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The juxtaposition of established signal detection theory models of perception and more recent claims
about the encoding of uncertainty in perception is a rich source of confusion. Are the latter simply a
rehash of the former? Here, we make an attempt to distinguish precisely between optimal and probabi-
listic computation. In optimal computation, the observer minimizes the expected cost under a posterior
probability distribution. In probabilistic computation, the observer uses higher moments of the likelihood
function of the stimulus on a trial-by-trial basis. Computation can be optimal without being probabilistic,
and vice versa. Most signal detection theory models describe optimal computation. Behavioral data only
provide evidence for a neural representation of uncertainty if they are best described by a model of prob-
abilistic computation. We argue that single-neuron activity sometimes suffices for optimal computation,
but never for probabilistic computation. A population code is needed instead. Not every population code
is equally suitable, because nuisance parameters have to be marginalized out. This problem is solved by
Poisson-like, but not by Gaussian variability. Finally, we build a dictionary between signal detection the-
ory quantities and Poisson-like population quantities.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

‘‘The [authors state] that the encoding of an animal’s uncertainty is
the key point distinguishing models encoding probability distribu-
tions from those encoding estimates. Wrong. Signal detection
theory has been used for decades to correlate an animal’s perfor-
mance with the degree to which neurons discriminate between
alternative choices. [. . .] The idea is that the animal can no better
discriminate between alternative choices than can an ideal obser-
ver observing the neurons representing those choices. The neural
responses are often well correlated by this measure with the ani-
mal’s performance, including when the animal gets it less than
100% right, which represents uncertainty. So the encoding of uncer-
tainty, either explicitly or implicitly in the less-than-perfect
discriminability of the activities of populations representing alter-
natives, provides no evidence for [computation with probability
distributions].” – Anonymous reviewer, 2009

In the past 50 years, signal detection theory has been used exten-
sively to model human and animal perception (e.g., Burgess, 1985;
Green & Swets, 1966; Macmillan & Creelman, 2005; Peterson, Bird-
sall, & Fox, 1954). Typically applied to binary (two-alternative) deci-
sions, the central idea is that an observer computes the log posterior
ratio of two alternatives, and compares its value to a criterion to
make a decision. Observer errors arise from the variability (also
called noise) in the observations used to compute the log posterior
ll rights reserved.
ratio. As the quoted reviewer points out, it is now standard practice
to use signal detection theory to quantify the discrimination perfor-
mance of a neuron (Bradley, Skottun, Ohzawa, Sclar, & Freeman,
1987; Britten, Shadlen, Newsome, & Movshon, 1992; Newsome,
Britten, & Movshon, 1989; Parker & Newsome, 1998).

A more recent development is the application of Bayesian mod-
eling to cue combination (Clark & Yuille, 1990; Knill & Richards,
1996). While signal detection theory is also Bayesian, the novelty
here is that the optimal observer weights observations (cues) by
their respective reliabilities when combining them. Humans (Alais
& Burr, 2004; Battaglia, Jacobs, & Aslin, 2003; Ernst & Banks, 2002;
Jacobs, 1999; Knill, 1998a, 1998b; Knill & Richards, 1996; Knill &
Saunders, 2003; Landy, Maloney, Johnston, & Young, 1995; Ma,
Zhou, Ross, Foxe, & Parra, 2009; Reuschel, Drewing, Henriques,
Roesler, & Fiehler, 2010; van Beers, Sittig, & Denier van der Gon,
1996; van Beers, Sittig, & Gon, 1999) and monkeys (Gu, Angelaki,
& DeAngelis, 2008) follow the predictions of the optimal cue com-
bination model rather closely. Human near-optimality has also
been found in other perceptual tasks, including visual speed dis-
crimination (Stocker & Simoncelli, 2006), the cueing task (Shimo-
zaki, Eckstein, & Abbey, 2003), visuomotor learning (Kording &
Wolpert, 2004), causal inference (Kording et al., 2007), visual-
memory integration (Brouwer & Knill, 2007), oddity detection
(Hospedales & Vijayakumar, 2009), tactile trajectory perception
(Goldreich, 2007), combining sensory information with reward
(Whiteley & Sahani, 2008), and visual search (Ma, Navalpakkam,
Beck, & Pouget, 2008b; Palmer, Verghese, & Pavel, 2000; Vincent,
Baddeley, Troscianko, & Gilchrist, 2009).
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Weighting observations by reliability requires knowledge of
reliability, which can be regarded as a property of a probability dis-
tribution over the stimulus. Therefore, the above psychophysical
findings are often regarded as support for theoretical (Anastasio,
Patton, & Belkacem-Boussaid, 2000; Anderson, 1994; Barlow,
1969; Deneve, 2008; Fiser, Berkes, Orban, & Lengyel, 2010; Foldiak,
1993; Hoyer & Hyvarinen, 2000; Jazayeri & Movshon, 2006; Ma,
Beck, Latham, & Pouget, 2006; Pouget, Dayan, & Zemel, 2003; San-
ger, 1996; Zemel, Dayan, & Pouget, 1998) and neurophysiological
(Gu et al., 2008; Kepecs, Uchida, Zariwala, & Mainen, 2008; Kiani
& Shadlen, 2009; Morgan, DeAngelis, & Angelaki, 2008; Yang &
Shadlen, 2007) investigations of the neural encoding of probability
or uncertainty in perceptual decision-making.

Here, we offer a cautionary tale. In many instances, Bayesian
near-optimality does not provide evidence for a neural representa-
tion of probability, reliability, or uncertainty. Only when a psycho-
physics experiments satisfies a number of requirements does such
evidence exist. While the majority of signal detection theory studies
do not provide evidence for computation with probability distribu-
tions, the quoted reviewer was incorrect in stating that observers in
those models still possess an implicit encoding of uncertainty by vir-
tue of not performing perfectly. Conversely, it is possible that an ob-
server’s behavior is best described by a suboptimal model and still
provides evidence for a neural representation of uncertainty.

2. Neural representation of uncertainty: psychophysical
evidence

We first review the probabilistic approach to perceptual model-
ing. For simplicity, we assume that only one feature dimension is
relevant, e.g., orientation or motion direction. The variables speci-
fying this dimension across all stimuli are denoted by s. This could
be a vector or a scalar, depending on how many stimuli there are;
we will mostly use the singular ‘‘stimulus” for convenience. Sen-
sory input is generated from s, but also depends on other variables
that determine stimulus reliability, such as luminance contrast or
size in an orientation judgment task. We denote these nuisance
parameters by h. In natural environments, they typically change
across time. Sensory input, also called the proximal stimulus or
the observation, is denoted I; in a visual task, it could be the retinal
image. I is generated from s and h through a stochastic process,
reflecting various sources of noise. Therefore, it varies from trial
to trial even when s and h are held fixed. This process can be for-
malized as a conditional probability distribution, p(I|s, h).

2.1. The likelihood function of the stimulus

All information that an observer receives about the stimulus
and the nuisance parameters on a single trial is contained in the
likelihood function, defined as

LIðs; hÞ ¼ pðIjs; hÞ:

The most important thing to keep in mind about this likelihood
function is that its arguments, s and h, are not physical variables
controlled by the experimenter, but variables that describe hypoth-
eses in the mind of the observer. The probability assigned to them is
also called degree of belief (Ramsey, 1926). To obtain the likelihood
function of the stimulus alone, we have to marginalize out the nui-
sance parameters, since they are unknown (Kersten, Mamassian, &
Yuille, 2004; Peterson et al., 1954)1:
1 Here is an everyday example of marginalization: suppose you know for each
province P in a country the proportion of farmers, p(F|P), and the proportion of the
country’s population living in the province, p(P). Then the proportion of farmers in the
entire country, p(F), is a weighted average of the province-specific proportions, with
the weights given by the proportions of the country’s population in each province
p(F)=RP p(F|P)p(P).
:

LIðsÞ ¼ pðIjsÞ ¼
Z

pðIjs; hÞpðhÞdh; ð1Þ

where p(h) is the prior over nuisance parameters (which could in
principle depend on s, but usually is assumed not to). The likelihood
is not a probability distribution, since it is not normalized. We de-
note its normalized version by L�I ðsÞ. Because I varies from trial to
trial, the (normalized) likelihood does as well (Fig. 1a). It can be
parametrized through its moments. For example, if it is a one-
dimensional Gaussian, then it is uniquely specified by its mean x
and variance r2. We can then write

L�I ðsÞ ¼ Lðs; xðIÞ;r2ðIÞÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pr2ðIÞ

p e
�ðs�xðIÞÞ2

2r2 ðIÞ ; ð2Þ

where the notation indicates that the ‘‘summary statistics” x and r2

are functions of I. When there are multiple stimuli, s and x are vec-
tors and r2 is replaced by a covariance matrix. The mean x is a point
estimate of the stimulus, sometimes also called the internal repre-
sentation of the stimulus, the observation, or the measurement.
Since for a Gaussian, the mean equals the mode, x(I) is also the max-
imum-likelihood estimate of the stimulus based on I. The variance
r2(I) is a measure of the uncertainty about the stimulus (which
we will also call ‘‘stimulus uncertainty”, not to be confused with
overlapping class distributions in classification). Like x, it varies
from trial to trial because I does. I in turn varies because the under-
lying true stimulus and nuisance parameters, strue and htrue, vary,
but also because for given strue and htrue, I is drawn from a probabil-
ity distribution. A common approximation to the effect of this sto-
chasticity is that it only affects the mean, x, but not the variance
r2(I) (see Fig. 1b). In that case, variance is simply a function of strue

and htrue, which we denote r2(strue, htrue). We use the label ‘‘true” to
distinguish experimentally controlled variables from the unlabeled
variables s and h, which indicate hypotheses considered by the ob-
server, as in Eq. (1).

2.2. Estimation

Suppose an observer has to estimate a world-state variable C;
this could be a physical feature of the stimulus or a more abstract
variable, such as target presence in visual search. C can be binary,
multi-valued, or continuous. For given input I, the observer’s esti-
mate of C is denoted bC . The estimate follows a probability distribu-
tion, pðbC jIÞ. If the estimator is deterministic, the estimate can be
written as a function of I, bC ¼ FðIÞ, and the distribution pðbC jIÞ is gi-
ven by a delta function. If the Gaussian form of the stimulus likeli-
hood, Eq. (2), is used, then the estimate is a function of x and r2,bC ¼ Fðx;r2Þ.

Since I is the noisy sensory input on a single trial, it is not di-
rectly accessible to the experimenter. Therefore, of interest is com-
monly the probability of bC predicted by the model over many
trials, in a particular experimental condition given by s and h. This
is obtained by marginalizing over I:

pðbC js; hÞ ¼ Z pðbC jIÞpðIjs; hÞdI: ð3Þ

All measures of model observer performance can be computed from
this estimate distribution.

2.3. Optimal inference

An optimal observer estimates C based on the posterior proba-
bility distribution over C given sensory input I on a single trial. This
distribution, p(C|I), quantifies the observer’s degree of belief in all
possible values of C. On each trial, the posterior is computed by
combining the likelihood function, LI(s), with other, task-specific
probability distributions. This is done according to the rules of
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Fig. 1. The likelihood function of the stimulus in probabilistic models of perception. (a) Normalized likelihood functions of the stimulus obtained by repeating the same true
stimulus value many times. (b) Common approximation to the likelihood function: only the mean varies from trial to trial, but the variance is constant. (c) Cue combination:
single-cue likelihoods, p(x1|s) and p(x2|s), and normalized optimal combined likelihood, L�I ðsÞ / pðI1jsÞpðI2jsÞ. The prior was chosen flat. (d) Visual search: example display (top)
and local normalized stimulus likelihood functions (bottom). The likelihood function contains information both about the most likely value of the stimulus, labeled xi, and
about uncertainty about the stimulus (width). In this example, some bars have lower contrast, which leads to wider likelihoods.
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probability calculus and the structure of the generative model, i.e.,
the set of probability distributions through which observations are
generated (see the examples below). A typical generative model is
shown in Fig. 2a. The optimal way to read out the posterior de-
pends on the cost function; one way is the maximum-a-posteriori
(MAP) estimate:bC ¼ argmax

C
pðCjIÞ;

where argmax is the operation of finding the value (here of C) for
which the expression following it is maximized.

Example 1 (Classification). In classification, a stimulus s is drawn
from one of several classes, characterized by probability distribu-
tions p(s|C), where C is the class label (Fig. 2a). The observer has
a b c

Fig. 2. Generative models of a classification task. Stimuli, collectively denoted s, and
nuisance parameters h generate an observation (internal representation) through a
noisy process. The observer has to infer C from the observation. Each arrow
corresponds to a conditional probability distribution. The diagrams differ in their
description of the observations: (a) Abstract sensory input I. (b) Neural population
activity r. (c) Simplified model using summary statistics: the maximum-likelihood
estimate x and its variance.
learned these distributions and has to decide on each trial which
class the stimulus was drawn from. Then the posterior probability
distribution over C is calculated as

pðCjIÞ ¼ pðIjCÞpðCÞ
pðIÞ ¼ pðIjCÞpðCÞP

CpðIjCÞpðCÞ ¼
pðCÞ

R
pðIjsÞpðsjCÞdsP

CpðCÞ
R

pðIjsÞpðsjCÞds

¼ pðCÞ
R

LIðsÞpðsjCÞdsP
CpðCÞ

R
LIðsÞpðsjCÞds

¼ pðCÞ
R

L�I ðsÞpðsjCÞdsP
CpðCÞ

R
L�I ðsÞpðsjCÞds

: ð4Þ

Most signal detection theory models describe binary classifi-
cation. If we choose the values of C to be ±1, then the MAP
estimate is the sign of the log posterior ratio (Green & Swets,
1966),

bC ¼ sgnðdÞ; d ¼ log
pðC ¼ 1jIÞ

pðC ¼ �1jIÞ : ð5Þ

Detection and discrimination are special cases of classifica-
tion; in some classification tasks, such as same-different judg-
ment, more than one stimulus might be present at the same
time.
Example 2 (Cue combination, estimation task). In cue combination,
an observer receives two conditionally independent sensory
inputs, I1 and I2, generated by the same stimulus s. The world-state
variable C is s itself. The posterior is (Clark & Yuille, 1990)

pðsjI1; I2Þ ¼
pðI1; I2jsÞpðsÞ

pðI1; I2Þ
¼ pðI1jsÞpðI2jsÞpðsÞR

pðI1jsÞpðI2jsÞpðsÞds

¼
L�I1
ðsÞL�I2

ðsÞpðsÞR
L�I1
ðsÞL�I2

ðsÞpðsÞds
:

(Fig. 1c). When likelihoods are Gaussian (Eq. (2)) and the prior is

flat, the MAP estimate is ŝ ¼ x1r�2
1 þx2r�2

2
r�2

1 þr�2
2

. This expression has been

tested in many psychophysical studies.
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Example 3 (Homogeneous visual search, yes/no task). In visual
search with homogeneous distractors with a fixed value, an obser-
ver detects whether a target stimulus with value sT is present
(C = 1) or absent (C = �1) among N stimuli s1, . . . , sN, with corre-
sponding sensory inputs I1, . . . , IN. Distracters have a value sD. We
make the assumption that nuisance parameters are uncorrelated
across locations, which is unrealistic in natural scenes. At each
location, a likelihood LI,i(si) = p(Ii|si) is computed (Fig. 1d). When
the prior probability of target presence equals ½, the log posterior
ratio is ((Peterson et al., 1954), Eq. 162):

pðC ¼ 1jI1; . . . ; INÞ
pðC ¼ �1jI1; . . . ; INÞ

¼ 1
N

XN

i¼1

pðIijsi ¼ sTÞ
pðIijsi ¼ sDÞ

¼ 1
N

XN

i¼1

L�Ii
ðsTÞ

L�Ii
ðsDÞ

¼ 1
N

XN

i¼1

exp
sT � sD

r2
i

xi �
sT þ sD

2

� �� �
; ð6Þ

where the last equality holds when likelihoods are Gaussian (Eq.
(2)). Here too, xi is weighted by 1=r2

i . When distractors are hetero-
geneous, integrals like the one in Eq. (4) appear.

In all examples, we see that the posterior over C is a functional
of L�I ðsÞ:

pðCjIÞ ¼ UC ½L�I ðsÞ� ð7Þ

(a functional is a function of a function and its argument is put in
square brackets). The form of UC depends on the task, as seen in
the examples. Eq. (7) expresses that the likelihoods over the stimuli
form the building blocks from which the posterior is constructed.
When the normalized likelihood is parametrized by its moments,
for example x and r2 when it is a one-dimensional Gaussian, then
the posterior over class, p(C|I), will be a function of those moments,
p(C|I) = U(C;x(I), r2(I)). In the Gaussian case, since L�I ðsÞ depends on
x and r2 only through the form (s � x)2/r2 (Eq. (2)), those variables
will appear in the posterior and MAP estimate only in the combina-
tions x/r2 and x2/r2. This explains why weighting is always by 1/r2,
as in the examples.

2.4. Model concepts

We can now formulate the following model concepts (Fig. 3):

� A probabilistic model is a model in which the trial-to-trial obser-
vations are stochastic when the presented stimulus and nui-
sance parameters are fixed, i.e., I is a random variable for
given s and h. Due to variability in I, the estimate bC will also
be a random variable, with a distribution given by Eq. (3). All
signal detection theory and Bayesian models are probabilistic,
but limited-capacity or high-threshold models are not (Green
& Swets, 1966).
� A Bayesian or optimal (observer) model (or model of optimal

computation) is a model in which the observer’s estimate of C
Fig. 3. Schematic of perceptual computation. The observer estimates a world-state variab
on stimulus likelihood functions LI(s) or Lr(s). The posterior over C is a functional of the l
posterior C but may be independent of higher moments of the stimulus likelihood. When
Gaussian probability density function over s with mean x and variance r2.
minimizes the expected cost under the posterior distribution,
p(C|I).
� A model of probabilistic computation is a probabilistic model in

which the observer, on every trial, utilizes not only on a point
estimate x of the stimulus to estimate C or decision confidence,
but also at least one other parameter (higher moment) of the
normalized stimulus likelihood L�I ðsÞ that is independent of that
point estimate. If the normalized stimulus likelihood is Gauss-
ian, this means that the observer utilizes trial-to-trial knowl-
edge of (co)variance. A model in which the observer’s
estimates are functions of x only is not a model of probabilistic
computation. The higher moments of the likelihood are collec-
tively called uncertainty about the stimulus. Therefore, probabi-
listic computation requires the neural representation of
uncertainty. It does not necessarily require the neural represen-
tation of the exact values of the normalized likelihood, which is
why we avoid the term ‘‘neural representation of probability”.

These notions differ in the following ways. Many probabilistic
models are neither optimal nor describe probabilistic computation,
for example, a model with sensory noise in which the observer
guesses randomly. It is possible for optimal computation to be
non-probabilistic, and for probabilistic computation to be subopti-
mal. If an optimal observer performs MAP estimation but the MAP
estimate only depends on x (and no decision confidence is esti-
mated), the model is non-probabilistic, even though the posterior
which the MAP estimate is derived from always depends on the full
likelihood function (Eq. (7)). This happens in numerous tasks,
including discrimination between two stimuli sA and sB (optimally
done by comparing x to (sA + sB)/2), detection (similar to discrimi-
nation), and cue combination under equal likelihood widths (opti-
mally done by an unweighted average of observations). In general,
equal likelihood widths do not guarantee that the optimal estima-
tor is non-probabilistic: in Eq. (6), even when ri is independent of i,
the MAP estimate still depends on ri. On the other hand, not all
probabilistic computation is optimal. For example, in cue combina-

tion, the estimator ŝ ¼ x1r�1
1 þx2r�1

2
r�1

1 þr�1
2

is probabilistic because it depends

on ri, but it is not optimal (for a given cost function, there can only
be one optimal estimator). To our knowledge, all models of proba-
bilistic computation that have been found to describe human data
best have also been models of optimal computation. However, this
might be because of the tasks that have been studied so far and dif-
ficulty in finding appropriate suboptimal models.

An observer who uses a non-probabilistic estimator of C still
performs probabilistic computation if a higher moment of the
stimulus likelihood is utilized on a trial-to-trial basis to estimate
confidence or certainty about the estimate of C. Decision confi-
dence is relevant when the observer has to report it, as in a signal
detection theory rating experiment (Green & Swets, 1966; Macmil-
lan & Creelman, 2005), or use it for behavioral output (Kepecs et al.,
le C from observations I (abstract form) or r (neural form). All computation is based
ikelihood function. When computation is optimal, the estimate of C is based on this
computation is probabilistic, those higher moments are used. N(s; x, r2) denotes the
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2008; Kiani & Shadlen, 2009). In optimal inference, decision confi-
dence can, for instance, be quantified using the variance or the en-
tropy of the posterior distribution, p(C|I) (for a continuous variable
C) or as the absolute value of the log posterior ratio (for a binary
variable C). Since the posterior distribution depends on uncertainty
about the stimulus, decision confidence does as well. When the ob-
server’s decision process does not use the optimal posterior distri-
bution, it might still be possible to define decision confidence. For
example, when he uses a wrong generative model, there is still a
(wrong) posterior; when a decision variable is compared to a crite-
rion, the distance between the two is a measure of confidence.
However, in suboptimal observer models, confidence does not nec-
essarily depend on stimulus uncertainty. For confidence estimation
to be regarded as probabilistic computation, it must depend on
stimulus uncertainty, and stimulus uncertainty must be indepen-
dent of the stimulus estimate and unknown in advance to the
observer.

In some cases, it is possible to approximate an optimal estima-
tor that depends on stimulus uncertainty by a suboptimal estima-
tor that does not. Several applications of signal detection theory to
perception have considered such non-probabilistic, suboptimal
estimators (Pelli, 1985). A common example is the maximum-of-
outputs (or max) model of visual search (Eckstein, 1998; Eckstein,
Thomas, Palmer, & Shimozaki, 2000; Green & Swets, 1966; Nolte &
Jaarsma, 1966; Palmer et al., 2000), which uses, in visual search
with homogeneous distractors, the estimator bC ¼sgnðmaxi xi � cÞ,
where c is an arbitrary criterion. This max estimator is a reasonable
approximation of the optimal estimator when the variances r2

1 are
equal and we are only interested in the receiver operating charac-
teristic (ROC), rather than the specific value of the criterion c. (The
ROC is swept out by varying the criterion along a continuum.)
Although the max rule is not an optimal estimator, it has the
advantage that the observer does not need to know r. Similarly,
the signed-max rule (Baldassi & Verghese, 2002), the sum rule
(Baldassi & Burr, 2000; Graham, Kramer, & Yager, 1987; Green &
Swets, 1966), and the maximum-of-differences rule (Palmer
et al., 2000) are suboptimal and non-probabilistic.

2.5. Evidence for a neural representation of uncertainty

The distinctions made in the previous section allow us to out-
line criteria which a psychophysics experiment should satisfy in
order to provide evidence for probabilistic computation, and there-
fore for a neural representation of uncertainty. These criteria are:

� Behavioral data are best described by a model in which the
observer makes his decision using independent higher
moments of the normalized likelihood function (stimulus
uncertainty), for example r2(I) in the Gaussian case. ‘‘Best
described by” can be made precise using Bayesian model com-
parison (MacKay, 2003). The model does not need to be optimal.
� In the experiment, these higher moments are not known to the

observer in advance. In practice, this means that (a) feedback
during testing is absent or limited; (b) the observer is not
trained extensively with feedback on the same values of nui-
sance parameters as are used in testing (Whiteley & Sahani,
2008); (c) preferably, the values of the nuisance parameters
vary randomly from trial to trial instead of per block or not at
all.

Consider an experiment in which the nuisance parameters h are
fixed throughout an experiment and feedback is given on every
trial during testing. Then, the observer would be able to gradually
learn the values of the nuisance parameters and thus the higher
moments of the normalized likelihood function L�I ðsÞ (this would
be harder if the higher moments also depend on the stimulus itself,
and the stimulus varies from trial to trial). Once this is accom-
plished, there is no need for the brain to maintain a trial-to-trial
representation of L�I ðsÞ. Any subsequent computation would by def-
inition be non-probabilistic. Therefore, a finding of near-optimality
of a human observer in such an experiment would not provide evi-
dence for a representation of uncertainty. In some signal detection
theory and Bayesian studies (such as Jacobs, 1999; Kording et al.,
2007; Palmer et al., 2000; Shimozaki et al., 2003; van Beers et al.,
1996; Vincent et al., 2009), nuisance parameters were fixed and
could be learned by the observer. These studies might demonstrate
that humans perform optimal computation, but not that uncer-
tainty is encoded on each individual trial.

Although it is best to minimize feedback when the goal is to
demonstrate probabilistic computation, a complete lack of feed-
back is not always feasible. Training is often necessary to familiar-
ize the subject with the task or to make the subjects learn prior
distributions (such as the class distributions p(s|C) in Example 1).
Then, longer presentation times, higher contrasts etc. can be used
in training than in testing. If feedback during testing is necessary,
like when testing non-human primates, then it is advisable to
use many different values of the nuisance parameters, so that it be-
comes harder to train on each individual one.
3. Neural representation of uncertainty: beyond single neurons

So far, we have described the observations, I, as unspecified sen-
sory input. Now, we would like to represent I by a neural quantity,
as a first step towards understanding how neurons implement
probabilistic computation (Fig. 2b). We limit ourselves to codes
in which neural activity is measured by spike count or firing rate.
The traditional view in systems neuroscience is that the firing rate
of a single neuron represents the decision variable in a perceptual
task. We argue that this view is limited to non-probabilistic com-
putation (whether optimal or not), and that population codes are
needed for probabilistic computation (whether optimal or not).

3.1. Standard view: one neuron fits all

The notion that single neurons are the key to the neural basis of
perception has guided systems neuroscience at least since Barlow
(Barlow, 1972). As indicated in the opening quote, by using the fir-
ing rate of a single neuron as the decision variable, signal detection
theory methods can be used to compare the discrimination perfor-
mances of a single neuron and of the animal (Bradley et al., 1987;
Britten et al., 1992; Newsome et al., 1989; Parker & Newsome,
1998). The idea is that in binary decisions, there exists a one-to-
one correspondence between the activity of a single neuron on
an individual trial, r, and the value of the of the log posterior ratio
of the two alternatives, d from Eq. (5), on that trial. Neural activity
is variable even when the same stimulus is presented repeatedly
(Dean, 1981; Tolhurst, Movshon, & Dean, 1982), and this variability
would correspond to the variability in d induced by variability in
sensory input, I. We examine two applications of this idea, to dis-
crimination and visual search.

Example 4 (Discrimination with a single Gaussian neuron). An
observer discriminates between two stimulus values, sA and sB.
We denote the neuron’s mean responses to these values by f(sA, h)
and f(sB, h). Previous authors have modeled neural variability, for
given nuisance parameters h, as Gaussian (Britten et al., 1992; Gold
& Shadlen, 2001; Newsome et al., 1989):

pðrjs; hÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pr2

neuralðhÞ
q e

� ðr�f ðs;hÞÞ2

2r2
neural

ðhÞ; ð8Þ
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where r2
neutralðhÞ is the variance of the neuron’s firing rate (see

Fig. 4a). The neuron’s response on a single trial is taken as the inter-
nal representation of the stimulus. Then, the log likelihood ratio is

log
LrðsA;hÞ
LrðsB;hÞ

¼ log
pðrjsA;hÞ
pðrjsB;hÞ

¼ f ðsA;hÞ� f ðsB;hÞ
r2

neuralðhÞ
r� f ðsA;hÞþ f ðsB;hÞ

2

� �
:

ð9Þ

Optimal inference amounts to estimating that the stimulus is sA

when r > (f(sA, h) + f(sB, h))/2. If h is fixed and known, or f does not
depend on h, this single neuron will discriminate as well as the opti-
mal observer, regardless of rneural.
Example 5 (Homogeneous visual search with single Gaussian neu-
rons). In visual search with homogeneous distractors with a fixed
value (Example 3), the observer has to report whether a target is
present among N stimuli. If each stimulus is encoded by one neu-
ron, the observer makes a decision on the basis of the spike counts
{ri} of N neurons. All neurons are tuned identically, with their mean
activity in response to the target higher than to the distractor. It
has been proposed that, as in Example 4, ri corresponds to the noisy
internal representation of a stimulus, and that the decision variable
d = maxi xi, discussed in Section 2.3, corresponds to taking the max-
imum activity across all neurons: d = maxi ri (Verghese, 2001). As
mentioned there, this decision rule is close to optimal with respect
to the ROC as long as nuisance parameters are identical for all stim-
uli and fixed across trials.

These examples show that a single neuron per stimulus is capa-
ble of optimal or near-optimal inference, as long as the computa-
tion is non-probabilistic. Then, the only information the observer
needs on a given trial is the maximum-likelihood estimate of the
stimulus. Since this is a single number, it can be encoded by the fir-
ing rate of a single neuron.

3.2. Single neurons cannot perform probabilistic computation

When computation is probabilistic, the observer uses higher
moments of the stimulus likelihood that are independent of a point
estimate of the stimulus. Can this be realized with a single Gauss-
ian neuron, as described in the previous section? We consider two
cases for the nuisance parameters h: fixed or variable. If h is fixed
and known with value htrue, the stimulus likelihood is Lr(s;
htrue) = p(r|s; htrue). This will in general not be a Gaussian function
(Fig. 4b and c). The maximum-likelihood estimate is the solution
of the equation f(s) = r, whereas higher moments depend on r
and htrue. Since the only free parameter is r, higher moments are
either constant or functions of the maximum-likelihood estimate
(Fig. 4d). Therefore, it is impossible to encode stimulus uncertainty
p(r|strue=sA)p(r|strue=sB) Lr*(s)
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Fig. 4. Computation with single neurons. (a) Gaussian distribution of a single neuro
discrimination task. (b) Normalized likelihood functions of the stimulus for a single
f ðsÞ ¼ g �expð�s2=ð2r2

tcÞÞ (with g = 10 and rtc = 1), responding to a true stimulus value 0. (
variability (with rneural = 1) and a sigmoid tuning curve f(s) = g/(1 + exp(�as) (with g = 1
variance versus the maximum-likelihood estimate, for the neurons in (b) and (c). When
completely correlated with each other.
on a trial-to-trial basis as an independent variable, and computa-
tion cannot be probabilistic.

If, on the other hand, h varies from trial to trial (for example, the
contrast of a bar whose orientation is of interest is chosen
randomly from multiple values), or is fixed but unknown, the
likelihood has two free parameters. Although in principle, two
independent moments can be encoded, the value of one of the
parameters, h, is not known so cannot be utilized. One could pro-
pose two solutions to this problem. The first is to estimate h on
each trial through a separate mechanism, but this would require
at least one additional neuron to encode that estimate. For exam-
ple, in a study of decision-making, it has been proposed that time
elapsed until the activity of an accumulator neuron reaches a deci-
sion termination bound can serve as a proxy of h (Kiani & Shadlen,
2009). This strategy seems only reliable in tasks that allow the
integration of information over hundreds of milliseconds. More-
over, in general, substituting a point estimate of h is suboptimal,
since h cannot be estimated with infinite precision. The other solu-
tion, which is optimal, is to marginalize h out in a way analogous to
Eq. (1):

LrðsÞ ¼ pðrjsÞ ¼
Z

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pr2

neuralðhÞ
q e

� ðr�f ðs;hÞÞ2

2r2
neural

ðhÞpðhÞdh: ð10Þ

In this expression however, regardless of the form of p(h), the only
free parameter left is r and the same argument can be made as
when h is fixed and known. It follows that in neither solution, a sin-
gle neuron is sufficient for probabilistic computation.

This extends to estimation of decision confidence. In the dis-
crimination task of Example 4, decision confidence can be quanti-
fied as the absolute value of the log likelihood ratio, and can
therefore be computed from the activity of a single neuron. How-
ever, this is under the assumption that h is fixed and known.

This problem is not limited to neurons with Gaussian variabil-
ity. For example, if a neuron’s variability is described by a Poisson
distribution,

pðrjs; hÞ ¼ e�f ðs;hÞðf ðs; hÞÞr

r!
;

then we find for the likelihood function:

Lrðs; hÞ ¼ pðrjs; hÞ / e�f ðs;hÞf ðs; hÞr :

Both the maximum-likelihood estimate of s and the variance (or any
higher moment) of the normalized likelihood function will have r as
the only parameter, and are therefore not independent. Marginali-
zation over h, similar to Eq. (10), does not help.

We conclude that regardless of whether nuisance variables are
marginalized out, a single neuron cannot perform probabilistic
2 Gaussian tuningL *(s)
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neuron with Gaussian variability (with rneural = 1) and a Gaussian tuning curve

c) Normalized likelihood functions of the stimulus for a single neuron with Gaussian
0 and a = 0.5), responding to a true stimulus value 0. (d) Scatter plot of likelihood

the likelihood is bimodal (in (b)), the higher mode is chosen. The two quantities are
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computation, because higher moments are either constant and do
not need to be encoded, or are functions of the point estimate and
are therefore not independent measures of stimulus uncertainty.

3.3. Marginalization is a problem for Gaussian population codes

Since a single neuron is inadequate for probabilistic computa-
tion, i.e., to encode and utilize uncertainty about the stimulus on
a trial-by-trial basis, a code involving multiple neurons is called
for. In cortex, many stimuli elicit activity in large populations of
neurons, and multiple theoretical schemes have been proposed
for how a population could encode uncertainty (Ma, Beck, & Pou-
get, 2008a; Pouget et al., 2003). Here, we use the framework of
probabilistic population coding, in which the stimulus likelihood
is directly derived from neural variability in the same way as in
Section 2, where we described the observations as sensory input.

Given the prominence of the single Gaussian neuron model for
discrimination, a reasonable first try would be to consider a popu-
lation of Gaussian neurons. We denote by f1(s, h), . . . , fn(s, h) the
tuning curves of the neurons in a population, and by r = (r1 , . . . , rn)
a specific pattern of activity. The simplest assumption for the rela-
tionship between the neurons is that they are independent,
although that is not necessary for the following argument. A pop-
ulation of independent neurons with Gaussian variability is de-
scribed by the following conditional probability distribution:

pðrjs; hÞ ¼
Yn

j¼1

pðrjjs; hÞ ¼
Yn

j¼1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pr2

neuralðhÞ
q e

�
ðrj�fj ðs;hÞÞ

2

2r2
neural

ðhÞ :

The likelihood is obtained by marginalizing over h:

LrðsÞ ¼ pðrjsÞ ¼
Z Yn

j¼1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pr2

neuralðhÞ
q e

�
ðrj�fj ðs;hÞÞ

2

2r2
neural

ðhÞ

0B@
1CApðhÞdh; ð11Þ

We think of this likelihood function as being encoded in the
population.2 The function has n parameters, r1 to rn, thereby allow-
ing for the encoding of stimulus uncertainty on a trial-by-trial basis.
The number of neurons equals the number of independent moments
that can be encoded: with two neurons, one can encode a mode or
mean and a variance, with three neurons also skewness, with four
neurons also kurtosis, etc. Therefore, a population of Gaussian neu-
rons can, in principle, be used for probabilistic computation. How-
ever, there are several other problems with Eq. (11), that already
exist in the single-neuron case of Eq. (10). First, the likelihood and
therefore the uncertainty about the stimulus depend on the param-
eter prior, p(h). Second, a neural circuit must be able to compute the
integral in Eq. (11). Finally, apart from any probabilistic consider-
ations, the domain of a normally distributed variable is the entire
real line, while neural activity is non-negative; this leads to inconsis-
tency when the mean firing rate is low. These problems are reason to
consider other forms of neural variability.

3.4. Gaussian neuron–antineuron system

In the context of a motion direction discrimination task, it has
been proposed that a system of two uncorrelated neurons with
Gaussian variability (and equal variances) implements the log like-
lihood ratio (Gold & Shadlen, 2001). This is a special case of the
population of Gaussian neurons in the previous section. Let the
stimulus values to be discriminated be sA and sB. The first neuron
2 It is often stated that a neural population encodes a posterior distribution over the
stimulus (Ma et al., 2006; Pouget et al., 2003). The more accurate statement is that it
encodes a normalized likelihood function of the stimulus. The stimulus prior is not
encoded without further assumptions.
responds to these stimuli with mean activities f1(sA) and f1(sB).
The mean responses of the other neuron are reversed, f2(sA) = f1(sB)
and f2(sB) = f1(sA). If the nuisance parameters are known, the log
likelihood ratio is

log
Lr1 ;r2 ðsA; hÞ
Lr1 ;r2 ðsB; hÞ

¼ log
pðr1; r2jsA; hÞ
pðr1; r2jsB; hÞ

¼ log
pðr1jsA; hÞpðr2jsA; hÞ
pðr1jsB; hÞpðr2jsA; hÞ

¼ 1
2r2

neuralðhÞ
ð�ðr1 � f1ðsAÞÞ2 � ðr2 � f2ðsAÞÞ2

þ ðr1 � f1ðsBÞÞ2 þ ðr2 � f2ðsBÞÞ2Þ

¼ f1ðsAÞ � f1ðsBÞ
r2

neuralðhÞ
ðr1 � r2Þ: ð12Þ

When confidence is measured as the absolute value of the log
likelihood ratio, it is then directly proportional to the absolute dif-
ference between the activities of the neuron and the antineuron.
However, this is not probabilistic computation, since h is assumed
known. If h is not known, it has to be marginalized over, as in Eq.
(11). This leads to the expression

log Lr1 ;r2 ðsAÞ
Lr1 ;r2 ðsBÞ

¼ log
R

pðr1 ;r2 jsA ;hÞpðhÞdhR
pðr1 ;r2 jsB ;hÞpðhÞdh

¼ log
R

pðr1 jsA ;hÞpðr2 jsA ;hÞpðhÞdhR
pðr1 jsB ;hÞpðr2 jsA ;hÞpðhÞdh

¼ log

R
1

r2
neural

ðhÞ
exp � 1

2r2
neural

ðhÞ
ððr1�f1ðsAÞÞ2þðr2�f2ðsAÞÞ2Þ

� �
pðhÞdhR

1
r2

neural
ðhÞ

exp � 1
2r2

neural
ðhÞ
ððr1�f1ðsBÞÞ2þðr2�f2ðsBÞÞ2Þ

� �
pðhÞdh

:

This expression is a lot less palatable than Eq. (12). This illustrates
the problem with Gaussian (and in fact many other types of) vari-
ability: as long as the population contains at least two neurons,
probabilistic computation is possible in principle, but difficult in
practice because of the marginalization over h.

3.5. Poisson-like population codes solve the marginalization problem

The marginalization problem is solved if population variability
is Poisson-like (Ma et al., 2006), which is defined as

pðrjs; hÞ ¼ uðr; hÞehðsÞ�r; ð13Þ

where u is an arbitrary function of r and h. This is a family of distri-
butions characterized by a set of functions h(s), with one hi(s)
belonging to each neuron in the population. These functions can
be computed from the tuning curves of the neurons, f(s, h), and
the covariance matrix of the population (Ma et al., 2006). Poisson-
like variability solves the marginalization problem, because the
likelihood function of the stimulus is

LrðsÞ ¼ pðrjsÞ ¼
Z

pðrjs; hÞpðhÞdh ¼
Z

uðr; hÞehðsÞ�rpðhÞdh

¼
Z

uðr; hÞpðhÞdh

� �
ehðsÞ�r / ehðsÞ�r: ð14Þ

The key feature of this equation is that unlike in Eq. (11), the h-
dependent factors in the integral are separable from the s-depen-
dent ones. As a consequence, the normalized likelihood when the
nuisance parameters are marginalized out, L�rðsÞ, is identical to
the normalized likelihood when they are known, L�rðs; hÞ. Specifi-
cally, the normalized likelihood is independent of the prior over
nuisance parameters, p(h). Therefore, uncertainty about the stimu-
lus can be estimated from the population activity r without knowl-
edge of h. This is the most important benefit of Poisson-like
variability.

Poisson-like variability is not the only form of variability that al-
lows a separation of the s- and h-dependent factors in marginaliz-
ing over h. One could replace the neural activity r in the exponent
in Eq. (13) by any function of r to achieve the same result. How-
ever, there are good reasons to use a linear function. First, it turns
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out to be consistent with the observed property of neural firing
that its variance is approximately proportional to its mean (Ma
et al., 2006). Second, for the special case of independent Poisson
variability, the function is linear (see Section 3.7). Third, the linear-
ity allows for simple neural implementations of optimal cue com-
bination (Ma et al., 2006) and optimal decision-making (Beck et al.,
2008; Ma et al., 2006).

3.6. Laplace approximation to the Poisson-like likelihood function

After normalization, the neural likelihood, Eq. (14), is close to a
Gaussian distribution when the product of the number of neurons
and the gain is sufficiently large (Figs. 1a and 5b). When this prod-
uct is lower, the likelihood may cease to look Gaussian but will typ-
ically still have a dominant peak that can be reasonably
approximated by a Gaussian (Fig. 5b). This is called the Laplace
approximation (MacKay, 2003). The maximum-likelihood estimate
is

x ¼ argmax
s

pðrjsÞ ¼ argmax
s
ðhðsÞ � rÞ: ð15Þ

We expand the exponent in Eq. (14) about the maximum-like-
lihood estimate:

hðsÞ � r ¼ hðxÞ � rþ ðh0ðxÞ � rÞðs� xÞ þ 1
2 ðh

00ðxÞ � rÞðs� xÞ2 þ . . .

¼ hðxÞ � rþ 1
2 ðh

00ðxÞ � rÞðs� xÞ2 þ . . .

ð16Þ

Under this approximation, we can write the normalized likelihood
as a Gaussian distribution,

L�rðsÞ �
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pr2ðrÞ
p e

�ðs�xðrÞÞ2

2r2 ðrÞ ; ð17Þ

where the variance

r2ðrÞ ¼ � 1
h00ðxÞ � r

ð18Þ

measures the uncertainty about the stimulus. It varies from trial to
trial even when the nuisance parameters are fixed and known
(Fig. 1a). The approximate likelihood function, Eq. (17), is the neural
equivalent of the more abstract expression in Eq. (2); the latter can
be regarded as a Laplace approximation to a general likelihood
function. If h(s) is quadratic, Eq. (17) is exact because the higher-or-
der terms in the Taylor series, Eq. (16), vanish. Then, the neural and
abstract likelihoods can be equated exactly; this gives

hðsÞ � r ¼ ða � rÞs2 þ ðb � rÞs; ð19Þ
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Fig. 5. Computation with populations. The generative model is in Fig. 2b. (a) A populatio
from�90 to 90 in steps of 3. Tuning curves are Gaussian with width 20, gain 1, and baseli
stimulus in Fig. 1a were obtained from activity patterns in this population. In spite of the
(green) to a non-Gaussian likelihood function (blue). (c) Example of an optimal decisio
stimulus value sA from two flanking values, sA � Ds and sA + Ds. We use the notation D
function would have linear equi-color lines.
with a�r = �1/(2r2) (consistent with Eq. (18)) and b�r = �x/r2. The
Laplace approximation will break down under high uncertainty,
i.e., when the product of number of neurons and gain is very low.

3.7. Example: independent Poisson population

Independent Poisson variability is a special case of Poisson-like
variability, in which the neurons are assumed conditionally inde-
pendent. The distribution of activity is given by

pðrjs; hÞ ¼
Yn

j¼1

pðrjjs; hÞ ¼
Yn

j¼1

e�fjðs;hÞfjðs;hÞ
rj

rj!
:

We now assume that the h-dependence is separable, i.e.,
fj(s, h) = g(h)fj(s). This would not hold if the nuisance parameters af-
fected the width of the tuning curve. Under this assumption,

LrðsÞ¼pðrjsÞ¼
Z Yn

j¼1

e�gðhÞfjðsÞgðhÞrj fjðsÞrj

rj!

 !
pðhÞdh

¼exp
Xn

j¼1

rj logfjðsÞ
 !Z

exp �gðhÞ
Xn

j¼1

fjðsÞ
 ! Yn

j¼1

gðhÞrj

rj!

 !
pðhÞdh

/exp
Xn

j¼1

rj logfjðsÞ
 !

;

where in the last step we have assumed that
P

j fj(s) = constant. This
is approximately satisfied when the tuning curves are shifted ver-
sions of each other, and preferred orientations are equally and clo-
sely spaced. Again, Lr(s) does not depend on the form of p(h). Here,
hj(s) = log fj(s).

We further work out the case of equal-width Gaussian tuning
curves. The tuning curve of the jth neuron is

fjðsÞ ¼ e
�
ðs�spref

j
Þ2

2r2
tuning ;

where spref
j is the preferred stimulus of the jth neuron and rtuning is

the width of the tuning curve. Then the likelihood function is

LrðsÞ / exp � 1
2r2

tuning

Xn

j¼1

rj s� spref
j

� �2
 !

:

After rewriting, the maximum-likelihood estimate is found to be

xðrÞ ¼
P

j
rjs

pref
jP

j
rj

; this is known as the center-of-mass or (on a periodic

space) the population vector decoder (Georgopoulos, Kalaska, Cam-
initi, & Massey, 1982). The variance of the likelihood function is
sized stimulus

5 5
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n pattern of activity. Neurons are ordered by their preferred stimulus, which ranges
ne 0.1. Variability is independent Poisson. The normalized likelihood functions of the
low gain, these likelihood functions are close to Gaussian. (b) Laplace approximation
n variable d(r) that is nonlinear in neural activity r. The task is to discriminate a
h± = h(sA ± Ds) � h(sA). The value of the decision variable is color-coded. A linear
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r2
tuningP

j
rj

, i.e., the uncertainty about the stimulus is determined by the

width of the tuning curve and the total activity in the population.
The variance is independent of the maximum-likelihood estimate,
so the population activity encodes two independent numbers that
vary from trial to trial and together specify the stimulus likelihood
completely. Therefore, this population can be used for probabilistic
computation. Since h(s) is quadratic, Eq. (17) is exact.

3.8. Optimal neural computation

In optimal computation, the posterior over C is a functional of
the normalized stimulus likelihood (Eq. (7)). This posterior is
now based on neural activity and we denote it p(C|r). If we adopt
Poisson-like probabilistic population codes, Eq. (14), the neural
equivalent of this expression is

pðCjrÞ ¼ UC ½hðsÞ � r�;

with UC a task-dependent functional. When h(s) is quadratic, as in
Eq. (19), p(C|r) reduces to a function of a�r and b�r.

Example 6 (Discrimination). We return to Example 4, discrimina-
tion between sA and sB, but now based on Poisson-like population
activity r. The log likelihood ratio is
d ¼ log
pðrjs ¼ sAÞ
pðrjs ¼ sBÞ

¼ hðsAÞ � r� hðsBÞ � r � Dh � r; ð20Þ

where the last equality is just a notation. This shows that the opti-
mal decision variable after marginalizing out the nuisance parame-
ters is a linear combination of population activity. Confidence can
be measured by the absolute value of Dh�r. In contrast to Example
4, no separate estimation of nuisance parameters is needed for
either reporting decision confidence or optimal downstream
computation.
Example 7 (Classification). We return to Example 1. Expressed in
terms of neural activity, the likelihood of class is

pðrjCÞ ¼
Z

pðrjsÞpðsjCÞds ¼
Z

LrðsÞpðsjCÞds:

The optimal decision variable is based on the log posterior ratio of
the two classes, as in Eq. (4):

d ¼ log
pðC ¼ 1Þ

pðC ¼ �1Þ þ log
pðrjC ¼ 1Þ

pðrjC ¼ �1Þ

¼ log
pðC ¼ 1Þ

pðC ¼ �1Þ þ log
R

LrðsÞpðsjC ¼ 1ÞdsR
LrðsÞpðsjC ¼ �1Þds

: ð21Þ

Thus, the optimal neural decision variable depends on the class dis-
tributions p(s|C). Discrimination (Example 6) is a trivial special case,
with p(s|C = 1) = d(s � sA) and p(s|C = �1) = d(s � sB), where d de-
notes the Dirac delta function. A more complex case is when a
C = 1 stimulus takes the value sA, whereas a C = �1 stimulus takes
one of two ‘‘flanking” values, sA � Ds and sA + Ds, with equal proba-
bility. Then we have p(s|C = 1) = d(s � sA) and p(s|C = �1) = [d(s �
sA � Ds) + d(s � sA + Ds)], and the log likelihood ratio is

log
pðrjC ¼ 1Þ

pðrjC ¼ �1Þ ¼ log
R

ehðsÞ�rdðs� sAÞdsR
ehðsÞ�r 1

2 ðdðs� sA � DsÞ þ dðs� sA þ DsÞÞds

¼ � log
eDhþ�r þ eDh��r

2
;

ð22Þ

where Dh± = h(sA ± Ds) � h(sA). In contrast to Example 6, this is a
nonlinear function of population activity (Fig. 5c).
Example 8 (Homogeneous visual search). In visual search with
homogeneous distractors with a fixed value, the log likelihood
ratio of target presence at the ith location is identical to the log
likelihood ratio in discrimination (Example 6), Dhi�ri. The global
likelihood ratio of target presence is obtained by combining these
quantities nonlinearly across locations according to Eq. (6):

pðrjC ¼ 1Þ
pðrjC ¼ �1Þ ¼

1
N

XN

i¼1

eDh
i � ri:

This solves several problems associated with the single-neuron pro-
posal (Example 5). Like the local log likelihood ratio, Dhi�ri can take
both positive and negative values. By contrast, a single neuron’s
spike count is only defined for positive values. Moreover, the local
log likelihood ratio is linear in xi (Eq. (6)) and therefore follows an
approximately Gaussian distribution (see Section 4.1). However, a
single neuron has a spike count distribution that is closer to Poisson,
with variance being proportional to the mean. A Poisson distribu-
tion is similar to a Gaussian only for large means. By contrast, Dhi�ri

is close to normally distributed when there are many neurons, in
view of the central limit theorem, and its variance is not necessarily
proportional to its mean.

A neural network is said to perform optimal computation if it
maps Poisson-like input activity r to output activity z, such that
p(C|z) = p(C|r) = UC(h(s)�r). Trivially, one might take z = r and the
equation holds: every posterior distribution that the brain com-
putes from a visual scene is already encoded in the retina. How-
ever, the purpose of computation is to reformat the input into a
form that is easier to decode. Therefore, one has to impose a con-
straint on z. In previous work, we have required that the output
activity is again a Poisson-like population code (Ma et al., 2006;
Ma et al., 2008b). For a binary variable C, this is equivalent to stat-
ing that the log likelihood ratio of C is linear in z:

d ¼ log
pðzjC ¼ 1Þ

pðzjC ¼ �1Þ ¼ ðHðC ¼ 1Þ �HðC ¼ �1ÞÞ � z

(compare Eq. (20)). Therefore, finding an optimal network amounts
to finding z such that for some H(C),

ðHðC ¼ 1Þ �HðC ¼ �1ÞÞ � z ¼ log
UC¼1½hðsÞ � r�
UC¼�1½hðsÞ � r�

: ð23Þ

One can find the types of operations r ? z needed in an optimal
network by expanding the right-hand side for the task at hand un-
der the assumption that h(s) is quadratic.

4. Signal detection theory with Poisson-like population codes

To conclude, we establish correspondences between signal
detection variables and Poisson-like population quantities (see
Table 1). Therefore, this section deals with binary variables C and
optimal, but not necessarily probabilistic computation.

4.1. The MLE distribution

In Section 2, we described sensory input as an abstract quantity
I, and noted that the maximum-likelihood of the stimulus and the
variance of the normalized stimulus likelihood are functions of I
(Eq. (2)). In the limit that I is highly informative about the stimulus,
the maximum-likelihood estimate itself has an approximately
Gaussian distribution across many trials,

pðxjstrue; htrueÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pr2
MLEðstrue; htrueÞ

q e
� ðx�strue Þ2

2r2
MLE

ðstrue ;htrue Þ: ð24Þ



Table 1
Correspondence between signal detection theory and Poisson-like population quantities.

Signal detection theory quantity Poisson-like population code quantity

Sensory input (observation) I Population activity r
Sensory variability, p(I|s, h) Poisson-like neural variability, p(r|s, h) = u(r, h) exp(h(s)�r)
Marginalized likelihood function, LI(s) = p(I|s) =

R
p(I|s, h)p(h)dh Neural likelihood function independent of p(h), Lr(s) / eh(s)�r

Gaussian likelihood assumption (1D) L�I ðsÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
2pr2ðIÞ
p e

�ðs�xðIÞÞ2

2r2 ðIÞ Laplace approximation to likelihood (1D) L�rðsÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
2pr2ðrÞ
p e

�ðs�xðrÞÞ2

2r2 ðrÞ Exact when

h(s) quadratic
Maximum-likelihood estimate (‘‘internal representation”) x ¼ argmax

s
pðIjs; hÞ x ¼ argmax

s
pðrjsÞ ¼ argmax

s
ðhðsÞ � rÞ Approximation: x � strue � h0 ðstrueÞ�r

h00 ðstrueÞ�r

Variance of likelihood function r2(I) r2ðrÞ � �ðh00ðxÞ � rÞ�1

Variance of x given strue and htrue
1

r2
MLE ðstrue ;htrueÞ

� h 1
r2ðIÞ ipðIjstrue ;htrueÞ Inverse Fisher information 1

r2
MLEðstrue ;htrueÞ

¼ �h00ðstrueÞ � fðstrue; htrueÞ

Signal detection theory decision variable (log posterior ratio over C) dðIÞ ¼ log pðC¼1jIÞ
pðC¼�1jIÞ Functional of h(s)�r dðrÞ ¼ log pðC¼1jrÞ

pðC¼�1jrÞ ¼ log UC¼1 ½hðsÞ�r�
UC¼�1 ½hðsÞ�r� þ log pðC¼1Þ

pðC¼�1Þ

Confidence rating: |d(I)| |d(r)|
Decision variable in discrimination (Gaussian likelihood, flat prior)

dðIÞ ¼ log pðIjsAÞ
pðIjsBÞ ¼

sA�sB
r2 x� sAþsB

2

	 
 Linear combination of population activity, d(r) = (h(sA) � h(sB))�r � Dh�r

Sensitivity d0 in discrimination d0 ¼ sA�sB
r d0 ¼ Dh�ðfðsA ;hÞ�fðsB ;hÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
2DhTð

P
ðsA ;hÞþ

P
ðsB ;hÞÞDh

p
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This is the well-known Gaussian assumption (Green & Swets, 1966).
It is related to but different from the assumption that the normal-
ized likelihood of the stimulus is Gaussian, Eq. (2).

The variance r2
MLE is computed as the inverse of Fisher informa-

tion (Cover & Thomas, 1991; Paradiso, Carney, & Freeman, 1989;
Seung & Sompolinsky, 1993). Fisher information is defined as

Jðstrue; htrueÞ ¼ �
@2

@s2 log pðIjsÞ
* +

pðIjstrue ;htrueÞ

¼ 1
r2ðIÞ

� �
pðIjstrue ;htrueÞ

;

ð25Þ

where the last equality follows from Eq. (2). If we ignore
trial-to-trial fluctuations in r2(I), then the variance of the maxi-
mum-likelihood estimate equals the variance of the normalized
likelihood function. One can think of the pair (x, r2

MLE) as a summary
representation of I. An optimal model of any psychophysical task
can be built self-consistently if one uses those quantities as obser-
vations instead of I (Fig. 2c).

At the neural level, our starting point is Eq. (15) for the maxi-
mum-likelihood estimate. In general, it is not possible to obtain a
closed-form expression for x. However, a decent approximation is
obtained by expanding the function h0(s)�r about the true stimulus
strue (Wu, Nakahara, & Amari, 2001):

h0ðsÞ � r ¼ h0ðstrueÞ � rþ ðh00ðstrueÞ � rÞðs� strueÞ þ . . . ; ð26Þ

and substituting s = x so that the left-hand side vanishes (since x is a
maximum). The result is

x � strue �
h0ðstrueÞ � r
h00ðstrueÞ � r

: ð27Þ

This approximation is exact when h(s) is quadratic, since then the
higher-order terms in Eq. (26) vanish. As in Eq. (25), the variance
of x is approximately given by the inverse of Fisher information,
which is here

r2ðstrue; htrueÞ ¼ �ðh00ðstrueÞ � fðstrue; htrueÞÞ�1
:

4.2. Sensitivity

The optimal choice between the alternatives C = 1 and C = �1 is
based on the log posterior ratio d of Eqs. (5) and (21). The obser-
ver’s performance can be derived from the distributions of d when
the observations (I or r) are drawn from either class across many
trials. These distributions are (in the neural version) given by the
integral
pðdjCÞ ¼
Z Z Z

pðdjrÞpðrjs; hÞpðsjCÞpðhÞdrdsdh; ð28Þ

(compare Eq. (3)), where

pðdjrÞ ¼ d d� log
pðC ¼ 1jrÞ

pðC ¼ �1jrÞ

� �
;

which expresses that the observer performs maximum-likelihood
estimation (an alternative is sampling from the posterior (Mamas-
sian & Landy, 1998)). An ROC is obtained from the distributions of
d conditioned on I being drawn from one of both classes. Sensitivity,
denoted d0, is well-defined if the distributions p(d|C) are approxi-
mately Gaussian for both values of C. This is true in the simple case
of discrimination, Eq. (20). When well-defined, sensitivity is the dif-
ference between the mean values of d under both alternatives di-
vided by the standard deviation of d. For discrimination at
particular true values of the nuisance parameters, htrue, the differ-
ence in means is Dh�(f(sA, htrue) � f(sB, htrue)). The average variance
of Dh�r is DhT(R(sA, htrue) + R(sB, htrue))Dh/2, where ‘‘T” denotes
transpose and R is the covariance matrix of the population. We find
for sensitivity (compare (Johnson, 1980)):

d0 ¼ Dh � ðfðsA; htrueÞ � fðsB; htrueÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2 DhTðRðsA; htrueÞ þ RðsB; htrueÞÞDh

q :

For tasks more complex than discrimination, the distributions in Eq.
(28) often have to be computed numerically, for example through
Monte Carlo simulation.

4.3. Estimating Dh

Identifying the optimal decision variable with a neural popula-
tion quantity is only of practical value if the latter can be computed
from a population recording. If the recorded population activity on
a given trial is r and variability is Poisson-like, we find from Eq.
(20):

pðsAjrÞ ¼
1

1þ expð�Dh � rÞ ¼ KðDh � rÞ; ð29Þ

where K(x) = 1/(1 + exp(�x)) is the logistic function. Estimating Dh
from samples (s, r) is a logistic regression problem, which can be
solved using standard techniques. Here, we use variational Bayesian
logistic regression (VBLR) (Bishop, 2006). We simulated 2500 trials
by drawing population patterns of activity from an independent
Poisson distribution. Fig. 6a shows the theoretical weights Dh
(blue) along with the best VBLR estimate. We did the same for a
simple correlated population (Fig. 6b). Starting with a population



a b c d

Fig. 6. Estimating Dh from simulated neural data. (a) Weights estimated from 2500 trials using variational Bayesian logistic regression in the independent Poisson case (red);
optimal weights are in blue. (b) Simple procedure for creating correlated, approximately Poisson-like populations. For the weights W, we used a translation-invariant
Gaussian profile of width 50. (c) Resulting covariance structure, with the diagonal (variance) removed for visibility. (d) As (a), but for the correlated population. The green line
shows the (scaled) weights under the (wrong) assumption of independence.
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of independent Poisson neurons, we applied a symmetric weight
matrix W with a Gaussian profile of connection strengths; this
was simply chosen as an illustration. The weighted sums Wr were
used as rates for another set of Poisson processes. Neurons in the
output layer became correlated due to shared input. The covariance
structure is shown in Fig. 6c. The resulting population is approxi-
mately Poisson-like, with mean Wf(s) and covariance matrix
R = diag(Wf(s)) + Wdiag(f(s))W, where diag(�) indicates a diagonal
matrix with the argument vector on the diagonal. Using this expres-
sion, we computed the optimal decision weights as Dh = R�1WDf.
These are shown along with the VBLR estimate in Fig. 6d. The
weights differ from the ones obtained if one would wrongly assume
the neurons to be independent.

Once the weights Dh have been estimated, checks can be per-
formed to determine how close the population is to being Pois-
son-like: generalization performance on a new data set
(reconstructing s from r) should be high; Dh should not depend
strongly on nuisance parameters like contrast; no nonlinear deco-
der should perform significantly better than the linear decoder Dh;
and the relationship h0(s) = R�1(s, h)f0(s, h) should hold, where R is
the covariance matrix of the population (though this might be dif-
ficult to estimate in practice). Moreover, a population ROC can be
obtained similarly to a single-neuron ROC, except that Dh�r is used
instead of single-neuron activity. To do this, the proportion of
activity patterns r elicited by sA for which Dh�r exceeds a given cri-
terion c is plotted against the proportion of patterns elicited by sB

that do so. Then, c is varied along the real line to sweep out a curve.
Finally, once Dh has been estimated, Eq. (29) provides the poster-
ior probability distribution over class on a trial-to-trial basis. This
can be correlated with the value of a nuisance parameter that con-
trols uncertainty, or with a behavioral measure of decision
confidence.
5. Summary

In binary decisions usually studied in signal detection theory
models, using a population of neurons with different tuning clearly
leads to increased sensitivity compared to a single neuron (Eck-
stein, Peterson, Pham, & Droll, 2009). Here, we argue that popula-
tion coding is necessary for a more important reason: to allow for
any form of probabilistic computation. Taking the likelihood func-
tion over the stimulus as the central object, we made distinctions
between probabilistic models, models of optimal computation,
and models of probabilistic computation. Every model with sen-
sory noise is a probabilistic model, but only in models of probabi-
listic computation, the observer uses a neural representation of
uncertainty on a trial-by-trial basis. Referring to the opening quote,
it is possible for an observer to be less than 100% correct on a task,
due to noise, and still never encode uncertainty. While all signal
detection theory models are probabilistic, some are not optimal
and many are not models of probabilistic computation (including
models for detection and discrimination, and max and sum models
of visual search). In optimal computation, a posterior is computed,
which always depends on the full likelihood function over the
stimulus; however, for the MAP estimate, only a point estimate
of the stimulus might suffice. Some signal detection theory models
make suboptimal, non-probabilistic approximations to the opti-
mal, probabilistic computation. We have proposed requirements
for a psychophysics experiment to provide evidence for probabilis-
tic computation.

Single-neuron coding is inadequate for probabilistic computa-
tion, because the latter requires that the brain encodes, on a
trial-by-trial basis, at least two numbers for each stimulus, for
example the maximum-likelihood estimate and the variance of
the normalized likelihood function. Population coding allows to
encode uncertainty on a single trial, and Poisson-like variability
additionally solves the problem of marginalization over nuisance
parameters, while being broadly consistent with observed statis-
tics of neural firing.

Since generative models can be made arbitrarily complex, it is
likely that perceptual tasks exist in which the brain has to make
crude approximations to perform inference; this could lead to a
suboptimal model describing behavioral data better than the opti-
mal one (Landy, Goutcher, Trommershauser, & Mamassian, 2007).
However, we speculate that no task exists in which a suboptimal,
non-probabilistic model outperforms an optimal, probabilistic one,
because in realistic situations, taking into account uncertainty is
a crucial element of good behavioral performance. This is a poten-
tial direction for future work. Another active field is the search for
neural implementations of probabilistic optimal computation of
the form of Eq. (23), both theoretically and experimentally.
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