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Searching for a target among distractors is a task of great ecological  
relevance, whether for an animal trying to detect a camouflaged 
 predator or for a student looking for a note on a cluttered desk. It is well 
known that the difficulty of detecting a target depends on the number 
of items in a scene (set size)1–6, target-distractor similarity7 and dis-
tractor heterogeneity7–10. However, an important aspect has largely 
been ignored in previous work: the effect of differential stimulus reli-
ability. In realistic search scenes, some stimuli provide more reliable 
information than others, for example, as a result of differences in con-
trast, distance, shape or blur. In laboratory search tasks, however, such 
parameters are usually held constant across items and trials.

Varying reliability on a trial-by-trial basis is a key manipulation 
when studying whether the human brain performs probabilistically 
optimal (Bayesian) inference. This is because an optimal observer 
weights more reliable pieces of sensory evidence more heavily when 
making a perceptual judgment. For example, when two noisy sensory 
cues about a single underlying stimulus have to be combined, an opti-
mal observer assigns higher weight to the cue that, on that trial, is 
most reliable. Humans follow this strategy closely and, as a result, they 
perform near-optimally in such tasks11,12. The success of probabilistic 
models of cue combination and other perceptual tasks indicates that 
the brain utilizes knowledge of stimulus uncertainty and suggests 
that it computes with probability distributions. The neural basis of 
computing with probability distributions has become the subject of 
theoretical13 and physiological14 studies.

A major limitation of studies demonstrating near-optimal percep-
tion in the presence of sensory noise is that most of them use rela-
tively simple tasks that require observers to infer a physical feature 
of a single stimulus item. To determine how prevalent near-optimal 
inference in perception is, it is necessary to explore tasks with more 
complex structures. In visual target detection, each display contains 
multiple items and their features are not of interest by themselves but 
only serve to inform the more abstract, categorical judgment of target 

presence. It is therefore considerably more complex than cue combi-
nation. We report here that, when judging target presence, humans 
take into account the reliabilities of the observations on a single trial 
in a near-optimal manner.

We also created a neural implementation of Bayes-optimal visual  
search. Although previous studies have focused on connecting 
search behavior to the activity of single neurons or pools of identical 
 neurons15,16, our implementation is based on the activity of a popula-
tion of neurons with different tuning properties. Such populations can 
simultaneously encode a stimulus value and its reliability, thereby allow-
ing for computation with probability distributions on a single trial.

Our results and model are not the first attempt to approach visual 
search from a probabilistic perspective1,6,8,15–18. However, we extend 
previous ideas in three fundamental ways. First, we consider situa-
tions in which the reliability of the visual information varies unpre-
dictably in and across displays. This is a common occurrence in the 
real world and a strong test of probabilistic models of perception. 
Second, we deal with the difficult problem of how information should 
be combined across unknown distractor values and spatial locations, 
a problem that involves a type of inference known as marginalization. 
Finally, we provide a neural implementation of near-optimal visual 
search that can account for our data and can deal with the margin-
alization problem.

RESULTS
Theory
We used a task in which subjects were presented briefly with an array 
of N oriented bars (Fig. 1a) and reported whether a target was present, 
regardless of its location. The target was a bar of fixed orientation, 
denoted sT , which was present with a probability of 0.5. In separate 
experiments, the distractor orientation was drawn from either a delta 
function, in which all distractors have the same orientation, denoted 
sD (we call this the case of homogeneous distractors; Fig. 1a), or a 
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The ability to search efficiently for a target in a cluttered environment is one of the most remarkable functions of the nervous 
system. This task is difficult under natural circumstances, as the reliability of sensory information can vary greatly across space 
and time and is typically a priori unknown to the observer. In contrast, visual-search experiments commonly use stimuli of equal 
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An optimal observer would weight the observations by their trial-to-trial reliability and combine them using a specific nonlinear 
integration rule. We found that humans were near-optimal, regardless of whether distractors were homogeneous or heterogeneous 
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visual search based on probabilistic population coding. The network matched human performance.
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uniform distribution on orientation space [0,180°) (we call this the 
case of heterogeneous distractors; Fig. 1a). Notably, each item was 
independently assigned high or low reliability.

The starting point of probabilistic models of search under sensory 
noise is the assumption that observers only have access to a set of 
noisy observations of the stimuli. The observation at the ith location, 
denoted xi (i = 1,..,N), corresponds to the maximum-likelihood esti-
mate of the stimulus at that location obtained from a noisy underly-
ing neural representation. To judge whether the target orientation is 
present or not, the N observations have to be combined into a single 
number. The probabilistically optimal observer performs this com-
bination using knowledge of the statistical structure of the task, also 
called the generative model (Fig. 1b,c). We denote target presence 
with the binary variable T, which is 0 when the target is absent and 1 
when it is present. When the prior is flat, that is, p(T = 0) = p(T = 1) =  
0.5, the optimal decision is based on the log likelihood ratio19, denoted 
by d.

d
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When d is positive, the observer responds “target present.” When the 
prior is not flat, d is compared to a decision criterion different from 0.  
The absolute value of d is a measure of confidence. If each location 
is equally likely to contain the target, we can write d in terms of local 
variables6,20,21 (see Supplementary Results).
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, where Ti denotes target 

presence at the ith location (again 0 or 1). We call di the local and d 
the global log likelihood ratio. Averaging over an unknown variable 
that affects the observations, such as target location in equation (2), 
is known as marginalization.

In the case of homogeneous distractors, we model the obser-
vation xi as being drawn from a normal distribution with mean 
si, the true stimulus value at that location, and variance σi

2. We 
define reliability as the inverse of this variance. Previous work has 

(1)(1)

(2)(2)

considered situations in which σi is identical for all i and constant 
across trials; we remove these restrictions here. The local log like-
lihood ratio can then be written as (see Supplementary Results)
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Thus, all observations xi are weighted by their reliabilities, 1/σi
2, 

before being combined across locations according to equation (2). 
This weighting by reliability parallels optimal cue weighting in  
cue combination11,12.

A strength of the probabilistic framework is that it also applies 
directly to heterogeneous distractors (Fig. 1a). In this case, the opti-
mal observer marginalizes over the unknown distractor orientation 
to obtain the local likelihood of target absence

p x T p x s p s T dsi i i i i i i| | |=( ) = ( ) =( )∫0 0

where L(si) = p(xi|si) is the likelihood function over orientation and 
p(si|Ti = 0) is the probability distribution over distractor orientation. 
Equation (4) results in a local log likelihood ratio that depends once 
again on local reliability (see Online Methods and Supplementary 
Results). Thus, optimal search requires two marginalizations when 
distractors are heterogeneous, one over orientation (equation (4)) and 
one over location (equation (2)).

The global log likelihood, equation (2), reduces to previously pro-
posed decision variables in two extreme cases. If one di is much larger 
than all others (for example, when the target is very different from the 
distractors), the sum is dominated by the term with the largest expo-
nent di, that is, d ≈ maxi(di) − log(N). If, in addition, distractors are 
homogeneous and reliability is identical at all locations, then, because 
of equation (3), d is linearly related to maxixi. The latter is the deci-
sion variable in the maximum-of-outputs (or max) model (Fig. 1d), 
which has been used to describe data from search experiments with 
homogeneous distractors of identical and fixed reliability6,18,21,22. 
In a different limit, when all di are small, distractors are homoge-
neous and reliability is identical at all locations, the optimal rule is 
 approximated by the sum rule, with d = Σixi

23 (see Supplementary 
Results). Although the max and sum rules are elegant special cases, 
they are not optimal and, in particular, they do not weight the obser-
vations by their reliabilities. This is problematic when reliability varies 
across locations and trials. In contrast, the optimal rules, equations (3)  

(3)(3)

(4)(4)

Figure 1 Reliability and inference in visual 
search. (a) Search under unequal reliabilities. 
Stimulus reliability is controlled by contrast, 
but the target (red circle) is defined only by 
orientation. Left, homogeneous distractors. 
Right, heterogeneous distractors. (b) Statistical 
structure of the task (generative model). Arrows 
indicate conditional dependencies. T, global 
target presence; Ti, local target presence; si, 
stimulus orientation; xi, noisy observation. In  
the neural formulation, xi is replaced by a pattern 
of neural activity, ri. (c) The optimal decision 
process for inferring target presence inverts the 
generative model. di, local log likelihood ratio of 
target presence; d, global log likelihood ratio.  
The sign of d determines the decision and its 
absolute value reflects confidence. (d) Left, 
maxx model applied to a homogeneous-distractor 
display as in a. At each location, an orientation detector produces a response xi (bar plots) that is variable, but is on average higher for the target than for a 
distractor. The decision is based on the largest detector response. Stimulus reliability is ignored. Right, optimal decision process for the same display. At each 
location, a likelihood function over orientation is encoded (small plots), reflecting not only the most likely orientation xi (mode) but also its uncertainty (width).
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and (4), use the full likelihood functions over orientation, L(si) = 
p(xi|si), not just their modes xi, to compute the likelihood of target 
presence (Fig. 1d).

We examine some properties of the optimal observer model 
(Fig. 2). The observer’s performance depends on the overlap between 
the distributions of the global log likelihood ratio, d, in target-present 
and target-absent displays (Fig. 2a). These distributions are in general 
highly non-Gaussian. Using these distributions, we can plot theoreti-
cal receiver operating characteristic (ROC) curves (Fig. 2b).

We compared the optimal model to the following seven suboptimal 
models: single reliability, in which an observer uses the correct combi-
nation rule, equation (2), but incorrectly assumes identical reliabilities 
for all stimuli; maxx, in which the max model is applied to the obser-
vations, d = max ixi, when distractors are homogeneous, or applied to 
the activities ri of Poisson neurons best tuned to the target (one per 
location), d = maxiri, when distractors are heterogeneous (see Online 
Methods and Supplementary Results); maxd, in which the max model 
is applied to the local log likelihood ratios, d = maxidi ; sumx, in which 
the sum model is applied to the observations, d = Σixi (homogene-
ous), or to single-neuron activities, d = Σiri (heterogeneous); sumd, 
in which the sum model is applied to the local log likelihood ratios, 

d = Σidi; L
2, in which an observer uses the decision rule d xi

i
= ∑ 2  

(or d ri
i

= ∑ 2 ), and L4, in which an observer uses the decision rule 

d xi
i

= ∑ 4
4  (or d ri

i
= ∑ 4

4 ). The probability summation models  

L2 and L4 are intermediate between the sumx and maxx models24, as 
the sumx model is L1 and the maxx model is L.

Behavioral experiments
To test whether human performance in visual search best matches the 
performance predicted by the optimal observer, we conducted behav-
ioral experiments analogous to cue combination studies (Fig. 3). The 
target was defined by its orientation and its value was fixed through-
out a given experiment. In separate experiments, we used contrast 
of a bar (experiments 1 and 2) and eccentricity (elongation) of an 
ellipse (experiments 3 and 4) to manipulate reliability. Reliability 
could take two values, low and high. Distractors were homogene-
ous in experiments 1 and 3 and heterogeneous and drawn from a 

 uniform distribution in experiments 2 and 4. Experiments 1 and 2 
were repeated separately at set size 2, referred to as experiments 1a 
and 2a. Each experiment consisted of three reliability conditions:  
LOW, in which the reliability of all items on all trials was low, HIGH, 
in which the reliability of all items on all trials was high, and MIXED,  
in which the reliabilities of the items were drawn randomly and inde-
pendently on each trial, producing displays in which stimuli differed 
in reliability. Presentation time ranged from 50 to 75 ms, depending on 
the subject and the experiment (see Online Methods). After reporting 
target presence, subjects also reported their confidence level (low, 
medium or high), allowing us to plot empirical ROC curves19.

We examined empirical ROC curves obtained in the LOW and 
HIGH conditions, along with the best fits of the optimal, single- 
reliability, and maxx and sumx models (Fig. 4 and Supplementary 
Figs. 1–6). The single-reliability model is equivalent to the optimal 
model in these conditions. From these conditions, we estimated the 
sensory noise levels associated with a low-reliability and a high- 
reliability stimulus. Using those two parameters, we predicted the 
ROCs in the MIXED condition (see Online Methods and Fig. 4). 
Decision criteria (which incorporate the prior over T ) were free 
parameters. The single-reliability model has an extra parameter, the 
assumed reliability, which we estimated from the MIXED condition.

The prediction for the MIXED condition is an important test of the 
models, as the optimal observer takes into account stimulus reliability 
(for example, equation (3)) and combines local decision variables in 
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Figure 2 Optimal search under unequal reliabilities. (a) Theoretical 
distribution of the global log likelihood ratio, d, across 106 trials at N = 4, 
in target-absent displays (red) and target-present displays (blue). Insets 
show example displays. Top, homogeneous distractors, with target and 
distractor orientations 10° apart. Internal representations xi were drawn 
from normal distributions with s.d. σi equal to 2° or 6°. Bimodality arises 
from the fact that a stimulus can have low or high reliability. Bottom, 
heterogeneous distractors. Stimulus orientations si were drawn from a 
uniform distribution and their internal representations xi were drawn from 
Von Mises distributions with concentration parameters κi equal to 5 or 
10. Bimodality arises because the cosine of a uniformly distributed angle 
is bimodally distributed. (b) ROC curves of the optimal observer. Top, 
homogeneous distractors at N = 4,6,8. Bottom, heterogeneous distractors 
at N = 4, unconditioned (blue) or conditioned on the target having high 
(red) or low (black) reliability. Parameters are as in a. Nonconcavity arises 
from conditioning on target reliability.
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Figure 3 Experimental procedure. (a) Subjects report through a key 
press whether a predefined target is present in the display, then rate their 
confidence on a scale from 1 to 3. (b) Experimental conditions. Items in a 
single display can be all high-reliability (HIGH), all low-reliability (LOW), or a 
combination of both reliabilities (MIXED). Stimulus reliability was manipulated 
through contrast in Experiments 1 and 2 (left), and through ellipse eccentricity 
in Experiments 3 and 4 (right). Example displays show homogeneous 
distractors; the procedure was identical for heterogeneous distractors.
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a specific nonlinear manner in this condition (equation (2)). Non-
 optimal models incorporate only stimulus reliability (maxd, sumd), the 
combination rule (single reliability) or neither (maxx, sumx, L2, L4). 
We examined the area under the ROC curve in the MIXED condition 
(AUC), as measured and as predicted by each model, for each experi-
ment, conditioned on target reliability (Fig. 5 and Supplementary 
Figs. 7–10). We performed a four-way ANOVA with factors observer 
type (data or model), stimulus type (bar or ellipse), distractor type 
(homogeneous or heterogeneous) and target reliability (low or high) 
on the combined AUC data of all six experiments. On the basis of 
this analysis, all models besides the optimal model and the maxd 
model could be ruled out (P < 0.002; Supplementary Results and 
Supplementary Table 1).

It is not surprising that summary statistics such as AUC cannot dis-
tinguish the optimal model from the maxd model, as the maxd model 
provides a close approximation to the optimal 
model. To distinguish between the optimal 
and the maxd model, we performed Bayesian 
model comparison on the raw response counts 

in each response category (Online Methods). This method returns the 
log likelihood of each model given a single subject’s data; of interest 
are the differences between the models. We found that the optimal 
model was the most likely model for all subjects and all experiments. 
In particular, the log likelihood of the optimal model exceeded that 
of the maxd model by 25.9 ± 2.2, 8.6 ± 0.8, 5.6 ± 0.6, 56 ± 20, 5.2 ± 0.8 
and 60 ± 11 points in experiments 1–4, 1a and 2a, respectively (mean ±  
s.e.m.). This constitutes decisive evidence that the optimal model 
better accounts for the data than the maxd model (results across all 
models and all experiments are shown in Supplementary Table 2, and 
individual-subject log likelihood differences are shown in Fig. 6 and 
Supplementary Fig. 9c,d). Taken together, our results indicate that 
humans perform near-optimal visual search, regardless of whether 
distractors are homogeneous or heterogeneous and whether the reli-
ability of the stimulus was controlled by contrast or shape.

Figure 5 Model predictions for area under 
the ROC curve (AUC) in the mixed-reliability 
condition. For models not shown here, see 
Supplementary Figures 7 and 10. (a) Data 
(black), and model predictions obtained from 
maximum-likelihood estimation in HIGH and 
LOW (colored lines), in experiments 1 and 3 
(homogeneous distractors). Target reliability 
is high (solid) or low (dashed). (b) Data are 
presented as in a for experiments 2 and 4 
(heterogeneous distractors). Set size was 4  
in experiment 2 and 2 in experiment 4. Error 
bars represent s.e.m. (c) Scatter plot of  
actual versus predicted AUC for models and 
individual subjects across all experiments  
(1 to 4, and auxiliary experiments 1a and 2a;  
see Supplementary Results). Conditioning on 
target reliability produces two points per subject.
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Neural implementation
Our finding that humans take into account the reliabilities of indi-
vidual stimuli on a trial-by-trial basis during visual search raises the 
question of how this is accomplished by neurons. Computing the local 
decision variable requires knowledge about the reliabilities, 1/σi

2, 
on a single trial (for example, equation (3)). How does the nervous 
system know these reliabilities? Previous models assumed that the 
only information available to the nervous system at the ith location 
is the noisy scalar observation xi

6,15,19,23, which is sometimes identi-
fied with the activity of a single neuron15,16. Such a coding scheme 
cannot possibly encode both the orientation of a stimulus and its reli-
ability, as a scalar cannot unambiguously represent two uncorrelated 
quantities. This is not a problem if reliability is fixed across locations 
and trials. However, we found that human subjects are near-optimal 
even in situations in which the reliability of the orientation varies 
between locations and over time, implying that the neural represen-
tation of each stimulus contains information about both orientation 
and reliability.

Thus, we propose that the brain uses probabilistic population 
codes13,25 to encode likelihood functions over orientation on single 
trials and to compute the posterior probability of target presence. We 
assume that the orientation at the ith location is encoded in a popula-
tion of neurons whose activity we denote by a vector ri (Fig. 7a). On 
repeated presentations of the same orientation si, the population pattern 
of activity will vary. We assume that this variability, denoted p(ri|si), 
belongs to the Poisson-like family of distributions13,

p s si i i i i i s i( , ) ( , )exp( ( ) )r c r c h r= ⋅j

where ϕ is an arbitrary function and ci denotes parameters such as local 
contrast and other image properties, which can affect neural activity 
and stimulus reliability but are unrelated to our task-relevant feature, 
orientation. The function hi(si) is related to the tuning curves fi(si,ci) 
and the covariance matrix Σi(si,ci)

13 (see Supplementary Fig. 11a). 
Poisson-like variability is considerably more general than independent 
Poisson variability while being broadly consistent with the statistics of 
neuronal responses in vivo.

For a given population activity ri, we can compute the likelihood func-
tion of the stimulus, L(si) = p(ri|si), which is proportional to exp(hi(si)·ri). 
The value of si that maximizes L(si), the maximum-likelihood estimate of 
orientation obtained from ri, corresponds to the observation xi described 
above. The width of the likelihood function, σi, indicates the reliability of 
the orientation information at the ith location. This automatic encoding 
of reliability on a single trial might be utilized to build a network that 
accounts for the near-optimal behavior of the subjects. Such a network 
would have to implement the marginalizations over distractor orientation 
(equation (4)) and location (equation (2)) that are required to compute 
the log likelihood ratios of local and global target presence, respectively.

We trained a three-layer feedforward network (Fig. 7b) using a 
quadratic nonlinearity26,27 and divisive normalization28,29 to per-
form both marginalizations. The input layer encoded the local orien-
tations using probabilistic population codes, the second layer was 
trained to compute the log likelihood ratios of local target presence 
and the third layer was trained to compute the log likelihood ratio 
of global target presence. The choice of the quadratic nonlinearity 
and divisive normalization was motivated by our previous find-
ing that these types of operations can be used to implement near- 
optimal marginalization over discrete probability distributions 
encoded with probabilistic population codes30. Moreover, with this 
particular choice of nonlinearities, all layers encode the log likelihood 
ratio of target presence with probabilistic population codes similar to 
the ones used in the input layer. These codes have the advantage that 
the log likelihood ratios of local and global target presence are linearly 
decodable from the second and third layers (Online Methods), thus 
simplifying downstream computation and learning.

Networks were trained separately for the homogeneous and hetero-
geneous cases. We decoded network activity in the second and third 
layers under the assumption of a Poisson-like probabilistic population 
code. We expect the network to perform optimally only if this assump-
tion is satisfied, which is to say, if the log likelihood ratio of target 
presence is linear in the activity of the network units (equation (9)). 
The network with a quadratic nonlinearity and divisive normalization  
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(QDN) provides a very close approximation to the optimal poste-
rior distribution over local and global target presence (Fig. 7c,d and 
Supplementary Figs. 12–14). Notably, when we used a network with 
only a quadratic nonlinearity, but no divisive normalization (QUAD), 
performance degraded markedly (Fig. 7c,d). The same held for net-
works without quadratic operations (Supplementary Figs. 12–14). 
This suggests that divisive normalization is needed to ensure that the 
log likelihood ratio is approximately linear in the output activity. In 
Supplementary Figure 15, information loss per layer is compared 
between the four networks we tested, for both homogeneous and het-
erogeneous distractors.

Finally, we used the QDN network to generate ROC curves for 
homogeneous and heterogeneous distractor conditions (Fig. 8). 
The resulting ROC curves provide accurate fits to the ROC curves 
obtained from the human subjects. In short, this network, as with our 
human subjects, is capable of computing a close approximation of the 
probability of target presence when presented with any arrangement 
of reliabilities. When neural variability is no longer Poisson-like, the 
network fails to be near-optimal (Supplementary Fig. 16).

It is worth noting that with the probabilistic code that we used, 
input-layer neurons that have the target orientation in a steep region 
of their tuning curves contribute most to performance (Supplementary 
Fig. 11b), consistent with earlier theoretical31 and experimental 
 studies32,33 using discrimination tasks but in contrast with the idea that 
the neuron best tuned to the target orientation is most important15.

Predictions
Physiological studies have reported neural correlates of decision con-
fidence or certainty in lateral interparietal cortex (LIP)34, superior  
colliculus35 and orbitofrontal cortex36. Consistent with these findings, 
our results predict that neurons exist that encode the log likelihood 
ratio of target presence. The absolute value of the log likelihood ratio 
is a measure of certainty. Clearly, any model would predict the exist-
ence of such neurons given our behavioral data, but our probabilistic 
population code framework makes a much more specific prediction 
regarding the mapping from neural activity to probability of target 
presence. Specifically, an optimized linear decoder of the response of 
these neurons should be able to recover the log likelihood ratio of glo-
bal target presence as well as any nonlinear decoder. This is a direct 
consequence of the fact that in our near-optimal network, neuronal 
response statistics are constrained to belong to the Poisson-like fam-
ily in all layers. Moreover, the log likelihood ratio of global target 
presence should be recoverable with a single linear decoder of neural 
activity regardless of the reliabilities of target and distractors. These 

are nontrivial predictions because, in general, nonlinear decoders are 
expected to perform better than linear decoders. Similarly, a family 
of linear decoders, each specialized for a particular level of reliability, 
should, in principle, outperform a single linear decoder. In this case, 
however, we argue that a nonlinear decoder, or a family of specialized 
linear decoders, would not extract substantially more information 
about the posterior distribution than a single linear one. Analogous 
predictions apply to the log likelihood ratio of local target presence. 
The prediction that the neural code is optimally linearly decodable 
in a way that is invariant to the value of nuisance parameters such 
as contrast has very direct implications for downstream process-
ing, as it simplifies the neural implementation of other probabilistic 
inferences. For instance, with such a code, the maximum-likelihood 
estimate can be extracted through attractor dynamics37 and optimal 
cue integration can be performed through a fixed linear combination 
of neural activity13.

So far, we have not specified where one might expect to find the 
neurons whose response can be mapped linearly onto the log likeli-
hood ratio of target presence. Although an extensive literature exists 
on the neural basis of visual search and attention, we are not aware of 
any studies that have recorded neuronal activity in a single-feature 
search task with short presentation times and sensory uncertainty. 
Nevertheless, good candidate regions would be area V4, inferior 
temporal cortex and LIP, in which strong attentional modulation has 
been reported. In a multidimensional search task, V4 neurons had 
a higher response to a target than to a distractor, regardless of the 
feature dimension in which the target was defined38. The responses 
of V4 and inferior temporal cortex neurons contain information 
about which of two stimuli matches a memorized cue39. LIP neurons 
respond more strongly when an item in their receptive field is a search 
target than when it is not40.

A final prediction concerns the contrast response function of the 
neurons involved in the marginalization over location when reliability 
is controlled by contrast. We claim that this marginalization is imple-
mented using a set of basis functions, some of which combine activ-
ity from the second layer through quadratic operations with divisive 
normalization. One can think of these basis functions as neurons in 
an intermediate layer (between the second and the third) that com-
bine information from multiple locations. Consider a situation in 
which the set size is 2, that is, two bars appear in the receptive field 
of such a neuron. The response of this neuron to the contrast of the 
two bars should follow the quadratic divisive normalization equation. 
Thus, if the contrast of the second bar is held constant, then the neu-
ral response should saturate with increasing contrast of the first bar. 
Moreover, it should saturate at a level that is monotonically related 
to the contrast of the second bar. This prediction is task specific: for 
example, in our previous work on optimal multisensory integration13, 
we predicted that cells combine their multisensory inputs linearly. 
There, the probabilistic operation needed was a product of distribu-
tions, not a marginalization.

DISCUSSION
Searching efficiently for a target amidst distractors is crucial for an 
organism’s survival. This task is challenging because the reliability of 
sensory information may vary unpredictably across space and time. 
Whether and how humans take into account varying reliability in and 
across displays is an important question from a behavioral, compu-
tational and neural perspective. Studies testing the notion of percep-
tion as optimal inference have concentrated on simple tasks such as 
combining cues about a single physical stimulus variable. To take this 
approach to the next level, it is important to consider perceptual tasks 
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with more complex generative models, such as visual search. As visual 
search is a task with a hierarchical structure, optimal search requires 
marginalization, a computation that is ubiquitous in naturalistic 
 visual environments but remains understudied in psychophysics41,42.  
We found that human observers take into account reliability on an 
item-by-item and trial-by-trial basis during visual search and can 
combine information across locations through marginalization. These 
results were consistent whether we manipulated the reliability of the 
items via changes of their contrast or shape. This indicates that human 
subjects encode probability distributions over stimuli, rather than 
point estimates, and that they use these distributions to compute the 
probability of target presence. Human near-optimality in judging an 
abstract, categorical variable such as target presence provides evi-
dence for the generality of human ability to compute with probability 
distributions. Exploring complex generative models can contribute to 
shifting the discourse on optimality in perception toward the ques-
tion of which task factors might cause performance to be suboptimal. 
It is likely that greater deviations from optimality will be found in 
tasks that have more nodes in their generative model or that are less 
ecologically relevant.

We determined how neural circuits could implement near-optimal 
visual search using probabilistic population codes and biologically 
plausible operations, namely a quadratic nonlinearity with divi-
sive normalization. This coding scheme allows a neural network to 
take into account reliability without requiring a separate circuit to 
represent this reliability. Moreover, we predict that the interactions 
implementing near-optimal visual search are different between homo-
geneous and heterogeneous distractor distributions; in the former, 
linear neural operations are sufficient to optimally compute local tar-
get presence, whereas in the latter, nonlinear operations are needed. 
We predict that, under both distributions, divisive normalization is 
an important operation in computing global target presence. This is 
interesting in light of the proposal that divisive normalization might 
have a crucial role in the neural basis of attention29. Our results indi-
cate that the same nonlinearity might explain how humans can be 
near-optimal in the attentional task of searching for a target among 
distractors. It would be worthwhile to revisit feature-based attention 
studies from this near-optimality perspective.

Our work is related to previous studies of visual search under sen-
sory noise. An influential study examined eye movements in search 
scenes corrupted by pixel noise and found that, on average, observ-
ers choose their next fixation location according to the maximum 
probability of identifying the target17. This work, however, did not 
address the difficult issue of combining information across spatial 
locations through marginalization. One of us has previously argued 
that a saliency-based43 signal-to-noise framework can explain bot-
tom-up and top-down effects on search difficulty in various distractor 
conditions better than a signal-detection theory model44. However, 
the saliency-based model was not probabilistic and could not easily 
represent stimulus uncertainty; moreover, the signal detection theory 
model used was far from optimal. Here the local likelihood ratio of 
target presence was computed from task-specific probability distribu-
tions and can therefore be regarded as a form of top-down saliency. 
This is similar to a recent model that defined saliency as the posterior 
probability of local target presence45. However, this work considered 
the scenario of target presence being independent across locations 
(there can thus be any number of targets) and subsequently focused 
on feature priors during free viewing. Finally, it has been found that 
when the distractor distribution is varied between blocks, a max rule 
applied to local log likelihoods better accounts for human behavior 
than a maximum-of-outputs rule46. This study, however, did not test 

the optimal rule, equation (2), or vary the reliabilities of the stimuli 
on a trial-by-trial basis. Changing reliability on a trial-by-trial basis, 
as we have done, makes the task considerably more difficult, as the 
reliability of the stimuli must now be taken into account on the fly.

The formalism that we used applies to tasks in which stimulus pres-
entation time is short, at most one target is present and observers 
report target presence instead of target location. Nonetheless, our 
framework can be extended to reaction-time procedures by combin-
ing it with optimal evidence accumulation47, target detection in the 
presence of multiple targets by replacing the sum in equation (2) by a 
sum over subsets and target localization by computing the posterior 
p(Ti = 1|x,T = 1) instead of p(T = 1|x). We hope that our work will 
facilitate rigorous tests of optimality in a variety of search tasks.

Finally, although we focused on probabilistic population coding, 
it is quite possible that near-optimal visual search could be imple-
mented with other types of neural codes for probability distribu-
tions. Implementing visual search with any scheme is a nontrivial 
task as it requires tackling the difficult problem of marginalization. 
Nonetheless, such extensions would be invaluable as they can lead to 
experimental predictions that would allow us to distinguish between 
alternative theories of neural coding.

METhODS
Methods and any associated references are available in the online 
 version of the paper at http://www.nature.com/natureneuroscience/.

Note: Supplementary information is available on the Nature Neuroscience website.
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ONLINE METhODS
experiment 1: manipulating bar contrast, homogeneous distractors. Subjects 
viewed the display (28 by 21 deg) of dimensions 0.3 by 1.8 deg (the items) on a 
21-inch CRT monitor with a refresh rate of 120 Hz and background luminance 
of 18.8 cd m−2 from a distance of 85 cm. Target and distractor orientations were 
−70° and −60°, respectively. Items were displayed in one of eight possible posi-
tions (corresponding to compass directions), equally spaced around an imaginary 
circle of radius 7 deg, centered at a central fixation cross. Item positions were 
randomly chosen for set sizes 4 or 6. Each item position had a uniform random 
jitter of up to 0.6 deg in both x and y directions. Item contrast was either 67% 
(high) or 12 or 17% (low), according to the subject.

In the LOW and HIGH conditions, set size was 8 and all items had the same 
contrast (low or high, respectively). In the MIXED condition, set size was 4, 6 or 8 
(intermixed in pseudorandom order) and the contrast of each item was randomly 
and independently set to high or low. On each trial, the probability that the display 
contained a target was 0.5; subjects were informed of this in advance. If the target 
was present, its location was chosen randomly.

Each trial began with fixation (250 ms), followed by the search display, followed 
by a blank screen until the subject responded. Subjects gave a yes/no response 
about target presence, followed by a confidence rating on a scale of 1 to 3 (1 = least 
confident, 3 = most confident). Subjects were encouraged to spread their responses 
across the ratings. Subjects practiced for 30 trials in the HIGH conditions with a 
200-ms stimulus, and they received correctness feedback at the end of each trial. 
After practice, subjects performed a variable number of 30-trial blocks in the HIGH 
condition starting with a 200-ms stimulus. Stimulus duration decreased by 25 ms on 
every subsequent block, until accuracy was 85–90%. The resulting stimulus dura-
tions of 50 or 75 ms were subsequently used throughout the experiment. Subjects 
then performed two 120-trial blocks in the HIGH condition with 67% contrast 
items. Next, stimulus contrast (identical for all items in a display) decreased in 30-
trial blocks by 5% on every subsequent block until accuracy reached was 60 to 65%. 
The resulting contrast was used as low contrast. The subject then performed two 
120-trial blocks in the low condition, followed by practice on 30 trials in the mixed 
condition (without feedback) and six 120-trial blocks in the mixed condition.

The experiments were conducted over two sessions on consecutive days. All 
stimuli were controlled using MATLAB (MathWorks) with the Psychophysics 
Toolbox48. Four subjects (two authors, two naive) participated. Informed written 
consent was obtained from all subjects.

experiment 2: manipulating bar contrast, heterogeneous distractors. This 
experiment was identical to Experiment 1, except for the following differences. Set 
size was 4 and target orientation was −60°. Distractor orientation was randomly 
sampled from all multiples of 9° away from the target. Stimuli were placed at every 
other possible location from Experiment 1, starting at northeast. Each subject 
performed two 120-trial blocks in the LOW (L), HIGH (H) and MIXED (M)  
conditions, in the order HHLLMM. High and low contrasts were 61% and 16%, 
respectively. Four subjects (one author, three naive) participated.

experiments 3 and 4: manipulating ellipse eccentricity. Experiments 3 and 
4 were identical to experiments 1 and 2, except for the following differences. 
Subjects viewed the display on a 19-inch LCD monitor with a refresh rate of  
60 Hz and background luminance of 34 cd m−2, from a distance of 60 cm. Items 
were ellipses; ellipse orientation was defined by the orientation of the long axis. 
The area of each ellipse was 0.24 deg2 and reliability was manipulated through 
ellipse eccentricity (elongation). Target orientation was −45°. In experiment 3, 
distractors were homogeneous with an orientation chosen per subject (−30°, 
−25°, −15°) to ensure that asymptotic accuracy at high eccentricity exceeded 
87.5%. In experiment 4, distractors were heterogeneous and drawn from a uni-
form distribution. The set size was 2 or 4 (separate sessions) in experiment 3 and 
2 in experiment 4. When the set size was 2, stimuli were placed at the northwest 
and southeast locations. When the set size was 4, stimuli were placed at these 
locations and also at northeast and southwest. Stimulus duration was 300 ms 
during practice and 66.7 ms during testing.

Subjects performed three types of blocks: practice, threshold measurement and 
testing. During practice, stimulus duration was 300 ms, stimuli were of mixed 
reliability, subjects did not report confidence, trial-to-trial correctness feedback 
was given by briefly coloring the fixation cross green or red and an image of the 
target with eccentricity 0.9 was displayed at the location of the fixation cross for 

500 ms before the start of a new trial. During threshold measurement blocks, a 
psychometric curve (percentage correct versus ellipse eccentricity) was mapped 
out to determine 62.5% and 87.5% thresholds at N = 4 (experiment 3) or N = 2 
(experiment 4). These eccentricities provided the low and high values of eccen-
tricity throughout the experiment. In experiment 3, (low, high) eccentricity pairs 
were (0.66, 0.82) for subject R.B., (0.65, 0.92) for subject W.M. and (0.61, 0.78) for 
subject E.A. In experiment 4, they were (0.50, 0.82) for subject R.B., (0.56, 0.93) 
for subject W.M. and (0.47, 0.90) for subject E.A. Experiment 3 consisted of three 
sessions. In the first session (N = 4), subjects performed a 100-trial practice block, 
two 150-trial threshold measurement blocks and three 150-trial testing blocks 
in the order HML. In the second session (N = 4), subjects performed a 100-trial 
practice block and five 150-trial testing blocks in the order MMLMH. In the third 
session (N = 2), subjects performed a 100-trial practice block, followed by four 
150-trial blocks in the mixed condition. Experiment 4 consisted of two sessions, 
organized in the same way as the first two sessions of experiment 3. The same 
three subjects (two authors, one naive) participated in experiments 3 and 4.

experiments 1a and 2a: manipulating bar contrast at N = 2. Experiments 1a 
(homogeneous distractors) and 2a (heterogeneous distractors) were identical to 
experiments 1 and 2, respectively, except for the following differences. Set size 
was always 2. Three subjects (two of them authors) participated in both experi-
ments. Background luminance was 95 cd m−2. Each item was an oriented bar of 
dimensions 0.3 by 0.8 deg. Target orientation was −45° and distractor orientation 
was −35° for RB and −30° for subjects W.M. and S.K. These values were chosen 
to ensure that for each subject, asymptotic accuracy at high contrast exceeded 
87.5%. The procedure consisted of practice, threshold measurement and testing 
and was analogous to that of experiment 4. During threshold measurement, a 
psychometric curve was mapped out to determine 62.5% and 87.5% thresholds. 
These contrasts provided the low and high values of reliability throughout the 
experiment. In experiment 1a, these pairs were (5.6%, 20%) for subject R.B., 
(3.8%, 7.8%) for subject S.K. and (4%, 11%) for subject W.M. In experiment 2a, 
they were (4.8%, 14%) for subject R.B., (2.9%, 9.6%) for subject S.K. and (4%, 
12%) for subject W.M. Stimulus duration was 300 ms during practice and 33 ms 
during threshold measurement and testing.

model predictions. An experimental condition is a combination of target pres-
ence, set size and reliability condition (LOW, MIXED, HIGH). Generating model 
predictions for each condition consisted of choosing parameter values, simulating 
observations for 100,000 trials using those parameters and letting the model make 
decisions on the simulated observations.

In experiments 1 and 3, the model parameters (denoted θ), were σlow, σhigh 
and five decision criteria (in all models), as well as σassumed (in the single-reliabil-
ity model). Internal representations xi were drawn independently from normal 
distributions with identical variances, σi

2, and means of 10° (target) and 0° (dis-
tractor). Here, σi is either σlow or σhigh. In experiments 2 and 4, the internal rep-
resentation of a stimulus was drawn from a Von Mises distribution centered at the 
stimulus orientation and with concentration parameter κi (either κlow or κhigh). In 
the maxx, sumx, L2 and L4 models, the local decision variable was taken to be the 
output of a Poisson neuron with a Von Mises tuning curve that responded most 
strongly to the target orientation: ri = Poisson(gi exp(κtc cos(2(s – sT))) + b), where 
gi is either glow or ghigh (see Supplementary Results). We chose κtc = 1.5 and  
b = 5 and verified that our results were insensitive to this choice of parameters. 
This suboptimal local decision variable is consistent with earlier proposals15,16 
and, unlike xi, respects the circularity of orientation space. On each simu-
lated trial, a given model infers whether the target is present by computing a 
 global decision variable d from local decision variables {di}, and those in turn 
from the observations {xi} or {ri}. The local decision variable of the optimal, 
 single-reliability, maxd and sumd models in experiments 2 and 4 is given by di=  
−log I0(κi) + κicos(2(xi − sT)), where I0 is the modified Bessel function of the first 
kind of order 0 (see Supplementary Results). In the same four models, the value 
of the parameter σi (or gi or κi) used in the decision variable equals the value used 
in the generative model (for example, σlow or σhigh), except in the MIXED condi-
tion of the single-reliability model, in which each σi (or κi) is equal to σassumed (or 
κassumed). All models contain σlow and σhigh (or κlow and κhigh) as free parameters, 
although the decision variables of some models (single reliability, maxx, sumx, L2, 
L4) do not contain those parameters, as these parameters determine the distribu-
tions of observations and are therefore necessary in the step of simulating those.  
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Once d has been computed for all trials, we can plot its distribution in target-
present and target-absent displays, p(d | T = 1) and p(d | T = 0), as we did in 
Figure 2a. We obtained model ROC curves by varying the decision criterion τ 
along the real line and plotting the resulting hit rates, p(d > τ | T = 1), and false-
alarm rates, p(d > τ | T = 0), against each other, as in Figure 2b.

Comparing the value of d on each trial against the five criteria yielded predic-
tions for response frequencies. The criteria between which d lies on a given trial 
determines which of the six possible responses R (target presence judgment × 
confidence rating) the model makes. The result is a set of predicted frequencies 
for a given model, given model parameters and experimental condition C; we 
denote these by p(R | model,u,C).

Prediction analysis. For each model, we computed the probability of a subject’s 
data given a set of hypothesized parameter values u, p(data | model,u). The data 
on the ith trial, datai, consist of the experimental condition C and the subject’s 
response R. We assume that the data on different trials are independent when 
conditioned on model and parameters. We can then factorize p(data | model,u) 
by organizing the trials by condition C and subject response R 

p p
i
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C R i

( | ) ( | )data model, data model,
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where nR(C) is the number of trials in condition C on which the subject responded 
R. Equation (6) is conveniently expressed as a log probability

log | log , ,p n C p R C
C R

Rdata model, |model( ) = ( ) ( )
=

Σ Σ
1

6

This is an inner product between the observed response counts and the pre-
dicted log probabilities. For given model, condition and reliability parameter 
values, possible values of each criterion ranged from the smallest to the larg-
est value of the simulated decision variable in 30 equally spaced steps. After 
computing the likelihood p(data | model,u) of each parameter combination 
u, we numerically marginalized over all five criteria. In experiments 1 and 3, 
this resulted in a likelihood p(data | model,σlow) for the LOW and p(data | 
model,σhigh) for the HIGH condition. We fitted non-normalized Gaussians to 
these parameter likelihoods to reduce the effects of sampling noise and used 
their modes as estimates of σlow and σhigh. We used these estimates to plot the 
fitted LOW and HIGH ROC curves, as well as to predict the MIXED ROCs 
from the model. The analysis for experiments 2 and 4 was identical, but with 
each σ replaced by a κ or g. In all experiments, the single-reliability model has 
an extra parameter, σassumed or κassumed; we estimated its value from the N = 4 
trials in the MIXED condition in experiments 1 and 3, and from all trials in the 
MIXED condition in experiments 2, 4, 1a and 2a.

Roc curves. Cumulative summation of responses across the six response catego-
ries yielded empirical ROC curves. For ROC curves conditioned on target reliabil-
ity, we used the conditioned target-present trials and all of the target-absent trials. 
We approximated the area under the ROC curve by summing the areas of the six 
trapezoids formed by pairs of neighboring ROC points and the x axis. The area 
under a model ROC curve was computed from the trapezoids based on the six 
model points with false alarm rates closest to the false alarm rates in the data.

Bayesian model comparison. We computed the likelihood of each model by 
marginalizing over model parameters u

p p p ddata model data model, model| | |( ) = ( ) ( )∫ qq qq qq

This method utilizes the full statistical power of the data and allows for a fair 
comparison between models with different numbers of parameters49. The first 
factor in the integrand is computed from equation (7). For the prior over param-
eters, p(u | model), we chose a uniform distribution on a reasonable range chosen 
in advance. Our model comparison results were not sensitive to the choice of 
this range. We approximated the integral by a Riemann sum and compared the 
resulting number across models.

(6)(6)

(7)(7)

(8)(8)

neural implementation. Computing the local and global log likelihood ratios 
of target presence requires marginalization: the former over distractor orienta-
tion (when distractors are heterogeneous) and the latter over target location. We 
sought a neural network model that performs both marginalizations near opti-
mally, while simultaneously encoding both Ti and T are in Poisson-like probabil-
istic population codes. We assumed reliability is manipulated through contrast.

Our first aim was to find a mapping, Ri = F(ri), from a Poisson-like input 
pattern of population activity encoding orientation, ri, to a Poisson-like output 
population Ri that optimally encodes local target presence, Ti. This is accom-
plished when the approximate posterior, q(Ti | Ri = F(ri)), is close to the optimal 
posterior computed from the inputs, p(Ti | ri), for each input pattern of activity ri.  
As we desired a Poisson-like population code in the output, we assumed  
q(Ti | Ri) to satisfy
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where λ(x) = 1/(1+exp(−x)) is the logistic function and ∆Hi = Hi(Ti = 1) −  
Hi(Ti = 0). Here Hi(Ti) is the kernel belonging to Ti, in analogy to hi(si), which was 
the orientation-dependent kernel in the input layer. By rewriting equation (9) as
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we see that Poisson-like variability in the output implies that the log likelihood 
ratio of local target presence is linearly decodable from neural activity, Ri (the 
same holds for global target presence). When distractors are homogeneous, we 
can simply choose Ri = ri, Hi(Ti = 1) = hi(sT), and Hi(Ti = 0) = hi(sD); that is, the 
input layer already forms a Poisson-like probabilistic population code for local 
target presence. However, with heterogeneous distractors, the neural operations 
between the first and the second layer need to implement marginalization over 
distractor orientation.

This marginalization constitutes a transformation of the population pattern 
of activity ri, which represents the probability distribution over the stimulus 
at the ith location, into a new pattern of activity Ri that represents the prob-
ability distribution over local target presence, Ti. Even if Hi were known, 
the approximation problem of finding Ri in terms of ri is underconstrained, 
as a large family of functions of ri can yield the same posterior q(Ti | Ri). 
To constrain this problem, we only used operations, F(ri), that are neurally 
plausible and useful in other probabilistic computations. The operations that 
we considered were linear, quadratic and divisive normalization. We tested 
four networks, defined by the following basis sets of operations (the location 
index i of the population is left out here to avoid clutter; the indices j and k 
refer to neurons)
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All ai are constants. We call these networks linear (LIN), quadratic (QUAD),  
linear plus divisive normalization (LDN) and quadratic plus divisive normalization 
(QDN). The jth element of Ri is now a linear combination of the elements of the 
basis set, with weights wi = [wijk]

R w zij
k
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The approximate posterior for a given network is then
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where wik = Σj ∆Hijwijk and wi = [wik]. Thus, the weight matrix wi and the  
output kernel vector ∆Hi are combined into a single vector of unknown 
weights. Finding wi in equation (10) is a logistic regression problem, which 
we treated by applying stochastic gradient descent to the Kullback-Leibler 
divergence between the optimal posterior and the approximate posterior from 
the network. Kullback-Leibler divergence is a principled measure of the dis-
tance between two probability distributions50. Its trial average (at fixed gain) 
can be expressed as follows

D p T g q T p T g q Ti i i i i i
i

i i i i iKL | , || | log | , log |r z r r z r
r

( ) ( )( )( ) = ( ) − ii Ti i
( )( ) ,r

where the braces denote an expectation over the joint distribution p(Ti,ri | gi). 
We approximated this average by sampling from the generative model. We 
first randomly drew pairs of data (Ti, si) according to the task statistics. Having 
obtained si, a pattern of activity ri was obtained by sampling from a Poisson-
distributed population of 20 neurons with preferred orientations sij{ } , equally 
spaced on the interval [0,π). The tuning curve of the jth neuron was given by
f s c g c s sij i i i i i ij, exp cos( ) = ( ) −( ) −( )( )k tc 2 1 , where κtc = 2, ci is contrast, and 
gain gi was randomly set to 0.5 for a low-contrast item or to 3 for a high-contrast 
item (it is important that each training set contains trials of both gains). This 
ensured that overall task performance ranged from around 60% correct in the 
low condition to 85% correct in the high condition. From these activity samples 
ri, we obtained basis set samples zi, calculated the network posteriors q(Ti | zi) 
and estimated the gradient of the average Kullback-Leibler divergence. At each 
gradient step, we generated 10,000 novel samples of ri. Both the linear weights 
wi and the weights of the divisive normalization were learned in this way. A 
new set of 10,000 activity samples was drawn to calculate each gradient step. 
Gradient descent was iterated until convergence. We verified convergence of the 
linear weights by comparing the outcome with the posterior obtained through 
variational Bayesian logistic regression applied to a novel set of samples.

(11)(11)

At the completion of the learning phase, an additional 10,000 samples were 
generated at both gains, and network estimates of the posterior over Ti were 
computed using the learned weights. We plotted the estimated posteriors 
against the optimal posteriors in Figure 7c,d and Supplementary Figures 12 
and 13. We obtained the proportion information loss by dividing the average 
Kullback-Leibler divergence between estimated and optimal posterior (equation 
(11)) by the mutual information between Ti and the input activity, ri, defined 
as I T g p T g p Ti i i i i i i Ti i

, ; log | , log ,r r r( ) = ( ) − ( )  (note that this proportion can 
exceed 1). Mutual information was computed through an average over samples, 
just like average Kullback-Leibler divergence.

This procedure was repeated for the second marginalization, using as input an 
optimal Poisson-like population code for local target presence. Marginalization 
over target location requires a network which transforms N population patterns 
of activity R1,…,RN into a population code Rglobal which encodes the global log 
likelihood ratio, d. Thus, there are N gain parameters, rather than just one, as 
in the first marginalization. Gain was chosen independently for each location, 
with gi = 24 and gi = 4 each selected with probability 0.5. At the ith location, a 
population code for local target presence was generated by sampling activity from 
ten independent Poisson neurons (j = 1,…,10) with means conditioned on Ti:  

f T g g T Tij i i i i ij, exp cos( ) = −



 −











k p
tc 2

18
1 . In these (arbitrary) ‘tuning 

curves’ over Ti, we chose κtc = 2, and the set of Tij{ }  were equally spaced on the 
interval [0,π). The same four networks were tested as for the first marginalization 
but with ri replaced by R. Network ROC curves (Fig. 8) were obtained from the 
population in the third layer.

48. Brainard, D.H. The Psychophysics Toolbox. Spat. Vis. 10, 433–436 (1997).
49. MacKay, D.J. Information Theory, Inference and Learning Algorithms (Cambridge 

University Press, Cambridge, UK, 2003).
50. Cover, T.M. & Thomas, J.A. Elements of Information Theory (John Wiley & Sons, 

New York, 1991).
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