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1 Theory 

1.1 Global log likelihood ratio 
Optimal decisions are based on the probabilities of the alternatives given the noisy 
evidence1. In our experiments, the alternatives are “target absent” (T=0) and “target 
present” (T=1). We call the variable T global target presence. In this section, we use a 
formulation of the model in which observations are patterns of neural activity at all N 
locations, r1,…,rN (Fig. 7a). This formulation is identical to the one discussed in the main 
text, except that population activity ri is used instead of the scalar internal representation 
xi. We will relate the scalar representation to population activity in Section 1.3, but the 
formulation with population activity is more complete because it allows for the automatic 
encoding of sensory uncertainty. The log likelihood ratio of global target presence (also 
called global decision variable) is defined as 
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We now review the derivation of the expression for d in terms of locally defined 
quantities2-4. We assume that given target presence (0 or 1) at each location, the 
variability in population activity ri is conditionally independent between locations. As a 
consequence, when the target is absent, the probability of observing r1,…,rN is equal to 
the product of the probabilities of each pattern ri given that the ith location contains a 
distractor (Ti=0): 
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If the target is present, it can be located at any of the N locations. We denote by 
p(Ti=1|T=1) the probability that location i contains the target in a target-present display. 
The probability of observing r1,…,rN if the target is present is obtained by marginalizing 
out target location, i.e., taking a weighted average over all possible target locations:  
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The conditional probability p(r1,…,rN|Ti=1) is computed by using the fact that if the 
target is present at the ith location, then it is absent at all other locations: 
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Here, di is the local log likelihood ratio (also called local decision variable) at location i, 
defined as 
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Dividing Eq. (S4) by Eq. (S2) and taking the log, we find the global log likelihood ratio 
as 
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Finally, we assume that all locations are equally likely to contain the target and the 

observer uses this knowledge, so that p(Ti=1|T=1)=1N. Then Eq. (S6) becomes 
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which is Eq. (2) in the main text. If d is positive, the observer’s response is “target 
present”, otherwise “target absent”; this is maximum-a-posteriori readout. It is important 
to note that Eq. (S8) holds regardless of the noise model at a given location, p(ri|Ti). It 
does not depend either on whether we use ri, xi, or some other variable to describe the 
local observations. The only assumptions we have made are that each location is equally 
likely to contain the target and that variability is conditionally independent between 
locations. The next step is to further evaluate the local log likelihood, di.  

1.2 Local log likelihood ratio (neural form) 
Eq. (S5) expresses the local log likelihood ratio in terms of the probabilities of the 
activity in the ith population, ri, given target absence or presence at that location. These 
probabilities are obtained by marginalizing over si, the stimulus at that location: 
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Since the target always has value sT, the numerator is equal to p(ri|sT).  
 When the reliability of the stimulus is unknown, the stimulus likelihood, 
L(si)=p(ri|si), must be obtained by marginalization over the nuisance parameters ci, such 
as contrast. The most important feature of Poisson-like variability (Eq. (5) in the main 
text) is that this marginalization does not affect the form of the stimulus-dependence of 
the likelihood: 
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For the local log likelihood ratio, Eq. (S9), this implies 
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Population activity ri only appears in a specific combination, namely through the local 
(unnormalized) stimulus likelihood function 
 

       | i i is
i i iL s p s e   h rr . 

 
The width of this stimulus likelihood function is a measure of sensory uncertainty 
associated with the observation at the ith location on the given trial. The local decision 
variable, Eq. (S11), and therefore also the global decision variable, are functionals of the 
stimulus likelihood function5.  

Since the target always has value sT, the numerator in the second line of Eq. (S11) 

is equal to exp(hi(sT)ri). The denominator depends on the distractor distribution, 
p(si|Ti=0). We consider the two cases used in our experiments: homogeneous distractors, 
and heterogeneous distractors drawn from a uniform distribution. 
 
Homogeneous distractors  
In Experiments 1, 1a, and 3, distractors are homogeneous, that is, they all have the same 
orientation. Moreover, this orientation has the same value, sD, on all trials. (The optimal 
decision rule is different when the common distractor orientation varies from trial to trial, 
even if the target-distractor difference is kept constant by varying the target orientation as 
well.) In other words, the distractor distribution is a delta function. Then we have 
p(ri|Ti=0)=p(ri|sD), and from Eq. (S5), 
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When we substitute Poisson-like neural variability with stimulus-dependent kernel hi(s), 
the local log likelihood ratio becomes 
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In other words, the local log likelihood ratio is a linear combination of the activities of 
the neurons in the population (Fig. S11a). Although the variance σi

2 does not appear 
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explicitly in Eq. (S13) as it did in Eq. (3) in the main text, it does influence the decision 
variable. This is because in a probabilistic population code, the gain of ri is inversely 

related to the variance, σi
2 6. Specifically, the relationship between hi(s)ri, xi, and σi

2 is5 
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Heterogeneous distractors 
In Experiments 2 and 4, distractors are heterogeneous and drawn independently from a 
uniform distribution over orientation, that is, p(si|Ti=0)=1/π. Substituting in Eq. (S11) and 
assuming Poisson-like variability, we find 
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Unlike the local log likelihood ratio in the homogeneous case, this is a nonlinear function 
of ri. The integral can, in general, not be evaluated analytically.  

1.3 Local log likelihood ratio (behavioral form) 
We modeled the psychophysics results using the optimal model described above, with the 
modification that we reduced neural population activity ri to a scalar observation, xi. This 
scalar observation is the maximum-likelihood estimate of s obtained from the population 

activity,  ˆi ML ix s r . (This population interpretation is to be contrasted with a previous 

interpretation in terms of single-neuron activity7.) The maximum-likelihood estimate can 
be thought of as a noisy internal representation of the stimulus, that is, xi=si+noise. Using 
xi instead of ri is simpler, and sufficient to model behavioral experiments, as long as we 
keep in mind that the uncertainty associated with this observation, σi, is also encoded in ri. 
The scalar observation xi is assumed to obey a normal distribution centered at the true 
stimulus orientation, si, with standard deviation σi: 
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We can now express the local log likelihood ratio in terms of xi and σi: 
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As we did for the neural form, we evaluate this for each distractor distribution. 
 
Homogeneous distractors (Eq. (3)) 
We compute the local log likelihood ratio for homogeneous distractors by substituting Eq. 
(S15) in Eq. (S16): 
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which is Eq. (3) in the main text. Thus, the local log likelihood ratio is simply a linear 
combination of the observations xi. However, the coefficients in the linear combination 
are determined by the reliability of the local observation, 1/σi

2. 
 
Heterogeneous distractors 
When distractors are heterogeneous, the observations xi are no longer distributed in a 
narrow range of orientations as in the homogeneous case, but instead can take on all 
possible orientations. Since orientation space is circular, a Gaussian noise model as in Eq. 
(S15) is no longer appropriate. Instead, we use a von Mises distribution8: 
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which is defined on the circular space [0,π). Here, κi is called the concentration parameter 
(which is a function of ri, just like xi is), and I0 is the modified Bessel function of the first 
kind of order 0 9. Substituting in Eq. (S16), we find 
 

  

 

 

 
 

 

     
   

cos 2

0

0
0

0 0

0

1

|
log log

11 ||

log cos 2 log |

log cos 2 .

i i Tx s

i T i
i

i i ii i i

i i i T i i i

i i i T

e
p x s I

d
p x s dsp x s ds

I x s p x s ds

I x s



 



 



 

 



 

    

   



  (S19) 

 
We see that in the case of heterogeneous distractors, the local log likelihood ratio of 
target presence, di, is nonlinearly related to the maximum-likelihood estimate xi. 
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1.4 Relation of optimal model to max and sum models 
Previous studies of visual search have modeled the rule by which local information gets 
combined into a global decision variable. They typically assumed fixed target and 
distractor stimuli, and found that max and sum models often describe human behavior 
well2, 7, 10-12. Here, we point out their relationships to the optimal model.  

In the maxx model, the global decision variable is obtained from local 
observations through a maximum operation: 
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In the sumx model, the decision variable is obtained by summing: 
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Both simple rules are special cases of the optimal model. Starting from Eq. (S8) for the 
global log likelihood ratio, we first consider the approximation in which the local log 
likelihood ratio at one location is substantially larger than at all other locations. Then the 
sum is dominated by its largest term, and Eq. (S8) becomes 
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This is, up to a set size-dependent shift, the maxd decision variable. We saw in Eq. (S17) 
that if distractors are homogeneous and reliabilities are equal, di is linearly related to xi. In 
that case, Eq. (S22) is equivalent to the maxx rule, Eq. (S20), except that the optimal 
decision criterion is now no longer 0. 

We next consider the special case in which all di are small in absolute value, |di|<1, 
which tends to occur when target and distractors are similar. Then we can perform a 
Taylor series expansion in Eq. (S8), to find 
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This is proportional to the sum of the local log likelihood ratios, and therefore this 
approximation reduces to the sumd model. Again in the case of homogeneous distractors 
and equal reliabilities, di is linearly related to xi, and d in Eq. (S24) becomes equivalent to 
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the decision variable of the sumx model, Eq. (S21). It should be noted that the condition 
|di|<1 is hard to satisfy due to the tails of the Gaussian distribution obeyed by xi. 
 Although the maxx and sumx rules are special cases of the optimal rule, the 
optimal rule is valid in much greater generality, namely for arbitrary reliabilities and 
target and distractor distributions. 

1.5 Non-optimal local decision variables 
Here, we specify the maxx, sumx, L

2, and L4 models for heterogeneous distractors. When 
distractors are homogeneous, the local decision variable in these models is the internal 

representation xi, which is drawn from a normal distribution with mean si and variance i
2. 

For homogeneous distractors, this is a reasonable choice, because coordinates can always 
be chosen such that the target orientation has a higher value than the distractor orientation, 
so that a target will tend to produce higher values of xi than a distractor. When distractors 
are heterogeneous however, the choice of local decision variable in models that do not 
use the local log likelihood ratio is less simple, since distractors can have all possible 
orientations. This means that there is no natural coordinate frame in which the target is 
larger than the distractors. This can be addressed by taking the local decision variable to 
be the response of a “detector” that responds most strongly to the target7, 13. This idea can 
be implemented in several ways. We chose a neurally inspired way in which the detector 
is a Poisson neuron with a Von Mises tuning curve over orientation. Its spike count ri in 
response to a stimulus si is drawn from a Poisson distribution with mean f(si,gi), where gi 
is the gain at the ith location (determined by the parameter that manipulates reliability, 
such as contrast). The mean is given by tuning curve of the neuron: 
 

       tc, exp cos 2 1i i i i Tf s g g s s b    . 

 
Here, κtc is the concentration parameter of the tuning curve, which we set to 1.5, and b is 
the baseline activity, which we set to 5.  

2 Behavioral experiments 

2.1 Experiments 1a and 2a 
Data were analyzed as in Experiments 1 to 4. ROCs of individual subjects in Experiment 
1a are shown in Figure S5, and of Experiment 2a in Figure S6. Solid lines are model fits. 
MIXED ROC areas and model log likelihoods relative to the optimal model are shown in 
Figure S9. All values are negative for all subjects, indicating that the optimal model fits 
best. This is consistent with the results from Experiments 1 to 4.  



9 
 

2.2 Individual-subject ROCs 
Figures S1 to S6 show the predicted ROCs in the MIXED condition for each experiment, 
each individual subject, and each model. A few remarks: 

 For a pair of MIXED ROCs conditioned on target reliability (low or high), the 
same set of “target absent” data was used to obtain the false-alarm rates. 

 The single-reliability (1r) model produces the same fits in LOW and HIGH as the 
optimal model. This is expected, since the models are equivalent when reliability 
is equal across all items and trials.  

 Partially or wholly below-chance ROCs are due to conditioning on target 
reliability. Unconditioned ROCs do not go below chance. 

 Non-concave ROCs for some models arise from a large difference between the 
fitted reliability values in LOW and HIGH. Unconditioned ROCs for the optimal 
model are always concave. 

Figure S7 to S9a shows the area under the MIXED ROC (AUC) averaged over subjects, 
for each experiment, each target reliability condition, and each model. Figure S10 shows 
for each model, each homogeneity condition (homogeneous or heterogeneous) and each 
set size a scatter plot of actual versus predicted MIXED ROC area across all individual 
subjects, all experiments and both target reliability conditions.  

We performed a 4-way ANOVA with factors observer type (data or model), 
stimulus type (bar or ellipse), distractor type (homogeneous or heterogeneous), and target 
reliability (low or high) on the combined AUC data of all six experiments. Main effects 
of observer type are shown in Table S1. No main effect or interactions were found for the 
optimal and maxd model. 

 
Table S1: Main effect of observer type on AUC across all experiments, for each model 

Model Main effect of observer type Conclusion 

optimal F(1,108) = 0.14, p = 0.71 - 
1r F(1,108) = 10.18, p = 0.0019 ruled out 
maxx F(1,108) = 21.64, p < 0.0001  ruled out 
maxd F(1,108) = 0.05, p = 0.82 - 
sumx F(1,108) = 29.16, p < 0.0001 ruled out 
sumd F(1,108) = 16.81, p < 0.0001 ruled out 
L2 F(1,108) = 24.63, p < 0.0001 ruled out 
L4 F(1,108) = 26.16, p < 0.0001 ruled out 

 

2.3 Bayesian model comparison 
Table S2 shows the results of Bayesian model comparison. Values are means  s.e.m. 
across subjects. The factor by which the optimal model is more likely than the alternative 
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model is given by the exponential of a value in the table. The optimal model is most 
likely across all experiments and all alternative models. 
 
Table S2: Log likelihood of the optimal model minus the likelihood of each alternative 
model (columns) for each experiment (row). Mean and standard error across subjects. 
 1r maxx maxd sumx sumd L2 L4 
1 28.0 ± 1.8 14.4 ± 3.0 25.9 ± 2.2 30.9 ± 2.2 29.1 ± 1.5 22.6 ± 1.6 22.6 ± 2.3
2 11.4 ± 1.6 10.1 ± 3.9 8.6 ± 0.8 25.1 ± 5.4 6.1 ± 1.6 16.6 ± 5.0 12.3 ± 4.4
3 14.5 ± 3.1 14.1 ± 4.0 5.6 ± 0.6 18.9 ± 5.1 10.2 ± 1.7 21 ± 11 19.9 ± 9.8
4 14.0 ± 4.0 24.2 ± 3.5 56 ± 20 22.1 ± 4.7 16.3 ± 3.8 22.3 ± 5.0 25.1 ± 4.2
1a 7.5 ± 1.2 8.1 ± 0.9 5.2 ± 0.8 8.8 ± 0.1 4.8 ± 1.1 8.7 ± 1.6 8.6 ± 1.9
2a 11.1 ± 4.6 21.0 ± 7.0 60 ± 11 23.6 ± 2.6 31.2 ± 5.4 22.7 ± 4.6 24.2 ± 4.4

3 Neural implementation 

3.1 Intuition behind a nonlinearity 
Figure S11c illustrates why marginalizing over distractor orientation requires a nonlinear 
operation when distractors are heterogeneous. We simulated a large number of population 
patterns of activity at a single location, with gain randomly drawn from a large range and 
orientation drawn from a uniform distribution. For every pattern, we took the inner 
product with the vector formed by the cosines of twice the preferred orientations of the 
neurons in the population, and with the vector formed by their sines (the factor 2 serves 

to map orientation space [0,) onto the circle). The resulting vector is commonly known 

at the population vector14. The target, assumed to be at 0, is detected if the second layer 
responds strongly whenever the point falls within the cone-shaped region delimited by 
the red parabola. This can be achieved if the second layer uses a quadratic nonlinearity, 
since a parabola is a quadratic function. When distractors are homogeneous, a linear 
boundary in activity space suffices. 

3.2 Network performance 
Scatter plots shown in Figures 7c-d, S12-14 demonstrate the manner in which the tested 
networks fail to accurately represent the optimal posterior distribution. Bias is indicated 
by a deviation from the diagonal and lack of reliability by a large variance. In all cases, 
the network parameters were learned as described above. 

Figure S12 shows network results for the first marginalization when distractors 
are homogeneous. As indicated in the main text, a Poisson-like probabilistic population 
code already exists in the input layer in this case. Since all tested networks include a 
purely linear network as a subset, it is not surprising that for all of the tested networks, 
learning converged to the optimal solution. 

Figure S13 shows network results for the first marginalization when distractors 
are heterogeneous. In this case, the optimal decision boundary is nearly quadratic (Fig. 7b) 
and the linear networks (LIN and LDN) fail. The quadratic network (QUAD) is capable 
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of consistently representing the true probability only when contrast is known. This is 
indicated by a reliable, monotonic relationship between the network-estimated probability 
and the true probability of target presence when conditioned on contrast (Fig. 7c left 
panel, or Fig. S13b). Indeed, if we present only a single value of contrast when learning 
the network parameters, the approximation to the posterior estimated by the quadratic 
network is unbiased (not shown). While a quadratic nonlinearity allows the second layer 
to discriminate between a target and a distractor, it fails to satisfy the requirement that all 
layers use Poisson-like probabilistic population codes. The right panel of Figure 7c (S13d) 
shows that the addition of divisive normalization to the quadratic network (QDN) is 
sufficient to eliminate the need to know the contrast of the stimulus in order to reliably 
estimate the posterior over target presence. Intuitively, one could say that the function of 
the divisive normalization is to properly scale the network output so that the distance 
from the decision bound in Figure 7b is proportional to the log likelihood ratio.  

The same trends hold for the marginalization over target location between the 
second and third layer, as shown in Figures 7d and S14. Specifically, note that the LIN 
and LDN networks are both biased (systematic deviation from the diagonal) and 
unreliable (large variance). The QUAD network is quite reliable but biased. It is unbiased 
when the local contrasts are known (not shown). Using a quadratic nonlinearity with 
divisive normalization (QDN), the third layer encodes a low-variance and unbiased 
estimate of the optimal posterior. Figure S15 indicates that the QDN network loses less 
information than the other tested networks on both marginalizations. 

3.3 Effect of non-Poisson-like statistics 
The Poisson-like statistics of the input population represent a sufficient condition for the 
optimality of the QDN networks used to implement inference in this task. In order to give 
some insight into the reason for our choice of Poisson-like statistics, it is useful to 
consider a situation in which optimal inference fails due to non-Poisson-like statistics of 
the inputs. Recall that a Poisson-like population code representation of a posterior 
distribution results from a likelihood which can be parameterized by  
 

       | , , exp ( )p s c c s r r h r , (S25) 

 
where the stimulus-dependent kernel, h(s), depends only on s and not on nuisance 
parameters such as contrast, denoted by c. This restriction on h(s) is non-trivial as h(s) is 
related to two quantities which often do depend on the nuisance parameter c, namely the 
tuning curve, f(s,c), and covariance, Σ(s,c), according to the equation 
 

  1'( ) ( , ) '( , )s s c s ch Σ f , (S26) 

 
where the prime denotes a derivative with respect to the stimulus s.  
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 We repeated the procedure used to demonstrate the near-optimality of the QDN 
network (and the suboptimality of the other networks) on an input population which does 
not satisfy this characteristic of a Poisson-like population. In particular, we continued to 
use input neurons whose activity is independent and Poisson, but now assumed that an 
increase in contrast modulates the width of the tuning curve, rather than its amplitude. 
Thus, the gain parameter g was fixed and the concentration parameter κtc was contrast-
dependent:  

         tc, exp cos 2 1j jf s c g c s s   . (S27) 

 
For populations of independent Poisson neurons, the stimulus-dependent kernel is given 

by the log of the tuning curve, i.e.,       tc, log cos 2 1j jh s c g c s s    . Its 

derivative with respect to s depends on c, and therefore the input population is not 
Poisson-like. 

We showed that when the input population was Poisson-like and distractors were 
homogeneous, all networks were capable of near-optimal marginalization over 
orientation (Fig. S15a). This was because the input population was already a Poisson-like 
code for target presence. This is not the case when the stimulus-dependent kernel depends 
on contrast and the variability therefore deviates from Poisson-like. For instance, the 
linear network (LIN) is no longer capable of performing optimal inference (Fig. S16a, 
LIN). The QDN network, however, is capable of performing near-optimal inference (Fig. 
S16a, QDN) because it implements a marginalization over contrast rather than over 
distractor distribution (since the marginalization over distractors is trivial in this case). By 
contrast, all networks, including QDN, are suboptimal when the distractor distribution is 
uniform (Fig. S16b). This is because we are effectively asking the networks to implement 
two marginalizations, one over contrast and one over the distractor distribution, which it 
cannot do: 

         | | , |i i i i i i i i i ip T p s c p s T p c ds dc r r . 

 
Compare this to Eq. (S11), where the contrast dependence factorizes out. A comparison 
of Figures S15a and S16c reinforces this point: while the QDN network lost less than 2% 
information in the heteregenous case with Poisson-like variability, the information loss 
jumped close to 30% when the variability was no longer Poisson-like.  
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Figure S1. Receiver operating characteristics of individual subjects (rows) in Experiment 1 (bar contrast manipulation,
homogeneous distractors, set sizes 4, 6, and 8). Dots are data and lines are model fits/predictions. Trials in the MIXED condition are
grouped by set size. DB and SN are naïve subjects; JB and VN are authors. Subject SN is also shown in Figures 4a and 8a.
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Figure S2. Receiver operating characteristics of individual subjects (rows) in Experiment 2 (bar contrast manipulation, heterogeneous
distractors, set size 4). Dots are data and lines are model fits/predictions. Fewer than five dots in a plot means that the subject did not use all
possible responses (present/absent × confidence ratings). Trials in the MIXED condition are grouped by target reliability. AI, MD, and VB are
naïve subjects; VN is an author (also shown in Figures 4b and 8b). Below-chance ROCs are due to conditioning on target reliability.
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Figure S3. Receiver operating characteristics of individual subjects (rows) in Experiment 3 (ellipse eccentricity
manipulation, homogeneous distractors, set sizes 2 and 4). Dots are data and lines are model fits/predictions. Trialsp , g , ) p
in the MIXED condition are grouped by set size. EA is a naïve subject; RB and WM are authors.



MIXED MIXEDMIXED

Fitted Predicted

LOW HIGH

EA

1

0.5

ec
tio

n 
ra

te
Target low reliability Target high reliabilityAll

1
0

D
et

e
n 

ra
te Optimal

1r
Max

Data

RB

1
0

0.5

D
et

ec
tio

e

Maxx
Maxd
Sumx
Sumd
L2

L4

Chance

WM

0

0.5

0 10 5 0 10 5 0 10 5 0 10 5

D
et

ec
tio

n 
ra

te

0 10 5

Chance

0 10.5 0 10.5 0 10.5 0 10.5

False-alarm rate False-alarm rate False-alarm rate False-alarm rate

Figure S4. Receiver operating characteristics of individual subjects (rows) in Experiment 4 (ellipse eccentricity manipulation,
heterogeneous distractors set size 2) Dots are data and lines are model fits/predictions Trials in the MIXED condition are grouped

False-alarm rate

0 10.5

heterogeneous distractors, set size 2). Dots are data and lines are model fits/predictions. Trials in the MIXED condition are grouped
by target reliability. EA is a naïve subject; RB and WM are authors. Below-chance ROCs are due to conditioning on target reliability,
non-concave ones are due to a large difference in the fitted parameters glow and ghigh.
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Figure S5. Receiver operating characteristics of individual subjects (rows) in Experiment 1a (bar contrast manipulation,
homogeneous distractors, set size 2). Dots are data and lines are model fits/predictions. SK is a naïve subject; RB and WM are
authors.
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operation types: LIN – linear; QUAD – quadratic; LDN – linear with
divisive normalization; QDN – quadratic with divisive normalization.
Color indicates stimulus contrast.
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characterizations are as in Figure S12. Color indicates stimulus contrast.
Note that panels b and d are identical to the plots shown in Figure 7c.
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