
Lip-reading aids word recognition most in moderate noise: a 
Bayesian explanation using high-dimensional feature space 
 
Supporting Information 
Wei Ji Ma, Xiang Zhou, Lars A. Ross, John J. Foxe, Lucas C. Parra 
 
This Supporting Information describes: 

1. Experimental details of the AV* condition 
2. Cross-study consistency 
3. General theory of Bayes-optimal word recognition 
4. Details of the numerical simulations 
5. Details of the analytical model 

1 Experimental details of the AV* condition 
In the AV* condition, we intended to decrease the amount of information provided by the 
visual stimulus while preserving as much as possible the appearance of the talking face 
(see Figure S1). A natural appearance of the visual stimulus has been found to be 
important for effective AV fusion of speech (Schwartz JL et al., 2004). To this end, we 
used an “Active Appearance Model” (AAM) – a computer program that can generate 
images of faces when provided with a set of landmark points indicating locations and 
shape of the lips, eyes, brows, and an outline of the face (Cootes TF et al., 2001). For a 

Figure S1: Method for generating modified video from clean audio. 
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given speaker, the locations of such points covary with auditory features in a predictive 
fashion.  
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Therefore, by using auditory features such as the power of different frequency bands, one 
can reproduce with some accuracy the locations of these points. For this, a second 
computer program is used which is based on a “State Space Model” (Lehn-Schioler T, 
2005). The parameters of both these models are adjusted (trained) on a set of example 
images. We used this technique to generate an artificial video of a talking face by using 
only the total instantaneous power of the audio signals. The SSM was trained to generate 
landmark points from the audio power envelope using manually labeled landmark points 
(50 in our case) for a set of 100 images (4 word utterances of 1 s duration at 25 frames/s) 
and the associated audio signal power measured in corresponding 40-ms time windows. 
The AAM was trained to generate video frames from these landmark points on the same 
set of images. Once trained, these two programs (SSM and AAM) were then used to 
generate artificial video from the power of the clean speech signal for all 500 test words. 
Sample stimuli can be found on  
http://bme.engr.ccny.cuny.edu/faculty/parra/bayes-speech/ 

2 Cross-study consistency 
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Figure S2: Variability between experiments. Auditory-visual stimuli are congruent. Visual-only 
performance was measured in two of these three studies. a. Identical to Figure 3a. b. 
Performance on the congruent trials of the second experiment (the incongruent trials were 
reported in Figure 7). c. Data from Ross et al., 2007

a cb
AV
A alone

enhancement
V alone

Behavioral performance varies depending on the specifics of the experimental protocol. 
We compared the behavioral results obtained by (Ross LA et al., 2007) and the two 
instantiations of the A and AV conditions in the two experiments reported here (see 
Figure S2). In all three instances, the stimuli were selected from the same video 
recordings and presented in a similar fashion. The experiments differed in the way SNR 
was controlled and in the additional conditions presented to the subject. In contrast to the 
study by Ross et al., we presented a static face in the A condition to control for possible 
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benefits of focusing attention for the duration of speech presentation. Our experiments 
also differed in that additional stimulus conditions were interleaved (V* in the first 
experiment, and A≠V in the second experiment). Finally, the second experiment 
modulated the speech power while keeping the noise level constant to facilitate a constant 
effort by the subject despite the changing level of difficulty. Otherwise, when subjects 
notice a high level of noise they are likely to resign themselves to not understanding the 
word. Such a strategy, which cannot be ruled out in the first experiment, could also lead 
to maximum enhancement at intermediate SNR levels. The second experiment shows that 
the pattern of AV enhancement cannot be attributed only to strategy. These alterations of 
the presentation paradigm were sufficient to significantly alter the overall performance 
gains. However, in all three instances, the maximum gain is attained at a SNR of 
approximately -12 dB. While the specifics of the performance curves are likely affected 
by a variety of factors, the predictions of the Bayesian model are mostly qualitative and 
seem robust under variations. 
 

3 General theory of Bayes-optimal word recognition 
The theory of how humans optimally combine uncertain pieces of sensory information is 
well-known but worth going through for a multidimensional problem. The first step is to 
specify the generative model, also called noise model. Suppose the word presented on a 
given trial corresponds to an n-dimensional vector w . This word generates an auditory 
neural response in the brain through a noisy mechanism. This response can be 
characterized in word space as a noise-perturbed version of the actual word , which we 
will denote 

w

Aμ . This observed utterance does not need to be an lexically correct word. 
For example, the word “dog” can, through articulation or neural variability, give rise to 
an internal representation corresponding to “gog”. We model Aμ  as being drawn from a 

multivariate Gaussian distribution with mean w and covariance matrix : AΣ
 

( )
( )

( ) (T 11 1| exp
2det 2

A A

A

p
π

−⎛= − −⎜
⎝ ⎠

)A A
⎞− ⎟μ w μ w Σ μ w

Σ
.   (S1) 

 
We assume that  does not depend on which word is presented. Similarly, the neural 

representation elicited by the visual stimulus corresponds to an utterance 
AΣ

Vμ . We model 
it as being drawn from 
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The means of both distributions are equal to the true word w, which indicates that on 
average, “dog” will indeed look and sound like “dog”.  

So far we have described the generative model. The Bayesian inference process is 
its inverse, asking the question: given an auditory observed utterance Aμ , visual observed 

utterance Vμ , or both, what is the probability that the test word was w? The resulting 
probability distribution is called the posterior distribution and it is obtained using Bayes’ 
rule. For an auditory utterance only, this becomes: 
 
( ) ( ) (| |A Ap p p∝w )μ μ w w  

 
where  is the prior distribution over words. Since only lexical words  (i = 1,…, 

N) are allowed, this prior is discrete, 
( )p w iw

 
( ) ( ) ( )i i

i
p pδ= −∑w w w w

)

. 

 
As a function of w,  is called the likelihood function. The essence of Bayesian 

inference in perception is the notion that on each trial, neural activity encodes the full 
posterior probability distribution over the stimulus, rather than only the single most 
probable stimulus (the maximum-a-posteriori estimate). How this might be implemented 
neurally has been described elsewhere for one-dimensional stimuli (Ma WJ et al., 2006).  

( |Ap μ w

When there are two cues, Bayes-optimal cue integration dictates that the 
probabilistic information contained in both should be used in the inference process. We 
assume that they are conditionally independent, which means that for a given presented 
word, the auditory and the visual observations are subject to independent sources of noise. 
Under this assumption, the joint likelihood function factorizes as 
 
( ) ( ) ( )wμwμwμμ |||, VAVA ppp ∝  

 
Because both likelihoods and ( )|Ap μ w ( )|Vp μ w  are multivariate Gaussians, their 

product will be one too, with mean 
 

( ) (11 1 1 1
AV A V A A V V

−− − − −= + + )μ Σ Σ Σ μ Σ μ  

 
and covariance matrix 
 

( 11 1
AV A V

−− −= +Σ Σ Σ ) .          (S3) 
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The vector AVμ  represents the most likely utterance given the auditory and the visual 

observations on this trial, but like Aμ  and Vμ , it may not correspond to a lexically correct 

word. (As an interesting aside for the mathematically inclined reader, AVμ  does not 

necessarily lie on the line connecting Aμ  and Vμ , contrary to what one might expect.) 

The posterior probability of word w  based on both observations Aμ  and Vμ  on this trial 
is given by 
 
 ( ) ( ) ( ) ( )| , | |A V A Vp p p∝w pμ μ μ w μ w w .      (S4) 

 
Based on the posterior distribution ( )| ,A Vp w μ μ , the subject will report the word for 

which this posterior probability is maximal (the maximum-a-posteriori rule): 
 

( ) ( ) ( ) ( )T 1
reported

1argmax | , argmax exp
2A V AV AV AVp p −⎡ ⎤= = − − −⎢ ⎥⎣ ⎦w w

w w μ μ w μ w Σ μ w (S5) 

 
Because of the discrete prior p(w), only lexically correct words will be reported. If the 
reported word is the same as the presented word, which we will call , then the trial is 

counted as correct. The responses to a repeatedly presented test word  form 
themselves a discrete probability distribution, the conditional response distribution 

, which is formally given by 

testw

testw

( reported test|p w w )
 

( ) ( ) ( ) ( )reported test reported test test| argmax | , | |A V A V A Vp p p p dδ ⎛ ⎞= −⎜ ⎟
⎝ ⎠∫∫

w
w w w w dμ μ μ w μ w μ μ

 
Because  only depends on reportedw AVμ  and not on Aμ  and Vμ  separately, this can be 

simplified to 
 

( ) ( ) ( )reported test reported test| argmax | |AV AVp pδ ⎛ ⎞= −⎜ ⎟
⎝ ⎠∫

w
w w w w μ μ w μAVp d   (S6) 

 
Now, the random variable AVμ  is a linear combination of the random variables Aμ  and 

Vμ , so we can use the rules for linear combination of normally distributed variables to 

find that  is a multivariate normal distribution with mean w  and 

covariance matrix  as defined above. Thus, it satisfies 

( test|AVp μ w

AVΣ

) test
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( ) ( ) ( )test test test| |AV A VP P P= ∝ = =μ x w μ x w μ x w| ,     (S7) 

 
where the slightly different notation is needed because this is now a relationship between 
the probabilities densities of three random variables ( Aμ , Vμ , and AVμ ) at the same value 
of the argument (x), instead of a relationship between likelihood functions for fixed 
values of Aμ , Vμ , and AVμ . The one-dimensional equivalent of Eq. (S7) in terms of 
means and variances is the rule that is used most commonly in modeling behavioral 
experiments. We use it in Figure 2b. However, it should be kept in mind that it is only an 
“average” relation that holds for Gaussians, but not necessarily for other distributions. 
The more general framework is the one described here, where a Bayesian posterior (Eq. 
(S4)) is computed on every trial. 

It is usually impossible to obtain an analytical expression for the conditional 
response distribution, Eq. (S6), since the argmax can, in general, not be simplified. 
Therefore, numerical simulations are needed, which will be described in the next section. 

Note that the theory remains valid when a small conflict (incongruence) is 
introduced between the stimuli, as long as the observer still believes that the two stimuli 
have the same source. If this condition is violated, then using a causal-inference model is 
imperative (Kording KP et al., 2007).  

4 Details of the numerical simulations 
In the simulations, words were drawn from a Gaussian distribution in n dimensions, 
centered at the origin and with covariance matrix . Here, I is the 
identity matrix in n dimensions and Xword is a 1×n vector with entries drawn from a 
Gaussian distribution with mean 0 and standard deviation 1. The locations of the words 
were fixed across a simulation (for fixed N and n). 

T
word 1 2 word wordc c= +Σ I X X

The auditory variability distribution ( )test|Ap μ w  has mean  and covariance 

matrix 

testw
T

3 4
2

A A
A

A

c c
r
+

=
D X XΣ A , with DA a diagonal n×n matrix with diagonal entries drawn 

from a uniform distribution on [0,1]. XA a k×n matrix (k<n) with entries drawn from a 
uniform distribution on [0,1]. Similarly, the visual variability distribution  

has mean and covariance matrix 

( )test|Vp μ w

testw
T

5 6
2

V V

V

c c
r
+D X V

V =
XΣ . 

Finally, a plausible prior distribution over words had to be chosen, even though 
the qualitative results turned out not to depend on this choice. One could use a prior 
corresponding to word frequencies in (spoken) English, which approximately follow a 
power law ((Baayen HR, 2001; Kucera H and WN Francis, 1967; Pastizzo MJ and RF 
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Carbone Jr., 2007); see also the databases at http://wordplay.geneseo.edu 
and http://www.psy.uwa.edu.au/mrcdatabase/uwa_mrc.htm). However, in our 
experiments, no word was used more than once, and it is likely that subjects knew this to 
some extent. This knowledge would conflict with a prior corresponding to word 
frequencies in daily language, and its effect would be to flatten out the prior, making the 
most frequent words less likely than expected from their frequencies in spoken English. 

For this reason, the prior distribution was chosen to tial, ( be exponen ) 7

i
c

ip w e�  where 

{

−

∝ ,

} 1, ,i i N
w

= …
�  is the ordering of the vocabulary according to decreasing frequency (Zipf 

ranking (Baayen HR, 2001)). Note that the rate of decline of the prior distribution 
effectively modulates vocabulary size. 
 A trial would proceed as follows. For a given value of auditory SNR, we compute 
auditory reliability Ar  using the parameters of the rectifying nonlinearity. Using Ar , we 

compute the auditory covariance matrix AΣ  and, if the trial is multisensory, the 
multisensory covariance matrix AVΣ . We then randomly select a test word from our 

vocabulary and draw an observed utterance Aμ  (or AVμ ) from a Gaussian distribution 

with mean equal to the test word and covariance matrix A  (or AV ). We then calculate 
the posterior distribution and the maximum-a-posteriori estimate as described in the 
previous section to generate the model’s response. 

Σ Σ

Figure S3:
a. Goodness of best fit (R2) of the numerical model to the behavioral data (such as in Figure 4), for
various values of vocabulary size and dimension. Negative values were set to zero for plotting
purposes. In Figure 4, the parameter combination N = 2000, n = 40 was used.
b. Sum squared error (on a logarithmic axis) of the analytical model as a function of dimension. The
minimum is at n = 55 (fits shown in Figures 6b-c), but any sufficiently large number of dimensions
allows for a good fit. A low number of dimensions does not allow for a good description of the data.
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For all reported simulation results, we tried different combinations of the 
coefficients c1 to c7, as well as different values of k, normal distributions for the entries of 
XA and XV, and different prior distributions. None changed the qualitative results reported 
in the main text for either the congruent or the incongruent condition. Parameter c1 has to 
be smaller for larger n to generate psychometric curves that lie in a comparable range of 
auditory reliability. The results shown in Figures 4, 5, S3a (congruent) and 7a and S5 
(incongruent) were all created with the specific choices c1 = 10/n, c2 = 0, c3 = 1. c4 = 0. c5 
= 1, c6 = 0, and c7 = 250. 
 
Simulations for Figure 4 (to show that the behavioral data are fit well by the Bayesian 
model). Vocabulary size was fixed at N = 2000, and dimension at n = 40. The relation 
between auditory SNR and auditory reliability was taken to be ( )SNRAr α β

+
⎡ ⎤= +⎣ ⎦ , 

where α and β are constants and [ ] ( )max ,0x x
+
=  is a rectifying nonlinearity. First, α and 

β were fitted based on the behavioral data in the A condition and found to be α = 0.0343 
dB-1 and β = 24.3 dB. Then, these values were fixed and rV  were fitted, once based on the 
AV condition (rV = 0.559) and once based on the AV* condition (rV = 0.214). Only the 
group means were fit, disregarding subject variability. Goodness of fit was  
(average of 0.958, 0.898, and 0.894 for the A, AV, and AV* conditions respectively). All 
optimizations were performed using the fminsearch routine in MATLAB and with the 
mean squared error as cost function. In each optimization, 1000 test words were used per 
data point per iteration. The figure was generated using 8000 test words per data point to 
produce smoother traces. 

2 0.917R =

Figure 4c: The simulated data used for Figure 4a were re-analyzed by dividing the 
vocabulary up into two groups, according to the mean Euclidean distance of each word to 
other words. If this mean distance was smaller than the median mean distance (computed 
over the entire vocabulary), the word was labeled to be in a “dense” region, otherwise in 
a “sparse” region. Recognition performance in A and AV conditions was computed 
separately for both groups. 
 
Simulations for Figure 5 (to examine how the multisensory enhancement depends on 
visual reliability and vocabulary size): All parameters were identical to those used in 
creating Figure 4, except that in Figure 5a, visual reliability was varied, and in Figure 5b, 
number of words in the vocabulary was varied. 
 
Simulations for Figure 7a and Figure S5 (prediction for incongruent stimuli): For every 
auditory test word, the nearest visual word was chosen (Euclidean distance) to form an 
incongruent word pair. Visual reliability was fixed at rV = 0.6. All other parameters were 
identical to those used for Figure 4, except that α and β were not used. Responses were 
categorized as “reporting the auditory word”, “reporting the visual word”, and “reporting 
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some other word”. Note that unlike the congruent case, there is no notion of a “correct 
response”. 10,000 trials were used for each combination of vocabulary size N, dimension 
n, and auditory reliability rA . 
 
Simulations for Figure S3a (to examine how the goodness of the best fit depends on 
vocabulary size and number of dimensions). The simulations for Figure 4 were repeated 
for multiple values of the vocabulary size (50, 100, 200, 400, 800, 1600, 800, 2000, and 
3200) and number of dimensions (10, 20, 30, 40, and 50). The goodness of the best fit has 
a broad and noisy maximum between 20-50 dimension and 800-3200 words.  
 

5 Details of the analytical model  
The simulations described in the previous section show how a Bayesian model correctly 
predicts that auditory-visual enhancement of percentage correct exhibits a maximum as a 
function of auditory SNR. To gain a better understanding of the robustness of this effect, 
we use a “toy model” which greatly oversimplifies the structure of word space, but 
allows us to do some analytical calculations. These will show that even this stripped-
down version of the model shows the effect and can describe the behavioral data. We first 
analyze the model in 1 dimension, then in multiple dimensions. Throughout this section, 
we assume a uniform prior distribution for simplicity. 

5.1 One dimension 
In 1 dimension, the equations from section 3 simplify dramatically. If the auditory and 
visual noise distributions in Equations (S1) and (S2) are Gaussian with standard 
deviations Aσ  and Vσ , respectively, then the multisensory estimates will be normally 
distributed with mean equal to the actual stimulus value and standard deviation equal to 

2 2AV

A V

σ 1
σ σ −

=
− +

(compare Equations (S3) and (S7)). This is smaller than both Aσ  and 

Vσ  and therefore, larger precision is achieved. If we define reliability as the inverse of 

the standard deviation, 1
A

A

r
σ

= , 1
V

V

r
σ

= , and 1
AV

AV

r
σ

= , then precision is the square of 

reliability and its multisensory improvement can be expressed as . We now 2 2
AV A Vr r r= + 2

consider three different cases based on the number of alternatives and their spacings.  

5.1.1 Infinite number of equally spaced alternatives 
The goal in our hypothetical one-dimensional task is to identify a stimulus from 

among a large number of discrete alternatives, such as determining which car from 
among a row of cars honked. For now, we assume that the alternatives are equally spaced 
and prior probabilities are uniform. In this task, the best strategy is to select on each trial 
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the alternative that is closest to the best estimate. In Figure 6d, the vertical, dashed lines 
separate the regions of stimulus space in which different alternatives are chosen. The 
distance between the boundaries is chosen to be 2 for convenience. If the actual stimulus 
is the one indicated by the red dot, then the shaded area is the probability of responding 

correctly. The probability correct on the auditory-alone task is now equal to erf
2
A

C
rp = , 

where ( ) 2

0

2erf
x

tx e dt
π

−= ∫  is the error function. The probability correct for the optimal 

combination of an auditory and a visual signal is 
2 2

erf
2

A V
C

r rp +
= . The multisensory 

enhancement (ME) is 

( ) ( ) ( )
2 2

ME erf erf
2 2

A V A
A C C

r r rr p AV p A +
= − = − . 

The slope of this function is given by 
2 2 22 2

1
2 2

2 2 2 2
22 2

ME 2 2 2= 1
A V VA Ar r rr r

VA

A AA V

rrd e e e e
dr rr rπ π π

−+
− − − −

⎛ ⎞
⎛ ⎞⎜ ⎟− = +⎜ ⎟⎜ ⎟+ ⎝ ⎠⎜ ⎟
⎝ ⎠

1− . 

It is easy to see that for positive  this slope is always negative, and therefore the 
multisensory enhancement is a monotonically decreasing function. The maximum is 
located at the lower boundary, which is by definition at 

Vr

0Ar = . This shows that under the 
assumptions above, optimal cue combination leads to inverse effectiveness in one 
dimension. 

5.1.2 Finite number of equally spaced alternatives 
Next, we try to relax the above assumptions. Suppose the number of alternatives is not 
infinite, but a finite number M as it would be for words. We still assume equal spacing. 
Then the correctness region for the smallest and the largest alternative is larger than for 
all others. Therefore, probability correct for the auditory cue has two contributions: 

( ) ( )2 2 1 1 1erf + erf 1 1 erf
2 22 2

A A
C 2

AM r rp A M
M M M
− ⎛ ⎞ ⎛= + = + −⎜ ⎟ ⎜

⎝ ⎠ ⎝

r ⎞
⎟
⎠

. 

Similarly, 

( ) ( )
2 21 1 1 erf

2
A V

C
r rp AV M

M

⎛ ⎞+
= + −⎜ ⎟⎜ ⎟

⎝ ⎠
. 

Consequently,  
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( ) ( ) ( )
2 2

2 2

1 1ME 1 1 erf 1 1 erf
2 2

1 erf erf
2 2

A V A
A

A V A

r r rr M M
M M

r r rM
M

⎛ ⎞+ ⎛ ⎞= + − − + −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
⎛ ⎞+−

= −⎜ ⎟
⎜ ⎟
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which is proportional to the multisensory enhancement found for infinitely many 
alternatives and therefore is also monotonically decreasing. 

5.1.3 Finite number of alternatives with any spacings 
 Now let us consider the case in which the alternatives are not equally spaced. We 
denote the locations of the alternatives by ( )1 2, , Mx x x…  and their distances 1i i ix x+Δ = −  

for 1 , and i M≤ < 0 MΔ = Δ = ∞ . Then the probability correct corresponding to standard 

deviation Aσ  of the auditory estimate distribution is 

( ) .
22

11
22

erf
22

erf
2
1

11

1 ⎟
⎠

⎞
⎜
⎝

⎛ Δ
+=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ Δ
+

Δ
= ∑∑

==

M

i

Ai
M

i A

i

A

i-
C

r
MσσM

Ap  

From this we obtain the multisensory enhancement as  

( ) .
22

erf
22

erf1ME
1

22

∑
= ⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛ Δ
−

+Δ
=

M

i

AiVAi
A

rrr
M

r  

The part in brackets is monotonically decreasing as before, and a sum of monotonically 
decreasing functions is also monotonically decreasing. Thus, we again find inverse 
effectiveness. Applying any monotonically increasing function to  does not affect this 
result. If non-uniform prior probabilities are associated with the words, we do not know 
of a way to obtain the multisensory enhancement analytically. However, simulations 
suggest that inverse effectiveness still holds.  

Ar

In short, optimal cue combination in 1 dimension shows inverse effectiveness 
under very general conditions. We conclude that if inverse effectiveness is not observed, 
as in our speech recognition experiment, the dimensionality of the space must exceed 1. 

5.2 Multiple dimensions 
The same procedure can be applied to stimuli that are characterized by multiple features, 
but the conclusions are different. In this simple toy model, we assume that there are n 
independent features and that the observer’s vocabulary can be represented by all points 
on an n-dimensional orthogonal grid. Using this simplification, all words can be treated 
equally, which allows us to obtain an analytical expression for the multisensory 
enhancement.  
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5.2.1 Infinite number of alternatives on a regular grid 
We first consider the case in which words are arranged on a n-dimensional regular 
(orthogonal) grid with equal distances 2 between nearest neighbors. Whereas in the one-
dimensional case the correctness region was an interval of length 2, now it is a hypercube 
of size 2 (see Figure 6a for the 2-dimensional case). We also assume that both noise 
distributions are n-dimensional normal distributions with the same variance in all 
dimensions, and no covariance. Each distribution is thus characterized by only a single 
standard deviation. Because we assume the features are independent, the probability 
correct is the n-th power of the probability correct in 1 dimension. Thus, auditory 
probability correct is  

( ) erf
2

n
A

C
rp A ⎛= ⎜

⎝ ⎠

⎞
⎟          (S8) 

and auditory-visual probability correct is 

( )
2 2

erf
2

n

A V
C

r rp AV
⎛ ⎞+

= ⎜ ⎟
⎜ ⎟
⎝ ⎠

. 

The multisensory enhancement is then 

( )
2 2

ME erf erf
2 2

n n
A V A

A
r r rr

⎛ ⎞+ ⎛ ⎞= −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
. 

Its slope is given by 
 

2 2 2
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1 12 2
2 2

2 2

1 12 2
2 2

2 2

ME 2 2erf erf
2 2

2 erf erf
2 2

A V A
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n nr r r
A V A A

A A V

n nrr
A V A A

A V

r r r rd n e n
dr r r

r r r rne e
r r

π π

π

− −+

e
− −

− −
− −
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For sufficiently large n, this function is not monotonically decreasing. Instead, its 
maximum is obtained by setting the slope to 0: 

( )

2

2
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This equation has a unique positive solution for , which is plotted as a function of n 
in Figure S4f for two values of . The location of the maximum is rapidly shifting 
towards higher values as the dimension increases. In dimensions 1 and 2, the equation has 
no solution and therefore inverse effectiveness is predicted. 

2n >

Vr

ba

c d

Figure S4: Optimal word recognition according to the analytical Bayesian model. a-d. Recognition
performance as a function of auditory reliability, rA, for various combinations of word space dimension,
n, and visual reliability, rV. Colors are as in Figure 3. Figures 6b-c were generated using the same model.
Note that vocabulary size is infinite. Naturally, enhancements are larger when visual reliability is larger.
e. Auditory reliability at maximum multisensory enhancement as a function of visual reliability, for
fixed dimension. Lowering visual reliability causes the maximum to shift to higher values of auditory
reliability. The same was shown for the numerical model in Figure 5a. f. Auditory reliability at
maximum multisensory enhancement as a function of word space dimension, for fixed visual reliability.
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5.2.2 Finite number of alternatives on a regular grid 
So far, we have assumed an infinite grid. However, the number of common monosyllabic 
words, although large, is finite. Therefore we consider a case in which words are 
arranged on the vertices of an n-dimensional regular grid of size M M× × ×" M . The 
auditory probability correct is a direct generalization of the expression found in section 
5.1.2: 

( ) ( )1 1 1 erf
2

n

A
C

rp A M
M

⎛ ⎞⎛ ⎞= + −⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

. 

The multisensory enhancement is 
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( ) ( ) ( )
2 21 1ME 1 1 erf 1 1 erf

2 2

n n

A V A
A

r r rr M M
M M

⎛ ⎞⎛ ⎞ ⎛ ⎞+ ⎛ ⎞⎜ ⎟= + − − + −⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠⎝ ⎠⎝ ⎠
. 

The qualitative properties of this function are very similar to those of the one for an 
infinite grid. In analogy to section 5.1.3, one can also relax the assumption of regularity 
and instead assume a general rectilinear grid. We do not go through that calculation here 
as it is just a minor variation of the above. 
 We conclude that in higher dimensions, optimal cue combination does not lead to 
inverse effectiveness, but to maximum effectiveness when reliability and performance in 
the primary modality take on intermediate values.  

5.3 Simulations 
Simulations for Figure 6b-c: We fitted the analytical model to the behavioral data in the 
A, AV and AV* conditions. As in the numerical simulations, we assumed a threshold-
linear relationship between auditory reliability and SNR: ( )SNRAr α β

+
⎡ ⎤= +⎣ ⎦ . There are 

five free parameters in the model: α, β, the dimension n, and both visual reliabilities,  

for AV and  for AV*. (Note that vocabulary size is infinite in this model.) All of these 
except for n are expected to vary between subjects. Since data were insufficient to fit four 
parameters for an individual subject, we used a different approach. For each value of n 
between 1 and 1000, we first fitted α, β, , and  to the group data (percentages correct 
averaged over all subjects) by minimizing sum squared error using “fminsearch” in 
Matlab. We chose the value of n for which the error was minimal, and fixed α and β at 
their corresponding best values.  Then, for these values of n, α, and β, we fitted , and 

 for each subject individually.  

Vr

*Vr

Vr *Vr

Vr

*Vr
We found the dimension with the lowest error for the group data fit to be n = 55, 

but the error was more or less the same for any sufficiently large n (see Figure S3b). For 
small values of the dimension (about n < 30), the model cannot describe the data well. 
For n = 55, we obtained α = 0.0566 dB-1 and β = 48.9 dB from the group fit, and 

, and  from the individual subjects’ fit. The latter two 
values are consistent with the fact that the AV* condition provides less visual 
information. The average fit was very good (  for A, AV, and AV* 
respectively) and is shown in Figures 6b and 6c. Given the simplifications of the model 
and the assumptions in the fitting procedure, these fits cannot be taken as strong evidence 
for the particular parameter values. However, they show that it is possible to fit a very 
basic version of the optimal cue integration model to human speech perception data, and 
that the characteristics of the data are a consequence of the high dimension of speech 
space. 

1.55 0.05Vr = ± * 0.58 0.08Vr = ±

2 0.97; 0.99; 0.97R =
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5.4 Incongruent stimuli 
Within the analytical mode, we can consider integration of cues produced by similar, but 
slightly incongruent stimuli, such as auditory “bay” and visual “pay”. We assume that 
such similar stimuli are two neighboring points on the grid. Thus, they are identical in all 
dimensions except for one. We now first consider this dimension. Without loss of 
generality, we set the location of the auditory stimulus to 0 and the location of the visual 
stimulus to 2. The auditory estimate distribution is Gaussian with mean 0 and inverse 
standard deviation . The visual estimate distribution is Gaussian with mean 2 and 

inverse standard deviation . We assume that  and  are not so large that the stimuli 
are perceived as being in conflict. Instead, they will get integrated. The auditory-visual 
estimate distribution is Gaussian with mean (Ernst MO and MS Banks, 2002; Yuille AL 
and HH Bulthoff, 1996) 

Ar

Vr Ar Vr

2

2 2

2 V
AV

A V

r
r r

μ =
+

 

and inverse standard deviation 2 2
A Vr r+ . There are now three possible response 

categories: 
• The subject reports the auditory word. 
• The subject reports the visual word. 
• The subject reports another word. 

In this dimension, the probability of reporting the auditory word is equal to the 
probability mass in the interval [ 1,1]− , and of reporting the visual word is the probability 
mass in [1 . These probabilities are ,3]
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Figure S5: Effect of an auditory word on reports of an incongruent visual word, as predicted by the Bayesian model.
Experiments were simulated in which pairs of similar auditory and visual words were presented. On each trial, the
observer integrates the uncertain cues and reports a single word. Frequencies of reporting the auditory word (cyan) and
the visual word (magenta) are shown as a function of auditory reliability. Each plot corresponds to a given combination of
vocabulary size, N, and word space dimension, n. Visual reliability was fixed at rV = 0.6. The occurrence of a maximum in
the visual reports at a nonzero value of auditory reliability is consistent across vocabulary sizes and dimensions.
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The probability of reporting another word is found by subtracting these expressions from 
1. Taking into account the other dimensions, we find 

( )
( ) ( )

( )
( ) ( )

1
2 2 2 2 2 2

2 2 2 2

1
2 2 2 2 2 2

2 2 2 2

31Pr report auditory word erf +erf erf
2 22 2
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2 22 2

n
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n

A V A V A V

A V A V

r r r r r r

r r r r

r r r r r r

r r r r

−

−

⎛ ⎞⎛ ⎞− + +⎜ ⎟= ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟+ + ⎝ ⎠⎝ ⎠
⎛ ⎞⎛ ⎞+ − +⎜ ⎟= − ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟+ + ⎝ ⎠⎝ ⎠

 

As we increase , the probability of reporting an auditory word will increase 
monotonically. In contrast, the probability of reporting a visual word can exhibit a global 
maximum at nonzero values of , even if n = 1 (and even in the extreme case of 

Ar

Ar 0Vr = !). 
These results are confirmed by numerical simulations (see Figures 7 and S5). 
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Supporting Figure Captions 
  
Figure S1: Method for generating modified video from clean audio. For details, see 
section 1 of the Supporting Information.  
 
Figure S2: Variability between experiments. Auditory-visual stimuli are congruent. 
Visual-only performance was measured in two of these three studies. 
a. Identical to Figure 3a. 
b. Performance on the congruent trials of the second experiment (the incongruent trials 
were reported in Figure 7). 
c. Data from Ross et al., 2007 
 
Figure S3:  
a. Goodness of best fit (R

2
) of the numerical model to the behavioral data (such as in 

Figure 4), for various values of vocabulary size and dimension. Negative values were set 
to zero for plotting purposes. In Figure 4, the parameter combination N = 2000, n = 40 
was used. 
b. Sum squared error (on a logarithmic axis) of the analytical model as a function of 
dimension. The minimum is at n = 55 (fits shown in Figures 6b-c), but any sufficiently 
large number of dimensions allows for a good fit. A low number of dimensions does not 
allow for a good description of the data.  
 
Figure S4: Optimal word recognition according to the analytical Bayesian model. a-d. 
Recognition performance as a function of auditory reliability, rA, for various 
combinations of word space dimension, n, and visual reliability, rV. Colors are as in 
Figure 3. Figures 6b-c were generated using the same model. Note that vocabulary size is 
infinite. Naturally, enhancements are larger when visual reliability is larger. e. Auditory 
reliability at maximum multisensory enhancement as a function of visual reliability, for 
fixed dimension. Lowering visual reliability causes the maximum to shift to higher values 
of auditory reliability. The same was shown for the numerical model in Figure 5a. f. 
Auditory reliability at maximum multisensory enhancement as a function of word space 
dimension, for fixed visual reliability.  
 
Figure S5: Effect of an auditory word on reports of an incongruent visual word, as 
predicted by the Bayesian model. Experiments were simulated in which pairs of similar 
auditory and visual words were presented. On each trial, the observer integrates the 
uncertain cues and reports a single word. Frequencies of reporting the auditory word 
(cyan) and the visual word (magenta) are shown as a function of auditory reliability. Each 
plot corresponds to a given combination of vocabulary size, N, and word space 
dimension, n. Visual reliability was fixed at rV = 0.6. The occurrence of a maximum in 
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the visual reports at a nonzero value of auditory reliability is consistent across vocabulary 
sizes and dimensions. 
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