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The Bayesian approach to perception focuses on whether the computations that the brain 
performs in perceiving the world can be described as forms of Bayesian inference. Bayesian 
inference is the process of optimally extracting information from noisy inputs and, if needed, 
combining this information with prior knowledge. The Bayesian approach to perception typically 
involves mathematically precise modeling of perceptual experiments in humans. Central to 
Bayesian inference is Bayes’ rule (also called Bayes’ theorem), named after the 18th-century 
British mathematician and Presbyterian minister Thomas Bayes. Bayes’ rule is a very general 
equation directly derived from the basic tenets of probability theory, but in the context of 
perception, it is based on the fact that the brain’s observations of physical stimuli (such as the 
orientation of a line or the identity of an object) are noisy. It states that the probability that a 
stimulus had a particular value given a set of noisy observations (the posterior probability of the 
stimulus) is proportional to the probability that a stimulus of that value generated those 
observations (the likelihood of the stimulus), multiplied by the probability of the stimulus value 
independent of the observations (the prior probability of the stimulus). In mathematical notation, 
 
p(stimulus | observations) α p(observations | stimulus) x p(stimulus)   (1) 
 
In this equation, p stands for probability, “|” means “given”, and “α” means “proportional to”. (In 
more abstract notation, Bayes’ rule is written as p(A|B) α p(B|A) p(A), where A and B are 
random variables that could refer to the stimulus and the observations, respectively.) We will 
discuss several concrete examples in this article. Ernst Mach (1886) and Hermann von 
Helmholtz (1891) were among the first to apply the idea of Bayesian inference to sensory 
perception, although a very similar notion can be found in the writings of Pierre-Simon Laplace 
(1825). Strong experimental evidence for Bayesian inference in perception started emerging only 
in the 1980s, and we will discuss some of it here. The Bayesian approach to perception should 
not be confused with Bayesian data analysis, which is an area of statistics with applications in 
neuroscience. 
 
Perception as information extraction 
Our percept of the world is a complex composite of pieces of uncertain knowledge extracted 
from noisy and ambiguous sensory inputs. The brain is very different from a recording device 
such as a camera, which accurately captures the light in a visual scene but will not be able to tell, 
for instance, whether there is an animal in the scene. Indeed, in computer vision, sophisticated 
algorithms are used to extract that information. To humans and other animals, such higher-level 
knowledge can be of great ecological importance – for example, an animal in the scene could be 
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a predator. To extract information from sensory inputs, the brain has to perform many different 
manipulations, including combining signals that come from the same source, making decisions, 
planning movements, allocating attention, and storing and retrieving information. Manipulations 
of sensory inputs that aim to extract behaviorally relevant information can be called perceptual 
computations. It is a key question in neuroscience and cognitive science what algorithms and 
mechanisms the brain has developed to perform perceptual computations in the presence of 
uncertainty.  
 
Uncertainty in perception 
Sensory information is uncertain. A lion chasing a giraffe must judge its position, speed, and 
direction of motion to decide when and how to attack, but because the giraffe is running fast, 
these judgments come with large uncertainty. A basketball player trying to pass the ball must 
keep track of the positions of his teammates and of the members of the opposing team, 
sometimes only seeing them out of the corner of his eye. When someone approaching you looks 
familiar, you need to use visual information to decide whether to greet your friend or avoid an 
awkward moment. When you are hiking in the forest and need to decide whether to jump over a 
stream, you have to judge the width of the stream as well as how far you can jump. When you 
are driving on the freeway and the car ahead of you brakes, you determine how to react based on 
uncertain variables such as your car’s distance to it. The central idea of the Bayesian approach is 
to acknowledge this omnipresent uncertainty and ask how the brain can take it into account 
optimally when performing perceptual computations.  
 
An analogy: the apple tree 
Because sensory information is noisy, the brain constantly has to make guesses about the state of 
the world. Clearly, some guesses are better than others. Computing the goodness of possible 
guesses is known as Bayesian inference. Imagine you are shown the locations of some apples 
lying scattered in a field. You are told that the apples fell from a tree recently and are asked to 
guess the location of the tree. Your best guess will probably be somewhere in the middle 
between the apples, since you know that apples don’t fall far from the tree and tend to fall 
roughly evenly in all directions. Not only will you be able to report a best guess of the tree 
location, you will also have an idea how probable each other location in the field is. For example, 
the farther outward a location is, the less you will believe that the apple tree was there. This 
changes if you know that there was a strong wind blowing from the West when the apples fell. 
Your best guess about the location of the tree would then be more to the East than it was before, 
and probabilities assigned to other locations will change accordingly. If you have additional 
information, for example that some areas of the field are swampy, you will be able to adjust your 
probabilities, because you know apple trees tend to grow on solid ground. 
 This example illustrates that one can use noisy observations (the locations of the apples) 
to obtain the probability of each of their possible causes (apple tree positions). However, for this 
to work, you need to know how a given cause generates observations (for example, that apples 
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don’t fall far from the tree). You might also have prior information about causes (such as that 
apple trees tend to grow on solid ground). Using these pieces of knowledge when you are given a 
particular set of observations, will allow you to infer the goodness of possible guesses about the 
stimulus. This is exactly the logic expressed by Bayes’ rule – in this example, it would state that 
the probability of an apple tree location given locations of apples in the field can be computed by 
multiplying the probability of those apple locations given that tree location with the prior 
probability of that tree location. This multiplication is followed by a normalization, which is the 
division by a constant factor to ensure that the total probability of all possible causes is equal to 1 
– a defining property of a probability distribution. One can write this as p(tree location | apple 
locations) α p(apple locations | tree location) x p(tree location).  

Obviously, Bayes’ rule is not just about apple trees. It is very general and widely used in 
fields as different as statistics, economics, computer science, computational biology, and 
nowadays also neuroscience. Moreover, it has practical applications, such as in Bayesian spam 
filters, which calculate the probability that an email is spam based on the words it contains. They 
do this by multiplying the probability of finding those words in a spam email by the prior 
probability that any email is spam, followed by a normalization:  p(spam | words) α p(words | 
spam) x p(spam).  
 
Bayesian inference in perception 
We will now discuss what Bayes’ rule means in the context of perception. The apple tree in the 
example above is analogous to a feature of an event or object in the world, often called the 
stimulus (in a somewhat confusing terminology, the event or object itself is sometimes also 
called the stimulus; it is then understood which of its features is of relevance). This can be a 
simple variable like the orientation of a line, the color of a surface, or the direction of motion of 
an object. It can also be more complicated, like whether a desired object is present in a scene, 
what your coworker just said, the identity of the person approaching you, or how safe it is to 
change lanes on the freeway.  

The apple locations are analogous to observations of the stimulus made by the brain. 
There are different ways of conceptualizing these. In their simplest form, the observations are 
variable measurements of the stimulus. For example, when the stimulus is a line oriented at 60°, 
a measurement of its orientation on a single trial could be 58°, 61°, etc. This is sometimes called 
the internal representation of the stimulus. It is often assumed that internal representation of a 
stimulus is distributed around the true value of the stimulus, according to a roughly Gaussian 
(normal) distribution. Alternatively, the observations could be the variable activities of neurons 
in a population responding to the stimulus. For example, if the stimulus is an oriented line, then 
the observations could be the numbers of spikes emitted by the neurons in primary visual cortex 
(V1) that are sensitive to orientation at that location. These numbers are variable, because not 
every time you present the same stimulus, you get the same pattern of response. Which 
description of the observations is most appropriate depends mostly on whether you study a 
perceptual phenomenon from a behavioral or a neural point of view: psychologists tend to use 
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noisy measurements, while neuroscientists tend to use neural activities. As of yet, most Bayesian 
models of perception are at the behavioral level. 

Now that we have described what the stimulus and the observations are, we can 
formulate the central hypothesis of the Bayesian approach in perception: in many perceptual 
tasks, the brain computes the posterior probability distribution over the relevant stimulus variable 
based on the observations it has available, as expressed in Equation (1). One can think of this 
equation as a formalized description of a key task that the brain faces: to infer aspects of the 
world based on noisy sensory input. The lion infers in which direction the giraffe is moving, the 
basketball player where his teammates are, and the forest hiker whether he can jump over the 
stream. From the point of view of the observations, p(observations | stimulus) is sometimes 
called the noise model, the variability in the observations, or their generative model. In the apple 
tree analogy, the clue that there is a strong wind from the West is an element of the generative 
model. In the example of the oriented line, the Gaussian distribution or the form of the variability 
of the population of V1 neurons constitutes the generative model. When the observations are the 
activities of a population of neurons, one can think of that population as encoding the probability 
distribution over the stimulus (see Figure 1). 
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Figure 1: Schematic illustration of Bayes’ rule in perception (neural version). A stimulus (e.g. orientation 
of a line) elicits activity in a population of neurons (left), whose activities (e.g. spike counts) we 
collectively denote by r. Based on these noisy observations, Bayes’ rule computes the probability 
distribution p(s|r) over the stimulus (right), providing not only the most likely value of the stimulus, but 
also its uncertainty. One can think of the probability distribution being encoded in the pattern of activity.

 
The posterior probability distribution, p(stimulus | observations), reflects the uncertainty 

about the stimulus: if this distribution has a single sharp peak, it means that based on the 
observations, only one of very few stimuli are plausible, and uncertainty is small. For example, 
when you are driving on the freeway on a sunny day and there is another car a short distance in 
front of you, the posterior probability distribution over your distance to it will be narrow. If, on 
the contrary, the distribution has a flat and broad peak, or multiple peaks of similar height, it 
means that based on the observations, many stimuli are plausible, and uncertainty is high. For 
example, if the same car is far ahead of you at nighttime, the posterior probability distribution 
will be broad. This is an important point, because it means that, through Bayes’ rule, the brain 
can encode not only the most likely value of a stimulus (compare: the most likely location of the 
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apple tree, the most likely distance to the other car), but also the uncertainty about that value 
(compare: how large the area is where you believe the apple tree could still stand, how wide a 
range of distances to the other car is plausible).  

Bayesian inference in perception is not always, and even seldom, a matter of perceiving a 
single stimulus. As we discussed in the section “Perception as information extraction”, 
perceptual computation can involve elaborate manipulation of sensory information, which in 
many cases has to be done in multiple stages. For example, when you are deciding whether there 
is a predator hiding the bushes, your brain has to infer not only the features of objects in the 
scene, but also make the higher-level judgment about animal presence. In such situations, 
Bayesian inference can become very complex, but the key feature remains that at every stage, a 
probability distribution is computed over the variables at that stage. Using Bayes’ rule to 
compute with uncertainty and probability during a perceptual task guarantees the best possible 
performance; therefore, Bayesian inference is often referred to as optimal inference, or 
“optimally taking into account uncertainty”. The Bayes-optimal strategy ensures that an 
organism makes fewer mistakes and is more efficient in perceiving the world and generating 
behavior. 
 
Experimental evidence 
Perception researchers have found a large amount of evidence that the brain performs Bayesian 
inference, i.e., computes posterior probability distributions over stimuli. This evidence is 
commonly provided by showing that those probabilities are used by humans in solving certain 
behavioral tasks. No experimental paradigm has contributed more to this than that of cue 
combination. The basic idea of this perceptual computation is that an observer is presented with 
two or more cues providing information about the same stimulus, and has to estimate the 
stimulus. For example, you might have a cat who likes to hide in the backyard. To find her, you 
use the movement you see as well as the faint meowing you hear. Because of noise, both in the 
world and inside the brain, cues from the same source are often not in complete agreement. For 
example, the best guess about the location of the cat based on its meowing may be slightly 
different from the best guess based on its image. One way to combine such cues would be to take 
the average of these guesses. However, this is clearly not a good idea when one cue is much less 
certain than the other: if the cat is barely visible, the best combined guess may be very close to 
the one based on what you hear. Indeed, the formalism of Bayesian inference applied to cue 
combination predicts that the best combined estimate is a specific combination of the individual 
guesses that gives less weight to the less certain cue. This prediction has been tested in a wide 
variety of cue combination experiments in which the disagreement between two cues is 
artifically varied. The general conclusion has been that humans do take into account uncertainty 
in a close to Bayes-optimal way when combining cues. Evidence for Bayesian inference has 
been found in many other areas of perception as well, including decision making, visual motion 
estimation, color perception, and sensorimotor behavior. 
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Neural basis 
Even though Bayesian inference has become a fixture in behavioral descriptions of perception, 
the neural basis of Bayes-optimal computations has only recently started to receive scrutiny. The 
challenge here is to discover which operations the brain performs on neural activity so as to 
produce behavior that is close to Bayes-optimal. This problem is directly related to one of the 
central questions in neuroscience, namely that of the relation between brain and behavior. 
Eventually, predictions from this approach might be tested in physiology. Research into 
Bayesian inference in perception is expected to be of wide interest in the coming years. 
 
Wei Ji Ma 
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