplace approximation (4); the
sizes of the parameter ranges were 20° for o, 20° for the assumed o, 0.4 for pgame, and 0.4 for the
lapse rate.

12



5 Simulations of animal cognition experiments

To examine whether the proportion of “different” responses from the optimal observer correlates
with the entropy of the stimulus set, we simulated the stimulus sets used by Young et al. (5) (see
Table 2 in their paper) and used these as input to the optimal-observer model. These sets always
contained 16 items, with several subsets of identical items (e.g., 4 subsets of 4 identical items
each). In our simulations, for each subset, a random stimulus value was drawn from a Gaussian
distribution (with g,=5) and assigned to all items in that subset. A total of 1000 trials were
simulated per stimulus set. On each trial, stimulus observations were simulated by adding
Gaussian noise to the stimulus orientations (6=10) and a response was generated by applying the
decision rule from the optimal-observer model. Entropy and “scaled logit of percent different
responses” were computed as described by Young et al. (5). To examine the effect of set size on
the proportion of different responses in the optimal-observer model, we simulated 1000 trials per
set size, with 0,=8 and ¢=8. To examine the effect of stimulus visibility, we varied internal noise,
o, and simulated 1000 trials per noise level (with g.=5, N=8, psame=0.6, and a guessing rate of
0.25). While model parameters were separately chosen for each experiment, the observed trends
were robust under a wide range of parameters values.

6 Experiment 1 (color)

Methods

The methods for Experiment 1, color, were identical to the Experiment 1 for orientation, except
for the following differences. Stimuli consisted of a set of colored discs with a radius of 0.4 deg.
The colors of the discs were drawn independently from 180 color values uniformly distributed
along a circle of radius 50 in CIE 1976 (L*a*,b*) color space. This circle had constant
luminance (L*=58) and was centered at the point (a*=12, b*=13). The stimuli were presented on
a grey background of luminance 10 cd/m’. Set size was chosen randomly on each trial. In the
models, “blockwise criterion” was now defined as one criterion per set size, rather than per
block. The experiment consisted of 3 sessions with 6 blocks of 150 trials. Two authors and five
paid, naive subjects participated in the experiment.

Results

The SC models can be ruled out but not the BC models (Fig. S1A-B; log likelihood differences
between the optimal model and the SC, BC, MAD-SC, and MAD-BC models were 8.7+4.9,
-3.9+£2.5, 27.3+6.3, and 0.8+2.3, respectively). Even though the BC model just edges out the
optimal model, the decision criteria and noise levels from the best BC model are very close to
those predicted by the best optimal-model variant (Fig. S1C; p>0.1 for all six #-tests). Finally, the
noise level exhibits a weak dependence on set size (Fig. S1C; power law fit yields a power of
0.23+0.04).
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7 Supplementary Tables

Table S1. Overview of model parameters. The models have the same parameters in both
experiments, except that in Experiment 1, 6=(6y=2, On=4, On=g) and k=(ky=2, kn=4, kn=g), While in
Experiment 2, 6=(Giow, Ghigh) and k=(kLow, kmixep, kuiGH)-

Model Free parameters
Optimal c

Optimal o, A

Optimal G, Os
Optimal G, 0, A
Optimal O, Dsame
Optimal G, Dsame, /-
Optimal G, Dsame, O
Optimal G, Psame, Os, A
Single-criterion o,k
Single-criterion 6, kA

MAD with single criterion c, k
MAD with single criterion o,k A
MAD with blockwise criterion | 6, k
MAD with blockwise criterion | ¢, k, 4

Table S2. Overview of maximum-likelihood parameter values of the best fitting optimal
models in Experiment 1. An empty cell indicates that the respective parameter was not a free
parameter in the best-fitting model variant.

Psame Os A

AK | 0.58 | 6.55 | 0.06
DS | 0.42 0.04
HB

MH 0.12
ML | 040 | 11.5

RB 11.3

RC 0.06
TR | 0.46 0.11
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Table S3. Overview of maximum-likelihood parameter values of the best-fitting optimal
models in Experiment 2. An empty cell indicates that the respective parameter was not a free
parameter in the best-fitting model variant.

Psame [ A
BN | 0.53 0.08
DB 0.11
DS 19.5 | 0.22
HB | 0.45 0.11
KJ | 0.45 0.07
MH | 0.44 0.11
ML | 0.35 | 13.7
MV | 0.46 0.04
RB | 0.54 | 7.73
RC | 0.55
8 Supplementary Figures
A
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Fig. S1 Comparison of models in Experiment 3. Circles and error bars represent mean and s.e.m. of subject data. Shaded
areas represent s.e.m. of model fits. (4) Proportion “different” responses as a function of sample standard deviation for
optimal and suboptimal models. (B) Bayesian model comparison. Each bar represent the log likelihood of the optimal
model minus that of a suboptimal model. (C) The decision criteria (left) and the internal noise levels (right) for the best-
fitting BC model are nearly identical to those of the best-fitting optimal-observer model. This suggests that the human
criteria are close to optimal.

15



A Optimal model B BC model

2 0.02[—same | 2 0.02 |
5 — Different : 2 :
Nhigh=1 2 0.01 | 2 0.01 |
E L —— De_
o 1 |
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2 0.02 I Z0.02 I
3 : 2 :
Nhigh:2 -§ 0.01 : -S 0.01 |
o 0 l o 0 i
0 50 100 150 0 50 100 150
Z 0.02 I £ 0.02 I
5 | 5 :
Npigh=3 5 0.01 < 0.01 |
i 0 : x 0 I
0 50 100 150 0 50 100 150
2 0.02 i 20.02 |
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Nhigh=4 _5 0.01/_1\ g 0.01 I
o 0 | o 0 l
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2 0.02 i £0.02 I
2 | 2 |
Ngn™s 5 0.01/4'\ go.01 |
o 0 1 o 0 |
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Decision variable (°2) Decision variable (°2)

Fig. S2. A comparison of the decision strategies of the optimal and BC models in Experiment 2. (4)
Distributions of the decision variable of the optimal model. As the number of high-reliability stimuli
in the display, N, increases, the distributions become more separable, making the task easier. The
optimal observer sets his criterion (dashed line) in such a way that performance is maximized. (B)
Distributions of the decision variable of the BC model (Var x). This model uses the same criterion
regardless of Ny, (dashed line). Hence, it cannot maximize performance for all values of Ny;,,. The
same holds for the SC, MAD-SC, and MAD-BC models. The distributions differ between the models
because the decision variables do.
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