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Abstract

A key function of the brain is to interpret noisy sensory information. To do so optimally, observers must, in many tasks, take
into account knowledge of the precision with which stimuli are encoded. In an orientation change detection task, we find
that encoding precision does not only depend on an experimentally controlled reliability parameter (shape), but also
exhibits additional variability. In spite of variability in precision, human subjects seem to take into account precision near-
optimally on a trial-to-trial and item-to-item basis. Our results offer a new conceptualization of the encoding of sensory
information and highlight the brain’s remarkable ability to incorporate knowledge of uncertainty during complex
perceptual decision-making.
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Introduction

The sensory information used by the brain to infer the state of

the world is noisy: when the same stimulus is presented repeatedly,

the neural activity it elicits varies considerably from trial to trial

[1,2,3,4]. As a consequence, an observer’s measurement of a task-

relevant stimulus feature varies as well. The quality of the sensory

information can be numerically expressed as precision. For

instance, when the measurement follows a Gaussian distribution,

precision could be defined as the inverse of the variance of this

Gaussian.

Models of perception routinely assume that the precision with

which a task-relevant stimulus feature is encoded is constant as

long as the stimulus is held constant [5]. It is questionable,

however, whether this assumption is justified, considering that

factors such as fluctuations in alertness [6], configural effects

[7,8], and covert shifts of attention [9,10] could make precision

variable. If all factors were known and quantifiable, encoding

precision could be specified exactly for each stimulus on each

trial. However, as long as we are not able to model each

possible contributing factor, it may be best to model precision

as a random variable [11]. For example, the inverse variance of

a Gaussian noise distribution could be drawn from a gamma

distribution.

If encoding precision is a random variable, then the measure-

ment of a task-relevant stimulus feature follows a doubly stochastic

process. This idea translates to the level of neural coding, where a

population pattern of activity could be Poisson-like with a mean

amplitude (gain) that itself follows some other distribution. Recent

physiological studies have reported evidence for doubly stochastic

processes in cortex [12,13,14,15].

In the optimal-observer models of many tasks, precision does

not only appear as part of the encoding model (a description of

how measurements are generated), but also in the observer’s

decision rule (a description of how measurements are transformed

into a decision). In other words, in some tasks, in order to be

optimal, an observer must take into account precision even if

precision varies unpredictably across stimuli and trials. To

distinguish this type of computation from computation in which

the observer can be optimal using only a point estimate of each

stimulus feature, we use the term ‘‘probabilistic computation’’

[16]. At the neural level, probabilistic computation suggests that

populations of neurons encode and compute with probability

distributions over stimulus features [16,17,18], instead of only

point estimates.

Psychophysical evidence for probabilistic computation has been

found in cue combination tasks [19,20,21] as well as more

complex categorization tasks [22,23]. In these experiments, the

encoding precision of the task-relevant feature was manipulated by

varying a reliability parameter, for example the size of a blurred

disc if its location is task-relevant, or contrast of a bar if its

orientation is task-relevant. Since we propose here that factors

other than this reliability parameter also contribute to variability in

precision, the question arises whether observers optimally take into

account this additional variability.

Here we use a visual change detection task [24,25,26] to study

whether precision is variable for a given value of the reliability

parameter and whether observers take any variability in precision

(whether or not due to the reliability parameter) into account

optimally. Observers reported whether a change in the orientation

of a stimulus occurred between two displays that each contained

four stimuli (items). The reliability of the orientation information
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was controlled by shape and was randomly chosen for each

stimulus. We pitted an optimal-observer model in which precision

is completely determined by shape (‘‘equal precision’’) against one

in which there is additional variability (‘‘variable precision’’). Both

models assume that precision is known and optimally taken into

account by the observer on an item-by-item and trial-by-trial basis.

We compare these two models to several suboptimal models,

where suboptimality can be caused by two factors. First, the

observer might make a wrong assumption about precision. For

example, if precision varies across stimuli at different locations, the

observer might assume a single value of precision for all stimuli

instead of using the individual values. Second, the observer might

use a suboptimal decision rule instead of the optimal rule to

integrate information from different locations. Considering all

combinations of model elements – equal or variable precision,

various observer assumptions about precision, and two possible

integration rules – we arrive at a total of 14 models. We find that

the empirical data for each individual subject are best described by

the model in which precision is variable, the observer knows

precision on an item-by-item and trial-by-trial basis, and uses the

optimal integration rule.

Results

Experiment
Subjects were presented with two consecutive displays, each

presented for 100 ms and separated by a 1-second blank screen.

Each display contained a set of four randomly oriented ellipses

that were identical between both displays except that with 50%

probability, exactly one ellipse changed orientation between the

first and the second screen (Fig. 1A). The magnitude of a change, if

present, was drawn from a uniform distribution. On each trial, we

first randomly chose the number of high-reliability stimuli (0 to 4,

with equal probability); then, we randomly chose which of the

stimuli had high reliability. Reliability was controlled by shape:

high-reliability ellipses were more elongated than low-reliability

ones, but had the same area. Subjects indicated whether or not a

change occurred.

As expected, subjects became better at detecting a change as the

number of high-reliability stimuli, denoted NH, increased (Fig. 1B).

While we did not find a significant effect of NH on the false-alarm

rate (one-way repeated-measures ANOVA, F(2.3,18.6) = 2.9,

p = 0.08; degrees of freedom were corrected using Greenhouse-

Geisser estimates of sphericity), the effect of NH on the hit rate was

significant (F(1.7,13.9) = 25.1, p,0.001). This shows that our

reliability manipulation was effective. Mean accuracy exceeded

chance at every value of NH (t(8).5.5, p,1023).

When we separate hit trials by the reliability of the changing

stimulus, we see a distinctive Z-shaped pattern (Fig. 1B). The hit

rate conditioned on the change being in a low-reliability stimulus

decreases monotonically with NH (F(3,24) = 9.7, p,0.001). We did

not find an effect of NH on the hit rate conditioned on the change

being in a high-reliability stimulus (F(1.4,11.6) = 0.20, p = 0.75). It

might be counterintuitive that the low-reliability hit rate decreases

and the high-reliability hit rate is flat, yet the unconditioned hit

rate increases. This effect is an instance of Simpson’s paradox [27].

The apparent contradiction is resolved by realizing that the

relative contributions of the conditional rates change with NH: the

higher NH, the larger the proportion of trials that fall in the high-

reliability-change category. The Z-shaped pattern in our data

confirms a prediction from an optimal model of a change

discrimination task [28] (elaborated below).

Next, we binned change trials by magnitude of change (8 bins)

(Fig. 1C). A two-way repeated-measures ANOVA reveals signif-

icant main effects of magnitude of change (F(7,56) = 109.0,

p,0.001) and of NH (F(1.9,15.2) = 24.4, p,0.001) on the

proportion of ‘‘change’’ reports, and a significant interaction

(F(28,224) = 5.4, p,0.001). This indicates that larger changes are

easier to detect.

Models
We model the observer’s decision process as consisting of an

encoding stage and a decision stage (Fig. 2A). In the encoding

stage, precision is either completely determined by stimulus

reliability (‘‘equal precision’’ or EP), or a random variable itself

(‘‘variable precision’’ or VP). Precision is technically defined as

Fisher information (see Methods) and denoted J. For a given value

of precision, J, the measurement x of an orientation h follows a

probability distribution p(x|h;J). For this distribution, we assume a

circular Gaussian (Von Mises) distribution, characterized by a

concentration parameter k that corresponds one-to-one with

precision (see Text S1 and Fig. S1). When precision is variable

Figure 1. Change detection under varying reliability. A, Schematic of the trial procedure. Stimulus reliability was controlled by ellipse
elongation. Set size was always 4. B, Hit and false-alarm rates as a function of the number of high-reliability stimuli (long ellipses), NH. Hit rates are
split out by whether the changing ellipse had high or low reliability. The Z-shape formed by the yellow, green, and blue lines is an instance of
Simpson’s paradox (see Results). C, Proportion of ‘‘change’’ reports in change trials as a function of the magnitude of change, for different values of
NH. Error bars represent 61 s.e.m.
doi:10.1371/journal.pone.0040216.g001
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(VP), the measurement of a stimulus over many trials is described

by a doubly stochastic process, formalized as the following integral:

p xDhð Þ~
ð

p xDh; Jð Þp Jð ÞdJ, ð1Þ

where p(x|h;J) is again the Von Mises distribution and the

variability in J itself, p(J), is modeled as a gamma distribution

(Fig. 2B). The distribution in Eq. (1) is a mixture of an infinite

number of Von Mises distributions, each with its own precision; it

is a circular analog of the Student t-distribution.

In the decision stage, the Bayes-optimal observer computes on

each trial the probability that a change occurred and responds

‘‘change’’ if this probability is greater than 0.5. This is equivalent

to responding ‘‘change’’ when.

pchange

1{pchange

1

N

XN

i~1

diw1, ð2Þ

where pchange is the observer’s prior belief that a change occurred,

N is the number of stimuli, and di is the local decision variable (i.e.,

the posterior probability ratio of change occurrence at the ith

location, denoted di; see Text S1 for derivation).

di~
I0 kx,ið ÞI0 ky,i

� �
I0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

x,izk2
y,iz2kx,iky,i cos yi{xið Þ

q� � ð3Þ

where xi and yi are the measurements of the ith stimulus in the first

and second displays, respectively, kx,i and ky,i are the correspond-

ing concentration parameters of the noise, and I0 is the modified

Bessel function of the first kind of order 0. Eq. (3) represents

‘‘weighting’’ by encoding precision (through kx,i and ky,i) on a trial-

by-trial and item-by-item basis, in a way analogous to but more

complex than cue combination. It is crucial that the optimal

observer knows precision, J, and therefore k, for each display and

each item on each trial. Thus, even though Eq. (1) describes a

doubly stochastic process over many trials, the optimal observer on

a single trial knows the exact conditioned distribution p(x|h,J).

In the decoding stage, the models we consider differ along two

dimensions that can be understood in the context of Eqs. (3) and

(2), respectively. The first dimension concerns the assumption that

the observer makes about encoding precision:

1. no assumption: complete knowledge of an item’s precision on

each trial, i.e. the optimal model;

2. the assumption that precision is completely determined by

shape, ignoring any other variability (suboptimal);

3. the assumption that precision is equal to the average precision

across the display (which will vary across trials), reflecting a

‘‘gist’’ representation of precision (suboptimal);

4. the assumption that precision is equal throughout the

experiment, thus ignoring both variations in shape and other

variability (suboptimal).

If encoding precision is equal (EP), assumptions 1 and 2 are

equivalent, because there is no additional variability to ignore.

Assumptions 2 to 4 are formalized as variants of Eq. (3) in which

the trial-to-trial and item-to-item concentration parameters are

replaced by values that are solely determined by stimulus

Figure 2. A, Flow diagram of the decision process. Models differ along three dimensions: whether precision is equal or variable, the observer’s
assumption about precision, and the observer’s integration rule. B, Examples of probability density functions over encoding precision for a high-
reliability and a low-reliability stimulus (long and short ellipse, respectively) in the variable-precision model. Dashed lines indicate the means. C, The
generative model shows statistical dependencies between variables. C: change occurrence (0 or 1); D: magnitude of change; D: vector of change
magnitudes at all locations; h and Q: vectors of stimulus orientations in the first and second displays, respectively; x and y: vectors of measurements
of the stimulus orientations. The spatial, temporal, and structural complexities of the task can be recognized in the vector nature of the orientation
variables, the two ‘‘branches’’, and the number of layers, respectively.
doi:10.1371/journal.pone.0040216.g002
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reliability, by the average value in the display, or by a single value

throughout the experiment, respectively.

The second dimension along which the models differ is the

integration rule that the observer applies to the local decision

variables, di. Specifically, besides the optimal rule, Eq. (2), we

consider the suboptimal ‘‘Max’’ rule, according to which the

observer responds based on the largest local decision variable. The

Max decision rule is max
i

diwk, with k a constant criterion. The Max

rule has been used widely in signal detection theory models of visual

search and is considered a reasonable description of human search

behavior [29,30,31,32] (but see [22]). The Max model together with

the assumption of single precision (Assumption 4) is equivalent to the

(also suboptimal) maximum-absolute-differences model we intro-

duced for change detection in earlier work [33] (see Text S1). In

total, this produces (4+3)?2 = 14 models, listed in Table 1. The

number of free parameters ranges from 3 to 5.

Model Comparison
We compared the models in two ways. First, we fitted each

model’s parameters using maximum-likelihood estimation and

computed R2 for the fits to the data in Fig. 1B-C (Fig. 3). The

winning model was the one in which encoding precision is

variable, observers optimally weight observations by their encod-

ing precision, and they use the optimal rule for integrating

information across locations (the VVO model from Table 1). This

model had the highest goodness-of-fit for hit and false-alarm rates

(R2 = 0.97), as well as for psychometric curves (R2 = 0.89).

Maximum-likelihood estimates of model parameters are given in

Table S1.

Second, to distinguish the models in a more powerful way, we

performed Bayesian model comparison [34]. This method

computes the average likelihood over all parameter combinations,

thereby automatically correcting for the number of free param-

eters (see Online Methods). The VVO model is the clear winner

for each of the 9 subjects individually. Bayesian model comparison

revealed that the log likelihood of the VVO model exceeds that of

the next best model (VVM, which uses the Max rule) by the

decisive difference of 15.4617.3 (mean and s.e.m.) log likelihood

points (Fig. 4).

The VVO model exceeds the EEO model – the best equal-

precision model – by 36.366.3 log likelihood points, suggesting

variability in encoding precision. To confirm that this advantage is

not due to unmodeled noise at the decision level (the last two steps

in Fig. 2A), we tested two EEO model variants that included such

noise. In the first variant (‘‘local decision noise’’), we added zero-

mean Gaussian noise with standard deviation slocal to the log of

the local decision variable, di. In the second variant (‘‘global

decision noise’’), we added the same type of noise (with standard

deviation sglobal) to the log of the left-hand side of Eq. (2). The

best-fitting values were slocal = 0.3460.04 and sglobal = 0.3060.08.

These values are small given that log decision variables generally

ranged from about 24 to 20. Furthermore, we computed the

model likelihoods of these two variants, and compared them to

that of the winning model, VVO. The EEO models with local and

global decision noise had log likelihoods of 237.167.0 and

238.267.0 relative to VVO, respectively. Moreover, the VVO

model described the data better than both noisy models in all nine

subjects individually. Thus, decision noise cannot account for the

difference between the VVO and EEO models.

Simpson’s Paradox
As Fig. 3A shows, the VVO model accounts for the

characteristic Z-shape in the hit rates. The intuition behind the

Z-shape in the context of the VVO model – and in fact any model

that weights observations by their encoding precision – is as

follows. The unconditioned hit rate increases with the number of

high-reliability stimuli, NH, because more information is available

in the measurements, and the observer utilizes this information.

The hit rate conditioned on the changing item having low

reliability decreases with increasing NH because a higher value of

NH means that more non-changing items have high reliability.

Since in the VVO model, more precise measurements influence

the decision more strongly, the overall evidence for ‘‘no change’’

becomes stronger and subjects become less likely to report

‘‘change’’. Our result confirms a prediction from an earlier

Bayesian model of change discrimination [28] and provides

additional evidence for probabilistic computation by humans in

change detection.

Discussion

We have found that in detecting a change among multiple

stimuli: a) the encoding precision of a stimulus is variable even for

a given value of stimulus reliability; b) observers near-optimally

take into account both variations in stimulus reliability and the

additional variability. These results raise several issues.

First, we modeled the distribution of encoding precision as a

gamma distribution, with precision being independent across

locations and trials. While this choice was convenient and led to

good fits, alternatives to the gamma and independence assump-

tions must be considered.

Second, what causes variability in encoding precision? Several

possible factors were mentioned in the introduction. In addition,

the precision of memorized items could decay in variable ways, or

precision could simply depend on the task-relevant feature value

[35]. The relative contributions of these factors remain to be

determined.

Third, variability in precision may have implications for

encoding models in other tasks. It could potentially account for

subject responses that are usually modeled as lapses, since those

correspond to a precision of zero. Moreover, in cue combination,

it has been suggested that sensory noise is best described by a

mixture of a Gaussian and a uniform distribution [36] or of two

Gaussian distributions [37]. These mixture models can be

regarded as approximations to a full-fledged doubly stochastic

process as in Eq. (1), since the mixture components correspond to

two different values of precision.

Fourth, how variability in precision can be recognized in neural

activity depends on the neural coding scheme one subscribes to. In

the framework of Poisson-like probabilistic population codes,

variability in encoding precision might correspond to variability in

population gain [18,38]. There is initial evidence that gain does

vary [12,13,14], and this variability might in part be due to

attentional factors [39,40,41,42]. Neuroimaging studies have

found that trial-to-trial fluctuations in perceptual performance

correlate with fluctuations in stimulus-independent, ongoing

neural activity in dorsal anterior cingulate cortex, dorsolateral

prefrontal cortex, and dorsal parietal areas [43,44]. This activity

might in part reflect the attentional state of the observer, in which

case their fluctuations might partially account for variability in

precision.

Fifth, how can a neural population ‘‘know’’ encoding precision

for use in decision-making? Again in probabilistic population

coding, a neural population encodes on each trial a full likelihood

function over the stimulus, whose inverse width represents the

precision/certainty associated with that stimulus on that trial [18].

Thus, encoding precision is implicitly known on a trial-by-trial

basis and can be used in downstream computation. A next step

Inference under Variable Precision
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would be to use probabilistic population codes to design a neural

network that takes Poisson-like representations of the individual

stimuli in both displays as input and has an output layer that

encodes the probability that a change occurred (potentially in the

medial temporal lobe [45]).

Our work illustrates a new role for change detection in

psychology. Traditionally, change detection has only been used

to probe capacity limitations in short-term memory [25,46,47,48].

Viewing change detection as inference on noisy sensory measure-

ments is relatively new [33]. Here, we have demonstrated the use

of change detection in studying whether the brain computes with

probability distributions. Behavioral evidence for probabilistic

computation had so far been largely limited to tasks with relatively

simple statistical structures, such as cue combination. Change

detection is a case study of complex inference, because of the

presence of multiple relevant stimuli (spatial complexity), because

stimulus information must be integrated into an abstract

categorical judgment (structural complexity), and because percep-

tion interacts with visual short-term memory (temporal complex-

ity).

A final caveat. It is tempting to equate optimality with the

notion that the brain computes with probabilities on an individual-

trial basis (probabilistic computation). These are, however,

orthogonal notions [16,49]. In some tasks, such as judging

whether an oriented stimulus is tilted to the left or to the right,

optimality can be attained using only point estimates and does not

require trial-by-trial representations of probability. Conversely, an

observer might take into account precision – and perhaps

represent probability – on a trial-by-trial and item-by-item basis,

but do so in a suboptimal way. Here, we have provided evidence

for both optimality and probabilistic computation in change

detection. To test for probabilistic computation, we varied

reliability unpredictably without giving trial-to-trial feedback,

and compared models in which the observer does or does not

Table 1. List of models considered.

Model Precision Local decision variable (di) Decision rule #Pars

VVO variable I0 kx,ið ÞI0 ky,i

� �
I0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

x,izk2
y,iz2kx,iky,i cos yi{xið Þ

q� � with ki the actual value at
the ith location

pchange

1{pchange

1

N

XN

i~1

diw1
4

VEO variable I0 kx,ið ÞI0 ky,i

� �
I0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

x,izk2
y,iz2kx,iky,i cos yi{xið Þ

q� � with ki either klow or khigh pchange

1{pchange

1

N

XN

i~1

diw1
4

VAO variable I0 �kkxð ÞI0 �kky

� �
I0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�kk2

xz�kk2
yz2�kkx�kky cos yi{xið Þ

q� � where �kk is an average over
locations

pchange

1{pchange

1

N

XN

i~1

diw1
4

VSO variable I0 kassumedð Þ2

I0 kassumed

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2z2 cos yi{xið Þ

p� � pchange

1{pchange

1

N

XN

i~1

diw1
5

VVM variable I0 kx,ið ÞI0 ky,i

� �
I0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

x,izk2
y,iz2kx,iky,i cos yi{xið Þ

q� � with ki the actual value at
the ith location

max
i

diwk 4

VEM variable I0 kx,ið ÞI0 ky,i

� �
I0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

x,izk2
y,iz2kx,iky,i cos yi{xið Þ

q� � with ki either klow or khighmax
i

diwk 4

VAM variable I0 �kkxð ÞI0 �kky

� �
I0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�kk2

xz�kk2
yz2�kkx�kky cos yi{xið Þ

q� � where �kk is an average over
locations

max
i

diwk 4

VSM variable I0 kassumedð Þ2

I0 kassumed

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2z2 cos yi{xið Þ

p� � max
i

diwku

max
i

Dyi{xi Dw~kk

4

EEO equal I0 kið Þ2

I0 ki

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2z2 cos yi{xið Þ

p� � with ki either klow or khigh pchange

1{pchange

1

N

XN

i~1

diw1
3

EAO equal I0 �kkð Þ2

I0 �kk
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2z2 cos yi{xið Þ

p� � where �kk is an average over
locations

pchange

1{pchange

1

N

XN

i~1

diw1
3

ESO equal I0 kassumedð Þ2

I0 kassumed

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2z2 cos yi{xið Þ

p� � pchange

1{pchange

1

N

XN

i~1

diw1
4

EEM equal I0 kið Þ2

I0 ki

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2z2 cos yi{xið Þ

p� � with ki either klow or khighmax
i

diwk 3

EAM equal I0 �kkð Þ2

I0 �kk
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2z2 cos yi{xið Þ

p� � where �kk is an average over
locations

max
i

diwk 3

ESM equal I0 kassumedð Þ2

I0 kassumed

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2z2 cos yi{xið Þ

p� � max
i

diwku

max
i

Dyi{xi Dw~kk

3

The first letter stands for variable (V) or equal (E) encoding precision. The second letter indicates the observer’s assumption about encoding precision (V: variable; E:
equal; A: sample average over locations; S: single value). The third letter stands for the optimal (O) or Max (M) integration rule. The equivalences (u) in the VSM and FSM
models are explained in the Text S1; the notation |?| denotes circular distance.
doi:10.1371/journal.pone.0040216.t001
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take into account precision on a trial-by-trial and item-by-item

basis. To test for optimality, we compared the optimal decision

rule against a plausible suboptimal one, the Max rule. Thus, we

were to some extent able to disentangle Bayesian optimality from

probabilistic computation. We speculate that as task complexity

increases, optimality will break down at some point, but

probabilistic computation continues to be performed – in other

words, humans are suboptimal, probabilistic observers.

Methods

Stimuli
Stimuli were displayed on a 210 LCD monitor at a viewing

distance of 60 cm. Each stimulus display contained four oriented

ellipses. Two types of ellipses were used: ‘‘long’’ and ‘‘short’’ ones.

‘‘Long’’ ellipses had minor and major axes of 0.37 and 1.02

degrees of visual angle (deg), respectively. ‘‘Short’’ ellipses had the

same area, but their elongations were determined separately for

each subject (see Procedure). On each trial, ellipse centers were

chosen by placing one at a random location on an imaginary circle

of radius 7 deg around the screen center, placing the next one 90u

Figure 3. Fits of all 14 models to the data in Fig. 1B-C (axis labels and scales as there). VP = variable precision; EP = equal precision; AP =
average precision; SP = single precision. Error bars and shaded areas represent 61 s.e.m. in the data and the model, respectively. The number in
each plot is the R2 of the fit (for the left plot in each pair, computed over false-alarm rates and unconditioned hit rates). Frame color indicates model
goodness of fit relative to the winning model, as obtained from Bayesian model comparison (Fig. 4).
doi:10.1371/journal.pone.0040216.g003

Figure 4. Log likelihood of each model relative to the VVO
model. Negative values indicate that the model is less likely than the
VVO model. Error bars represent s.e.m. Abbreviations and color scheme
are as in Table 1.
doi:10.1371/journal.pone.0040216.g004
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counterclockwise from the first along the circle, etc., until all four

ellipses had been placed. This spacing was sufficiently large to

avoid crowding effects. Each ellipse position was jittered by a

random amount between 20.3 and 0.3 deg in x- and y-directions

(independently). Stimulus and background luminances were 95.7

and 33.1 cd/m2, respectively.

Subjects
Nine subjects participated (6 naı̈ve, 3 authors; 1 female). All

were between 22 and 32 years old and had normal or corrected-to-

normal vision. The study was approved by the Institutional

Review Board for Human Subject Research for Baylor College of

Medicine; all subjects gave written informed consent.

Procedure
There were three types of trial blocks: testing blocks, practice

blocks, and threshold blocks. In each testing block, a trial began

with a blank screen displaying a central fixation cross for 1000 ms.

The first stimulus display was presented for 100 ms, followed by a

delay period of 1000 ms, followed by a second stimulus display for

100 ms. On each trial, the number of long ellipses was chosen

randomly with equal probability from 0 to 4. The locations of the

long ellipses were chosen randomly given the constraint of their

total number; all other ellipses were short. The orientation of each

ellipse was drawn independently from a uniform distribution over

all possible orientations. The second stimulus display was identical

to the first, except that there was a 50% chance that one of the

ellipses had changed its orientation by an angle drawn from a

uniform distribution over all possible orientations. Following the

second display, the observer pressed a key to indicate whether

there was a change between the first and second displays. A

response caused the next trial to begin. No trial-by-trial feedback

was given. A practice block was identical to a testing block, except

that all stimuli on a given trial had the same reliability, which was

varied randomly across trials. Stimulus presentation time was

initially 333 ms and decreased by 33 ms every 32 trials, allowing

the observer to easy into the task. Feedback was given on each

trial. The practice session consisted of 256 trials. A threshold block

was identical to a practice block but used only the shortest stimulus

presentation time (100 ms), and was 400 trials in length.

At the beginning of each session, subjects were informed in lay

terms about the distributions from which the stimuli were drawn

(e.g., ‘‘The change is equally likely to be of any magnitude.’’). Each

observer completed three sessions on separate days. The first

session began with a practice block only for naı̈ve subjects. All

subjects then did one threshold block of 400 trials. We fitted a

cumulative normal distribution to accuracy as a function of ellipse

elongation and extrapolated the performance to the maximal

elongation. If the resulting performance was equal to or greater

than 75%, we found the elongation of a ‘‘short’’ ellipse from the

65% correct point of the fitted curve. If the resulting extrapolated

performance was lower than 75%, the observer repeated the

threshold block. If extrapolated performance on the repeated

block was again lower than 75%, the observer was excluded from

the study. Testing blocks had 400, 800, and 800 testing trials per

session, respectively. There were two timed breaks spread evenly

for the 400-trial session and four in the 800-trial ones. During each

break, a screen showing the percentage correct in the block was

displayed. Cumulative performance was shown at the end of each

session.

Encoding Model
For convenience, all orientations were remapped from [2p/

2,p/2) to [2p,p). For a true stimulus orientation h, we assumed

the measurement x to follow a Von Mises distribution,

p xDh; kð Þ~ 1

2pI0 kð Þ e
k cos x{hð Þ, where k is the concentration

parameter. k is determined by the amount of resource allocated

to the stimulus, J. The relationship between J and k is J~k
I1 kð Þ
I0 kð Þ,

where I1 is the modified Bessel function of the first kind of order 1

(see Text S1). In the EP model, J is determined by ellipse elongation

only. In the VP model, J is drawn from a gamma distribution with

mean �JJ and scale parameter t, where �JJ is determined by ellipse

elongation (it is accordingly denoted �JJlow or �JJhigh).

Model Predictions
We are interested in computing the probability predicted by a

model of reporting ‘‘change’’ for a set of stimuli and corresponding

reliabilities, given a set of parameter values. This probability is

equal to the probability that d.1 for measurements (x,y) drawn

using the generative model with the given parameters. This

probability only depends on the magnitude of change, D, the

number of high-reliability stimuli, NH, and whether a change, if

any, occurred in a low-reliability or a high-reliability stimulus. We

binned D every 3 degrees between 0 and 90 degrees, resulting in

31 values; NH takes 5 possible values, resulting in 31?5?2 = 310 trial

types. For each trial type, we approximated the distributions of x
and y using a Monte Carlo simulation with 1,000 samples. For

each sample, the model’s decision rule was applied, and the

proportion of ‘‘change’’ responses among all samples was

determined. This returned an estimate of the model’s probability

of reporting ‘‘change’’ on a given trial, for the given parameter

values. The entire procedure was repeated for all parameter

combinations.

Model Fitting
For a given model, we denote the vector of model parameters by

t. The likelihood of t is the probability of the human subject’s

empirical responses given t:

L tð Þ~p dataDt,hð Þ~ P
Ntrials

k~1
p ĈCkDstimulik,t
� �

,

where Ntrials is the total number of trials, ĈCk the subject’s response

on the kth trial, and stimulik is shorthand for the stimulus

orientations and their reliabilities in both displays. The maxi-

mum-likelihood estimate of the parameters is the value of t that

maximizes L(t).

Bayesian Model Comparison
Each model m produces a prediction about the response on each

trial, p(ĈCk|stimulik,t,m). Bayesian model comparison [34] consists

of calculating for each model the probability of finding a subject’s

actual responses under this distribution, averaged over free

parameters:

L mð Þ~p dataDmð Þ~
ð

p dataDm,tð Þp tDmð Þdt

~

ð
P

Ntrials

k~1
p ĈCk Dstimulik,t,m
� � !

p tDmð Þdt
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It is convenient to compute the logarithm of L(m) and write it as.

log L mð Þ~L� mð Þz log

ð
eL t,mð Þ{L� mð Þp tDmð Þdt, ð4Þ

where L t,mð Þ~
XNtrials

k~1

log p ĈCk Dstimulik,t,m
� �

and L� mð Þ~

max
t

L t,mð Þ: This form prevents numerical problems, since the

exponential in the integrand of Eq. (4) is now of order 1 near the

maximum-likelihood value of t. For the parameter prior, we

assume a uniform distribution across some range, whose size we

denote Rj for the jth parameter. Ranges were as follows: [1,100] for

Jlow, Jhigh, Jassumed, �JJlow, and �JJhigh; [1,30] for t; [22.2, 51.8] for

the Max model criterion k; [0.3, 0.7] for pchange. Eq. (4) becomes

log L mð Þ~L� mð Þ{
Pdim t

j~1

log Rjz log
Ð

eL t,mð Þ{L� mð Þdt, where dim

t is the number of parameters. We approximated the integral

through a Riemann sum. We tested the parameter fitting and

model comparison code on fake data generated from each of the

14 models; parameters were estimated correctly and the model

used to generate the data always won, showing that the models are

distinguishable using this method.
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1 Relationship between precision and concentration parameter 

For convenience, we remap all orientations from [/2, /2) to [, ). We assume that the 
measurement x of a stimulus orientation θ follows a Von Mises distribution with concentration 

parameter : 

    
 cos

0

1
| ;

2
xp x e

I
  

 
 . (S.1) 

 
We identify encoding precision with Fisher information, J(θ), which measures the performance 
of the best possible unbiased decoder. Substituting Eq. (S.1) into the definition of Fisher 
information, we find 
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1
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J is a monotonically increasing function of κ and therefore invertible. It is shown in Fig. S1. The 

equivalent relationship for a Gaussian distribution would be J=1/2. 
 
2 Equal-precision and variable-precision models 
In the equal-precision (EP) model, the encoding precision of an observation, J, is determined 
only by the elongation of the ellipse producing the observation. In the variable-precision (VP) 
model, encoding precision is a random variable that follows, independently for each item and 

each trial, a gamma distribution with mean J and scale parameter τ, denoted  | ;p J J  . 

Variance is equal to J . The mean J  differs between a long and a short ellipse. Thus, in this 
model, a measurement x is drawn from a doubly stochastic process: first precision is drawn from 

 | ;p J J  , then the measurement from the Von Mises distribution in Eq. (S.1) with  

determined by J through Eq. (S.2). 
 
3 Optimally inferring change occurrence 
The generative model (statistical structure) of the task is shown in Fig. 2c. We denote by C the 
binary variable of change occurrence (0: no change; 1: change), with a true prior p(C) =0.5. The 

orientations in the first display, =(1,…,N), are drawn independently from a uniform 
distribution over orientation space, and therefore we have 
 



2 
 

   1

2

N

p


   
 

θ .    

 

We denote by  the vector of change magnitudes at all locations. It is a vector of zeros except at 
the location where the change, of magnitude Δ, is located. Since all locations are equally likely to 
contain the change, we have  

    
1

1
| ,

N

i
i

p C C
N




   Δ Δ 1 ,   

 
where 1i is the vector that has a 1 in the ith entry and 0 everywhere else. The magnitude of change 

is drawn from a uniform distribution, p()=1/(2). The orientations in the second display, 

=(1,…,N), are the sum of the initial orientations  and the changes : 
 

     | ,p   φ Δ θ φ Δ θ .  

 
Finally, the measurements in the first and second displays, x=(x1,…,xN) and y=(y1,…,yN), 
respectively, are drawn from independent Von Mises distributions with corresponding 

concentration parameters x=( x,1,…, x,N) and y=( y,1,…, y,N): 
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We have to consider the possibility that x,iy,i, because in the VP model, both sets of 
concentration parameters are independent random variables. 

We are now ready to specify the observer’s inference process. Optimal inference amounts 
to “inverting” the generative model, i.e., to compute the probability of C given the noisy 
measurements of the orientations in the first and second displays on a given trial, x and y. The 
observer’s decision variable d is defined as the ratio between the probability that a change 
occurred and the probability that no change occurred, given x and y: 
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where p(C) is the prior over C. The ideal observer will respond “change” (Ĉ=1) if d>1 and “no 
change” (Ĉ=0) when d<1. The joint distribution of x, y, and C is obtained by marginalizing the 
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joint distribution of all variables over , , , and . It is most convenient to first marginalize 

over , , and substitute their distributions: 
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where in the last equality we have used the fact that given the vector , the pairs of observations 
(xi,yi) are conditionally independent across locations. Substituting Eq. (S.4) into Eq. (S.3) and 
denoting the prior probability of C=1 by pchange gives  
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We now notice that the products in the numerator and denominator almost cancel, leaving only 
the ith term: 
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The summand is exactly equal to the log likelihood ratio of a change occurring at the ith location, 
so we can write: 

 change

change 1

1

1

N

i
i

d
N

p
d

p 


  , (S.5) 
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where the local decision variable di is defined as 
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We can evaluate di by marginalizing over i and i and substituting the Von Mises noise 
distributions: 
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 (S.6) 

 
Substituting this result back into Eq. (S.5), we arrive at our final expression for the optimal 
decision variable: 
 

 
   

  
0 0change

2 2
change

, ,

1
, ,0 , ,

1 2 cos

1

x i

N
x i y i

i
y i iy i ix i

I Ip

p I y x
d

N

 

      
  . (S.7) 

 
The observer reports “change” when d exceeds 1. As one would expect, the decision depends on 

the circular differences between the measurements in the first and second displays, yixi. The 

local concentration parameters in both displays, x,i and y,i, weight – albeit in a way that looks a 
bit less familiar than in cue combination with Gaussian distributions – the contribution of the 
evidence at each location to the decision. 
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 The suboptimal assumptions about precision – average precision and single precision, as 
well as equal precision when precision is in reality variable – enter through modifications of Eq. 

(S.7). For the average-precision assumption, each x,i is replaced by an average over locations, 

x , and similarly each y,i by y . These numbers still vary from trial by trial and might be 

interepreted as a “gist” representation of precision. (We average concentration parameters  
rather than precision values J for convenience, but in view of the nearly linear relationship 

shown in Fig. S1, these are almost equivalent.) For the single-precision assumption, each x,i and 

y,i in the decision variable, Eq. (S.7), are replaced by a single assumed concentration parameter, 

assumed.  
 
4 The Max model 
The decision rule in the Max model is maxi di>k, where di is the local decision variable from Eq. 
(S.6) and k is a criterion. When the local decision variable is modified using the assumption that 
the encoding precision of a stimulus has a single value throughout the experiment (which is a 
wrong assumption in our experiment already because stimulus reliability can be low or high), 
then the Max decision rule simplifies. This is because maxi di can be rewritten as 
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where we have used the facts that assumed is a constant and I0 is a monotonically increasing 

function. The resulting rule can be rewritten as a condition on mini cos(yixi): 
 

  min cos iii
y x k    (S.8) 

 

where 
 2

assumed

2

a

01

ssu
0

med

1 1
1

2

I
k I

k





  
   

    

  is a different criterion. This proves the 

equivalences in Table 1. Note that assumed and k both only appear in the model through this 
decision rule, and can therefore not be fitted independently : they are effectively a single 
parameter. Eq. (S.8) is equivalent to comparing the largest circular distance between two 
observations at the same location to a criterion: 
 

 max
i

iiy x k   , 

where || denotes the unsigned distance along the circle. In earlier work, we called this 
suboptimal model the maximum-absolute-differences model1. In that paper, stimulus reliability 
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was not deliberately varied and this model would be closer to optimal than it is in the present 
experiment. 
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Table S1: Parameter values for all models. Mean and s.e.m. are over subjects. 
 
 Variable-precision Fixed-precision 

 Optimal Max Optimal Max 

VP assumption   

Jlow 6.6 ± 1.4 7.5 ± 0.8 
Jhigh 22 ± 3 21 ± 1 
 21 ± 2 24 ± 3 
k N/A -0.44 ± 0.06 
pchange 0.47 ± 0.02 N/A 

FP assumption  

Jlow 1.6 ± 0.2 2.8 ± 0.7 1.3 ± 0.1 1.5 ± 0.1 
Jhigh 7.9 ± 1.6 9.8 ± 3.6 5.3 ± 1.2 5.4 ± 1.2 
 1.7 ± 0.7 2.7 ± 1.2 N/A N/A 
k N/A 0.94 ± 0.44 N/A -0.11 ± 0.07 
pchange 0.36 ± 0.02 N/A 0.43 ± 0.01 N/A 

AP assumption     

Jlow 2.5 ± 0.3 9.5 ± 2.0 1.8 ± 0.1 1.9 ± 0.2 
Jhigh 5.0 ± 0.5 18 ± 5 3.5 ± 0.3 3.5 ± 0.3 
 1.3 ± 0.2 16 ± 4 N/A N/A 
k N/A 5.1 ± 1.2 N/A 0.01 ± 0.09 
pchange 0.32 ± 0.01 N/A 0.39 ± 0.01 N/A 

SP assumption     

Jlow 3.5 ± 0.3 3.3 ± 0.2 2.1 ± 0.2 2.0 ± 0.1 
Jhigh 4.2 ± 0.4 4.3 ± 0.4 2.7 ± 0.4 2.7 ± 0.2 
 1.5 ± 0.4 1.6 ± 0.2 N/A N/A 
Jassumed 1.5 ± 0.4 N/A 1.9 ± 0.2 N/A 
k N/A -0.86 ± 0.08 N/A -0.86 ± 0.08 
pchange 0.50 ± 0.01 N/A 0.44 ± 0.03 N/A 
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Fig. S1, Encoding precision J as a
function of the concentration parameter
of the Von Mises distribution. The
dashed line is the identity line.


