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Human ability to simultaneously track multiple items declines with set size. This effect is commonly attributed to a fixed limit
on the number of items that can be attended to, a notion that is formalized in limited-capacity and slot models. Instead, we
propose that observers are constrained by stimulus uncertainty that increases with the number of items but use Bayesian
inference to achieve optimal performance. We model five data sets from published deviation discrimination experiments that
varied set size, number of deviations, and magnitude of deviation. A constrained Bayesian observer better explains each
data set than do the traditional limited-capacity model, the recently proposed slots-plus-averaging model, a fixed-uncertainty
Bayesian model, a Bayesian model with capacity limit, and a simple averaging model. This indicates that the notion of
limited capacity in attentional tracking needs to be revised. Moreover, it supports the idea that Bayesian optimality of human
perception extends to high-level perceptual computations.
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Introduction

Multiple-object tracking is a leading paradigm for
studying visual attention (Cavanagh & Alvarez, 2005), in
part because it resembles real-world tasksVthink about a
basketball player tracking other players on the court, or a
driver tracking other cars. Pylyshyn and Storm (1988)
demonstrated that humans can track multiple, indepen-
dently moving objects continuously over several seconds.
This work challenged the older notion that attention
always has a single focus and raised the question of how
many items can be tracked. Tracking performance is often
alleged to be limited by the number of items that can be
attended to, also called the capacity (Cavanagh &
Alvarez, 2005; Hulleman, 2005; Oksama & Hyona,
2008; Pylyshyn & Storm, 1988). This view, in which
items are encoded in all-or-none fashion, is very similar to
limited-capacity theories of working memory (Cowan,
2001; Luck & Vogel, 1997; Pashler, 1988; Rensink,
2000). In contrast, flexible-resource theories (Alvarez &
Franconeri, 2007; Palmer, 1990) claim that a continuous
resource gets distributed over all items, with less resource
per item translating into greater uncertainty. Errors arise
as a consequence of uncertainty, much like in basic
psychophysics. Consistent with this view, object speed
(Alvarez & Franconeri, 2007) and perceptual learning
(Green & Bavelier, 2006) affect tracking capacity. Similar

theories have been put forward for working memory
(Bays & Husain, 2008; Wilken & Ma, 2004).
A shortcoming of flexible-resource theories has been the

lack of a mathematical formulation of how uncertainty
affects performance as set size varies. This shortcoming is
particularly glaring since limited-capacity models are
mathematically clear-cut. Of course, probabilistic
approaches such as signal detection theory (Green &
Swets, 1966) and Bayesian inference (Knill & Pouget,
2004; Knill & Richards, 1996) have been used extensively
to describe the effects of uncertainty on human perception.
In these models, an observer probabilistically infers the
state of the world from noisy sensory evidence. These
approaches have the advantages of being mathematically
precise, general, and not needing ad hoc assumptions.
Moreover, neural circuits can plausibly implement Bayes-
optimal computations (Beck et al., 2008; Ma, Beck,
Latham, & Pouget, 2006). However, most probabilistic
models are created for relative simple judgments, in which
only a single feature of a single stimulus is task relevant
(such as in cue integration). Many perceptual decisions,
including the tracking task we will study here, instead
require the extraction of a global, abstract variable from a
constellation of multiple stimuli that are in and of
themselves not of interest. Several studies have used
Bayesian approaches to understand human perception in
such tasks, including causal inference in cue combination
(Kording et al., 2007; Sato, Toyoizumi, & Aihara, 2007),
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oddity detection (Hospedales & Vijayakumar, 2009), object
recognition (Kersten, Mamassian, & Yuille, 2004), and
visual search (Nolte & Jaarsma, 1966; Palmer, Verghese,
& Pavel, 2000; Rosenholtz, 2001; Vincent, Baddeley,
Troscianko, & Gilchrist, 2009).
With this in mind, we develop here a model for optimal

performance under uncertainty in an attentional tracking
task, where uncertainty increases with set size due to a
flexible resource constraint. We will refer to this shorthand
as a constrained Bayesian observer, even though the
inference process itself is not constrained. We will pit it
against five alternative models: (a) an observer with limited
capacity K, who perfectly encodes K attended items and
does not encode other items, if any, at all (Hulleman,
2005); (b) the slots-plus-averaging model, originally
proposed for working memory (Zhang & Luck, 2008), in
which K items are attended (and others not at all) but their
encoding is noisy; (c) an unconstrained (fixed-uncertainty)
Bayesian observer; (d) a Bayesian observer with capacity
limit K instead of a resource constraint; and (e) an observer
who extracts a global motion signal by averaging over all
trajectories. In this paper, we mean by “Bayesian” that the
observer takes into account probabilities over variables in
making a decision rather than only best estimates, even
though the prior distribution might be flat (for a concrete
example, see the paragraph below Equation 18).

Theory and methods

Deviation discrimination data

We model published data from a variation of multiple-
object tracking that has fewer degrees of freedom and is
therefore easier to analyze (Tripathy & Barrett, 2004;
Tripathy, Narasimhan, & Barrett, 2007). On each trial, N
dots moved from left to right in linear trajectories
(Figure 1). Of these, D dots changed direction while on
the vertical midline (1 e D e N). In conditions where
multiple dots deviate, they do so by the same angle and in
the same direction. Subjects reported whether the devia-
tion was counterclockwise (C = 1) or clockwise (C = j1).
We examine the results from five independent experi-

ments that used either near-threshold or suprathreshold
deviations and differed by the number of deviating
trajectories. Our goal is to qualitatively understand these
results using a single model. In Experiment 1, all
trajectories deviated in the same direction and by the
same angle (D = N). The percentage of “counterclock-
wise” responses was measured as a function of the
magnitude of deviation, when all trajectories deviate.
The 84.1% correct (dV= 1) threshold was computed as a
function of N and found to be virtually independent of N
(Tripathy & Barrett, 2004). In Experiment 2, one
trajectory deviated (D = 1). Threshold was found to
increase steeply with N, suggesting a very low attentional

capacity (Tripathy & Barrett, 2004). In Experiment 3, D =
1 but fixed, suprathreshold deviations of magnitudes $ =
19-, 38-, 76- were used. As N was varied, performance
decreased, but the curves for the different angles of
deviation were clearly separated (Tripathy et al., 2007).
In Experiment 4, the same suprathreshold deviations were
used, but N was fixed at 6 or 8, and D was varied between
blocks. Effective number tracked was defined as the
capacity of a hypothetical limited-capacity observer
achieving the measured percentage correct. To the
surprise of the investigators, this number was found to
depend strongly on deviation magnitude, but only weakly
on N and D (Tripathy et al., 2007). In Experiment 5,
different values of $ and D were interleaved within a
block, making it impossible for subjects to know the
difficulty of a trial beforehand. The values N = 10, D = 1,
2, and $ = 19-, 38-, 57- were used (Tripathy et al., 2007).
Effective number tracked was again strongly dependent on
$, and only weakly on D.

Bayesian observer

To describe the constrained Bayesian observer, we first
explain the neural constraint that causes a particular
increase of uncertainty with set size.

Neural constraint on uncertainty

To quantify the notion of limited but flexible resources,
we assume that each item is encoded by a similar neural
population with Poisson-like variability (Ma et al., 2006).
This is a physiologically plausible family of neural

Figure 1. Trajectories on an example C = j1 trial (Tripathy &
Barrett, 2004). Thin lines represent dots moving from left to right.
The thick lines mark the midline and are present in each display.
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variability distributions that allows for within-population
noise correlations and non-unity Fano factors (the Fano
factor is the ratio of variance to mean of the spike count of
a single neuron; it is 1 for Poisson neurons, but values
different from 1 are found in recordings). The constraint is
that the total amount of action potentials expended to
track N items is roughly independent of N. For a single
item, the gain g, which is the mean amplitude of the
population pattern of activity, is then roughly proportional
to 1/N. (An exactly equal division of spikes over locations
is as unlikely as it is unnecessary. The allocation
proportions are flexible and will be influenced by spatial
attention.) This could be implemented through divisive
normalization, already a key operation in many models of
attention (Reynolds & Heeger, 2009). Under Poisson-like
variability, gain is proportional to Fisher information, I(s),
which in turn is inversely proportional to the stimulus
uncertainty A squared, g ò I(s) ò 1/A2 (Seung &
Sompolinsky, 1993) (Figure 2). It follows that uncertainty
increases as A ò 1/¾g ò ¾N.
The same constraint was proposed recently for working

memory (Bays & Husain, 2008), with two minor differ-
ences. In that proposal, items are allocated subsets of
neurons from a fixed, common set of neurons that always
fire at the same gain. Such an implementation might be
harder to implement if the populations encoding different
items are spatially separated. Secondly, it was suggested
that deviations from an exact A ò ¾N relationship (Bays
& Husain, 2008; Wilken & Ma, 2004) might be due to
correlations. However, the argument above allows for
correlations and still predicts A ò ¾N. Instead, deviations
that are still of power-law form, i.e., A ò N! with ! m ½,
could originate from deviations from Poisson-like varia-
bility or from a dependence of the total number of
available spikes on N. In Appendix C, we comment on
the consequences of ! m ½.
The relationship A ò ¾N has been proposed earlier

based on a sampling argument (Palmer, 1990; Shaw,
1980), but without neural justification. If a fixed total
number of S samples is available, then on average, S/N

samples will be available per item. By averaging these
observations, a better estimate of a single item is obtained.
Since the standard deviation of an average of a number of
observations generated by the same random process is
inversely proportional to the number of terms in the
average, we find A ò 1/

ffiffiffiffiffiffiffiffiffi
S=N

p
ò ¾N. While intuitive, this

argument does not specify the nature of these samples.
Moreover, it is independent of the form of neural
variability, while we claim that a different form of
variability would produce a different increase of uncer-
tainty with N. For example, if neural variability were
additive and Gaussian, then I(s) ò g2 and A ò N, a
completely different relationship.

Generative model

A Bayesian observer (Kersten et al., 2004; Knill &
Pouget, 2004; Knill & Richards, 1996) uses the statistical
structure of the task to infer a probability distribution over
the variable of interest. Unlike limited-capacity models,
Bayesian models assume that all observations are noisy,
but that little or no random guessing occurs in arriving at a
response (Figure 3a). In our case, the probability that C =
1 (or C = j1) is inferred based on N noisy observations of
pre- and post-midline motion directions, which we denote
by x = (x1,I, xN) and y = (y1,I, yN). Since C is a binary
variable, this probability is uniquely specified by the log
odds,

d ¼ log
p C ¼ 1jx; yð Þ
p C ¼ j1jx; yð Þ : ð1Þ

The optimal decision on a given trial is to respond
“counterclockwise” if d 9 0 on that trial. This is a
straightforward generalization of the likelihood formula-
tion of signal detection theory (Green & Swets, 1966;
Wickens, 2002).
For any experimental condition, we can use Bayes’ rule

and other probability calculus to derive an expression for
d in terms of the observations x and y. To do this, we need
to specify the generative model of the task, i.e., a
description of the stochastic processes through which the
observations are generated by the task-relevant variables.
The generative model is depicted graphically in Figure 3b.
Besides C, D, x, and y, this diagram contains the
following variables: $, the angle of deviation; I, the
indices of deviating trajectories (a subset of 1,I, N);

¯
$,

the vector of direction changes; and E and 8, the vectors
of pre- and post-midline directions, respectively (known
to the experimenter, but not to the observer). The vectors
x and y consist of sensory observations generated by E and
8, respectively; they are known to the observer but not to
the experimenter.
Each arrow indicates a direct probabilistic dependency.

The absence of an arrow indicates the absence of a direct

Figure 2. If neuronal variability is Poisson-like, then the gain of a
neural population (left; neurons are ordered by their preferred
stimulus and the population pattern of activity on a single trial is
shown) is inversely proportional to the square of the uncertainty
about the encoded stimulus (right): g ò 1/A2. Under a spike
constraint, this implies A2 ò 1/N.
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probabilistic dependency. For example, we have assumed
that the angle of deviation is chosen independently of its
sign. Each probabilistic dependency can be formalized as
a conditional probability distribution. Most of the distri-
butions in this generative model are common to all
experiments and we will first specify those, starting at
the bottom of the diagram. We assume that the motion
directions of the dots are corrupted by independent
sources of sensory variability which obey normal distri-
butions (we ignore the fact that sometimes the dots are so
close to each other that the independence assumption may
be violated). Before the midline, the vector of observa-
tions x given the actual stimuli E is then drawn from the
following product of Gaussians:

p xjEð Þ ¼ p x1;I; xNjE1;I; ENð Þ

¼
YN
i¼1

p xijEið Þ ¼
YN
i¼1

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
2:A2

pre

q e
j

xijEið Þ2
2A2

pre ; ð2Þ

and similarly for p(yª8) but with variance Apost
2 .

The vector of post-midline motion directions is simply
the sum of the vector of pre-midline motion directions
and the vector of deviations: 8 = E +

¯
$, or in other words,

p(8ªE,
¯
$) = %(8 j E j ¯

$), where % is the Dirac delta
distribution. In turn, the vector of deviations

¯
$ is uniquely

determined by the deviation angle $, the deviation sign C,
and the indices of the deviating trajectories, I: p(

¯
$ª$, I) =

%(
¯
$ j C$1I), where 1I is a vector of length N with 1’s at

the indices in I and 0’s everywhere else.
Finally, the set of indices of deviating trajectories, I, is a

randomly chosen subset of size D of the set 1,I, N. Since
there are (ND) subsets of size D, the probability of I given
D is equal to 1/(ND) if ªIª = D and 0 otherwise.
Throughout, N is assumed fixed and known to the observer.

Now we have expressed the stochastic dependencies of
all variables in the diagram in terms of the top-level
variables, C, D, $, and E. What remains is to specify the
probability distributions over these variables. Since they are
top-level, they do not depend on other variables. There-
fore, their distributions are prior distributions, reflecting
assumed or learned knowledge about the statistics of the
stimuli. Throughout, we will assume flat prior distributions
for C and E, that is, p(C = 1) = p(C = j1) = ½ and p(Ei) =
constant for all i.
The prior distributions over D and $ depend on the

experiment. The distribution over D is a delta distribution
(when there is a fixed number of deviating trajectories on
each trial, as in Experiments 1–4) or a sum of delta
distributions (when the number of deviating trajectories
takes one of multiple possible values, as in Experiment 5).
The distribution over $ is uniform (in the threshold
Experiments, 1 and 2), a delta distribution (in the supra-
threshold Experiments 3, 4, and 6), or a sum of delta
distributions (when trials with multiple different deviation
angles are interleaved, as in Experiment 5).

Inference

A Bayesian (optimal) observer uses the structure of the
generative model to decide which value of C to report on
each trial. Specifically, the observer computes the poste-
rior probabilities p(C = 1ªx, y) and p(C = j1ªx, y) and
reports “C = 1” if p(C = 1ªx, y) 9 p(C = j1ªx, y). We
will derive this decision rule in terms of x and y for each
of the five experiments. Once the decision rule is known,
average behavior over a large number of trials can be
simulated (or sometimes computed analytically), so that
the Bayesian observer can be compared with behavioral
data.

Figure 3. (a) Schematic of decision processes in Bayesian and limited-capacity models. (b) Generative model of the task. Arrows indicate
conditional probabilistic dependencies.
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Bayes’ rule expresses the posterior probability p(Cªx, y)
in terms of the likelihood p(x, yªC) and the prior p(C):

p Cjx; yð Þ ¼ pðx; yjCÞpðCÞ
pðx; yÞ : ð3Þ

For binary variables such as C, it is convenient to
consider the log posterior ratio (log odds), Equation 1,
which can, using Equation 3, be rewritten as the sum of a
log likelihood ratio and a log prior ratio:

d ¼ log
pðx; yjC ¼ 1Þ
pðx; yjC ¼ j1Þ þ log

pðC ¼ 1Þ
pðC ¼ j1Þ : ð4Þ

Because of our prior on C, the log odds reduce to the
log likelihood ratio. The difficulty in computing the
likelihoods lies in the fact that although C is the only
task-relevant variable, the probability of x and y is also
influenced by unknowns which are themselves not of
interest, such as E, $ (in the threshold experiments), and D
(when the number of deviating trajectories is unknown). A
Bayesian observer solves this marginalization problem by
averaging over these random variables, as we will now
examine case by case.

Experiment 1: Near-threshold, N of N

In Experiment 1, all trajectories deviate, so D = N and
I = {1,I, N}. A threshold paradigm is used, so $ is varied
over a wide range. We evaluate the likelihood p(x, yªC)
by writing it as an average over the scalar $:

pðx; yjCÞ ¼
ZV
0

pðx; yjC;$Þpð$Þd$: ð5Þ

This is also called marginalizing out or integrating out
$. The probability of x and y conditioned on both C and
the scalar $ is computed by integrating out the vector

¯
$:

p x; yjC;$ð Þ ¼
Z

p x; yj¯$;C;$
� �

p
¯
$jC;$
� �

d
¯
$

¼
Z

p x; yj¯$
� �

p
¯
$jC;$
� �

d
¯
$

¼
Z

p x; yj¯$
� �

%
¯
$jC$1
� �

d
¯
$

¼ p x; yj¯$ ¼ C$1
� �

;

ð6Þ

where we used the facts that x and y depend on C and $
only through

¯
$, and that

¯
$ = C$1, where 1 is a vector of

length N consisting of only 1’s. Next, we integrate out E
and 8:

p x; yjC;$ð Þ ¼ p x; yj¯$ ¼ C$1
� �

¼
¼
Z Z

p x; yjE;8;¯$ ¼ C$1
� �

p 8jE;¯$ ¼ C$1
� �

p Eð ÞdEd8

¼
Z

p xjEð Þp yj8 ¼ Eþ C$1ð Þp Eð ÞdE;
ð7Þ

where again we used the structure of the generative model
to simplify the conditional probabilities. We can now
explicitly evaluate this integral. We assume a uniform
distribution over E (p(E) is then a constant, !) and
integrate over the real line (strictly speaking, motion
direction is a periodic variable and lives on the circle, but
there is little difference if the variability distributions are
relatively narrow, as they are here). Then we have

p x; yjC;$ð Þ ¼ !
R
p xjEð Þp yj8 ¼ Eþ C$1ð ÞdE

¼ !
YN
i¼1

Z
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

2:A2
pre

q e
j

xijEið Þ2
2A2

pre
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2:A2
post

q e
j

yijEijC$ð Þ2
2A2

post dEi

¼ !
YN
i¼1

1ffiffiffiffiffiffiffiffiffiffi
2:A2

p e
j

yijxijC$ð Þ2
2A2

¼ ! 2:A2ð Þj
N

2e
j

1

2A2
~
N

i¼1

yijxijC$ð Þ2
;

ð8Þ

where we used a standard formula for the integral over
the product of two Gaussians and introduced the notation
A2 = Apre

2 + Apost
2 . Inserting this result back into Equation 5,

we find

p x; yjCð Þ ¼ ! 2:A2ð Þj
N

2

ZV
0

e
j

1

2A2
~
N

i¼1

yijxijC$ð Þ2
p $ð Þd$

¼ ! 2:A2
� �jN

2e
j

1

2A2
~
N

i¼1

yijxið Þ2ZV
0

e
j

$2

2A2
þ C$

A2
~
N

i¼1

yijxið Þ
p $ð Þd$;

ð9Þ
where we used C2 = 1. Finally, we obtain the log odds
from Equation 4:

d ¼ log

Z V

0

e
j $2

2A2
þ $

A2
~
N

i¼1

yijxið Þ
p $ð Þd$

Z V

0

e
j $2

2A2
j $

A2
~
N

i¼1

yijxið Þ
p $ð Þd$

: ð10Þ

If @i(xi j yi) 9 0, then the integrand in the numerator is
larger than the integrand in the denominator for any $
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(since $/A2 9 0). Moreover, both integrands are non-
negative functions on the entire domain of $. It follows
that d 9 0. Similarly, if @i(xi j yi) G 0, then d G 0. From
this, we conclude that d 9 0 is equivalent to

XN
i¼1

yij xi
A2

9 0; ð11Þ

regardless of the form of p($). Note that we kept the
constant factor 1/A2, in anticipation of situations where
uncertainty might differ between dots (1/Ai

2), a case of
which we will discuss in the Predictions section. The
decision rule is to report “C = 1” when the average post-
midline motion direction is larger than the average pre-
midline one. That this is the optimal strategy is intuitive
and could have been guessed without doing any calcu-
lations: since each trajectory deviates by the same amount,
maximum information about the deviation is obtained by
averaging all N observations. However, the same calcu-
lation method will be used in more complex conditions.
In Experiments 1 and 2, performance is measured as a

deviation threshold, i.e., as the value of $ for which the
observer is 84.1% correct (this number is obtained as ½ +
½ erf(1/¾2), where erf(x) is the error function). To relate
the Bayesian model to human performance, we have to
apply the Bayesian decision rule to a large number of
trials. Usually, this requires simulation, but in this
particular case we can do it analytically. In the Bayesian
model, probability correct for a given value of $ is the
probability that d 9 0 when C = 1 (or that d G 0 when C =
j1, which is the same). When C = 1, each random
variable yi j xi follows a Gaussian distribution with mean
$ and standard deviation A, and their average follows a
Gaussian distribution with mean $ and standard deviation
A/¾N. Therefore, the probability that their average is
positive is equal to ½ + ½ erf($/AI

ffiffiffiffiffiffiffiffiffi
N=2

p
). Comparing this

with the above expression for 84.1% correct yields that
the threshold deviation is equal to $thr = A/¾N.
In the constrained Bayesian model, the spike constraint

causes the standard deviation to scale with the square root
of N: A = A1¾N, where A1 is the combined pre- and post-
midline uncertainty when only 1 trajectory is present. It
follows that $thr = A1, indicating that the threshold
deviation is independent of N. In other words, the benefit
gained from averaging N observations is exactly undone
by the increase in uncertainty due to the spread of attention
over N items. This also means that, in this task, it does not
make a difference how many items are tracked since
tracking additional items does not improve performance.

Experiment 2: Near-threshold, 1 of N

Experiment 2 differs from Experiment 1 in that only
one, randomly chosen trajectory is deviating. It means that
D = 1 and I is a single index j randomly chosen from

{1,I, N}. As a consequence, in Equation 6, p(
¯
$ªC, $)

needs to be computed as an average over I:

p
¯
$jC;$
� �

¼ 1

N

XN
j¼1

p
¯
$jC;$; I ¼ fjg
� �

¼ 1

N

XN
j¼1

%
¯
$jC$1j
� �

:

ð12Þ

Therefore, Equation 6 gets replaced by

p x; yjC;$ð Þ ¼ 1

N

XN
j¼1

p x; yj¯$ ¼ C$1j
� �

: ð13Þ

The conditional probability inside the sum indicates
that the jth trajectory is deviating, while all others are
not. As in Experiment 1, we write this as an average
over E,

pðx ; yjC;$Þ ¼
¼ 1

N

XN
j¼1

Z
p x; yjE;8 ¼ Eþ C$1j
� �

p Eð ÞdE:

ð14Þ

To compute this integral, we write it as a product over
all individual trajectories, keeping in mind that the jth
factor is different from all others and therefore needs a
separate factor:

p x; yjC;$ð Þ ¼

¼ !

N

XN
j¼1

Z
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

2:A2
pre

q e
j

xjjEj
� �2
2A2

pre
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2:A2
post

q e
j

yijEjjC$
� �2

2A2
post dEj

I
Y
imj

Z
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

2:A2
pre

q e
j

xijEið Þ2
2A2

pre
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2:A2
post

q e
j

yijEið Þ2
2A2

post dEi

¼ !

N

 YN
i¼1

1ffiffiffiffiffiffiffiffiffiffi
2:A2

p e
j

yijxið Þ2
2A2

!XN
j¼1

e
yjjxj
� �2
2A2 e

j
yjjxjjC$
� �2

2A2 :

ð15Þ

This form allows us to compute the average over $, as
in Equation 5. We assume a uniform prior distribution
over $ (this is a threshold paradigm, so this assumption is
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reasonable), which takes a small value " on a large
interval. Then

p x; yjCð Þ ¼

¼ !"

N

 YN
i¼1

1ffiffiffiffiffiffiffiffiffiffi
2:A2

p e
j

yijxið Þ2
2A2

!
A

ffiffiffi
:

2

r XN
j¼1

e
yjjxj
� �2
2A2 1þ erf

yj j xj

AC
ffiffiffi
2

p
� �

:

ð16Þ

Now, we are ready to compute the log odds:

d ¼ log

XN
j¼1

e
yjjxjð Þ2
2A2 1þ erf

yjjxj
A
ffiffi
2

p
� �

XN
j¼1

e
yjjxjð Þ2
2A2 1j erf

yjjxj

A
ffiffiffi
2

p
� � : ð17Þ

The decision rule, d 9 0, thus becomes

XN
j¼1

e
ðyjjxjÞ2

2A2 erf
yjjxj

A
ffiffiffi
2

p 9 0: ð18Þ

Contrary to the averaging rule in Experiment 1, this
decision rule would have been impossible to guess.
Another difference with Experiment 1 is that the decision
rule now contains the uncertainty parameter, A, in an
essential way (in Experiment 1, it was irrelevant if
uncertainty was equal across items). Therefore, it requires
that a neural population encoding motion direction also
encodes, on a single trial, the uncertainty about a stimulus,
and that this information is used in downstream compu-
tations. This utilization of implicit knowledge of one’s
uncertainty is what we mean by Bayesian inference (even
though the prior distribution is flat in this case).
Probabilistic population codes (Ma et al., 2006) provide
a concrete neural implementation of a Bayes-optimal
computation (cue combination).

Positional uncertainty

In Experiment 2, only 1 trajectory is deviating, and
therefore we also need to take into account positional
uncertainty. By this we mean the uncertainty in the
endpoints of the first halves of all trajectories and the
starting points of their second halves, on the vertical
midline. This uncertainty will lead to mispairings, whereby
the first half of one trajectory is mistakenly associated with
the second half of a different trajectory. This “correspon-
dence problem” will make correct change discrimination
more difficult. Figure 4a shows an illustration.

In Experiment 1, this did not play a role, since the
optimal decision rule involved averages of the pre- and
post-midline observed motion directions, and averages
over all trajectories are not affected by mispairings.
However, the numerator and denominator in the log odds
of Experiment 2 are not invariant under permutations of
the indices in x or y.
Mispairings are particularly prone to occur whenever

two trajectories intersect, which, by experimental design,
does not occur exactly on the vertical midline (a minimum
distance between the dots is respected at their time of
deviation). Therefore, we are considerably simplifying the
problem by only taking into account positional uncertainty
on the vertical midline. We are essentially summarizing
all potential mispairings into one single moment. This
simplification is meant to capture the essence of positional
uncertainty without the need to model time courses of the
positions of all dots, which would make the model much
more complex.
Each trajectory consists of two halves. We model

positional uncertainty by drawing endpoints of first halves,
p, and starting points of second halves, q, from normal
distributions centered at common actual positions L.
Those positions are specified by the experiment, i.e., they
are placed equidistantly on the real line and then corrupted
by uniform jitter (Tripathy & Barrett, 2004; Tripathy
et al., 2007). The standard deviations of the normal
distributions are free parameters and are assumed to be
equal. Like the observations of direction, the observations
of position are subject to the spike constraint and therefore

Figure 4. Illustration of positional uncertainty. (a) Two example
trajectories are shown in black. Blue dots represent noisy
observations of dot positions during the trial. Dashed lines
indicate the inferred trajectories. Because of the relative positions
of the intersections of the inferred trajectories with the vertical
midline, the observer erroneously believes that the red trajectory
halves belong together, and the green ones. In truth, the left-hand
red segment and the right-hand green segment belong together.
(b) In the model, we conceptualize this problem using endpoints
of first halves, pi, and starting points of second halves, qi (example
shown has four trajectories). Correspondence is established by
matching the points in p and q after ordering them separately. In
this example, this would lead to the pairings (p1, q1), (p2, q3), (p3,
q2), and (p4, q4).

Journal of Vision (2009) 9(11):3, 1–30 Ma & Huang 7



these standard deviations increase with ¾N. We will
denote the positional uncertainty at set size 1 by Apos,1;
it is ¾2 times the positional uncertainty in p or q
separately.
The correspondence between first-half endpoints p and

second-half starting points q is established by picking the
most likely pairing. This is the pairing in which the sorted
version of p corresponds, entry by entry, to the sorted
version of q: the smallest entry in p corresponds to the
smallest entry in q, etc. (Figure 4b). Specifically, we denote
by Sp(p) the permutation that sorts p. For example, if L =
(8, 23, 27, 45), then p could be (10.5, 25.1, 24.6, 42).
Sp(p) is then the permutation (1, 2, 3, 4) Y (1, 3, 2, 4).
Similarly, Sq(q) is the permutation that sorts q. We define
permuted sets of motion direction observations by applying
the same permutations, Sp and Sq, to x and y, respectively:
xnew = Sp(x) and ynew = Sq(y).
Subsequently, xnew and ynew are entered into the

decision rule, instead of x and y. For example, in
Experiment 2, the final decision rule becomes

XN
j¼1

e
ðynew;jjxnew;jÞ2

2A2 erf
ynew;j j xnew;j

A
ffiffiffi
2

p 9 0: ð19Þ

We use this permutation procedure in every application
of the Bayesian models in this paper, except in Experi-
ment 1, where it is not needed (as discussed above), and in
the inset of Figure 14a, where the basic effect is
demonstrated without positional uncertainty.
This implementation of positional uncertainty is the

only non-Bayesian element of our model. A purely
Bayesian observer would average over all possible
permutations, weighted by their probabilities, but we
believe that this is unlikely, because their number grows
as N factorial.

Experiment 3: Suprathreshold, 1 of N

In this experiment, 1 of N trajectories deviates, where
the angle of deviation is relatively large. It might seem
that the generative model is the same as that of Experi-
ment 2. There however, $ takes on values over a wide
range, whereas here, $ is fixed within a block. A Bayesian
observer incorporates this knowledge through p($). This
means that p(x, yªC) = p(x, yªC, $). Combined with
Equations 4 and 8, this leads to the decision rule

XN
i¼1

e
$ yijxið Þ

A2 9
XN
i¼1

ej
$ yijxið Þ

A2 ; ð20Þ

where $ is now a specific value rather than a variable. It is
interesting to note that in the limit that yi j xi is much
larger for one value of i than for all others, and similarly

for xi j yi, then the sums on both sides are dominated by
the largest terms, and this decision rule simplifies to the
so-called signed-max rule (Baldassi & Verghese, 2002):

max
i

yi j xi
A2

9 max
i

xi j yi
A2

: ð21Þ

(This is only a statement about the decision rule; keep in
mind that we make the additional assumption that
uncertainty increases as ¾N.) However, this rule is not
optimal outside of this limit or in other conditions. The
optimal rule, Equation 20, can be regarded as a soft
version of the signed max rule, as the exponential function
preferentially amplifies larger observed deviations yi j xi
(or xi j yi). It is intuitive that this is optimal, as larger
observed deviations provide more conclusive evidence
about the true direction of deviation than smaller ones.

Experiment 4: Suprathreshold, D of N, blocked

This situation is not fundamentally different from that in
Experiment 3; the only difference is that there are now
more possible subsets of deviating trajectories, namely
(ND) of them. The decision rule is in Appendix A.

Experiment 5: Suprathreshold, D of N, interleaved

In Experiment 4, $ and D were fixed in a given block
and only varied between blocks, whereas in Experiment 5,
trials with different values of $ and D were interleaved
within a single block. In a Bayesian model, these designs
correspond to different assumed distributions over $ and
D. In Experiment 5, the observer is not sure of the values
of $ and D, and therefore marginalizes over these
variables. The decision rule is in Appendix A.

Monte Carlo simulations

In order to compare Bayesian model predictions with
human data and other models, we apply the Bayesian
decision rule, for every experiment separately, to a large
number of synthetic observations (Monte Carlo simula-
tion). These synthetic data are generated from the
generative model pertaining to that experiment. To
simulate a set of observations, we pick a deviation angle
from the range used in the experiment. For each trial, we
decide beforehand whether the deviation is clockwise or
counterclockwise (with equal probability). Then, we
randomly choose initial motion directions as well as
which trajectory is deviating. Finally, based on the motion
directions generated in this way, we synthesize noisy
observations x and y by drawing independently from
Gaussian distributions centered at these motion directions.
After generating the observations, we apply the Bayesian
decision rule to the observations x and y on each trial.
Then, we determine the proportion of trials on which the
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model response is correct. In terms of the log odds, d, this
is the same as calculating a histogram of d for (x, y) pairs
drawn under C = 1, and counting what portion of the
histogram satisfies d 9 0 (equivalently, C = j1 and d G 0).
The log odds do, in general, not follow a normal
distribution (see Figure 5a).
This procedure is then repeated for a large number of

deviation angles, so that we can plot the psychometric
curve (see Figure 5b). We then fit a cumulative normal
function to the psychometric curve, thus obtaining a best
estimate for $thr. There is no reason why the psychometric
curve should have a cumulative normal shape, and in
many cases it does not. However, it is a reasonable
approximation, and our analysis of model data parallels
that of the behavioral data.
In the suprathreshold experiments, effective number

tracked was computed in the same way as in the
behavioral experiments (Tripathy et al., 2007), namely
by asking in a given condition what would be the capacity
of a hypothetical limited-capacity observer achieving the
same percentage correct as the Bayesian observer. The
limited-capacity observer for general D is described in
the next section. Since capacity is an integer, we interpolate
percentage correct as a function of capacity using an expo-
nential fit, again following (Tripathy et al., 2007).
Each experiment has a number of parameters that are

set by the experimenter, which we tried to replicate as
closely as possible from Tripathy and Barrett (2004) and
Tripathy et al. (2007); these are not free. In addition, each
Bayesian model has one or two free parameters: the
directional uncertainty at set size 1, A1, and in Experi-
ments 2–5, the positional uncertainty at set size 1, Apos,1.
The values of these free parameters were taken to be

consistent across experiments. In Experiment 1, we expect
the constant deviation threshold to be approximately equal
to A1. Moreover, threshold for discriminating the devia-
tion sign in a single trajectory decreases was measured
separately as a function of dot speed (Tripathy & Barrett,
2004); we used approximately those values for A1,
keeping in mind that different experiments used different
dot speeds. Apos,1 was fitted by hand. The experiment-
specific parameters are listed in Appendix B. In all
simulations, we used at least 10,000 trials per condition.

Unconstrained Bayesian model

The unconstrained Bayesian model is identical to the
constrained Bayesian model except that the uncertainty
per item does not increase with N, i.e., A = A1 and Apos =
Apos,1.

Limited-capacity model

In the traditional limited-capacity model (Cowan, 2001;
Hulleman, 2005; Luck & Vogel, 1997; Oksama & Hyona,
2008; Pashler, 1988; Pylyshyn & Storm, 1988), a capacity
limit K (a positive integer) is assumed, meaning that on
each trial, K trajectories are randomly selected; if K Q N,
all are selected. If the deviating trajectory is among these,
the observer will report the correct sign of the deviation. If
none of the K selected trajectories deviates, then the
observer guesses about the sign of the deviation, picking
“clockwise” or “counterclockwise” each with probability
½.

Figure 5. Properties of the constrained Bayesian model in the threshold paradigm (1 of N deviating). (a) Histogram of the Bayesian
decision variable, the log odds of counterclockwise versus clockwise deviation, when C = 1. The log odds follow a non-Gaussian
distribution. The dashed red line indicates the optimal criterion, d = 0. These examples use N = 4, D = 1, $ = 20- (top), and $ = 50-
(bottom). (b) Percentage “counterclockwise” responses as a function of the deviation angle, $, for different numbers of trajectories, N.
Saturation performance is 100% for any N. In both panels a and b, A1 = 3- and Apos,1 = 15V.
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A characteristic feature of the limited-capacity model
(as well as its variations, which will be discussed in the
next sections) is that when one trajectory deviates, the
deviation threshold is infinite for N 9 1.46K. We will
prove this below. Another characteristic is that perfor-
mance is independent of deviation angle, which is relevant
in Experiments 3–5.

Experiment 1: N of N

The traditional limited-capacity model predicts 100%
performance and a threshold of 0- regardless of K or N,
since the selected trajectory or trajectories will always be
deviating and their sign of deviation will be known with
absolute certainty.

Experiments 2 and 3: 1 of N

In Experiments 2 and 3, 1 of N trajectories is deviating.
The proportion of trials on which the observer responds
correctly is then 1 if N e K, and

PC N; 1ð Þ ¼ K

N
þ 1

2
1j

K

N

� �
¼ 1

2
1þ K

N

� �
; ð22Þ

if N Q K. This is shown as a function of N, for different
values of K, in Figure 6a. The limited-capacity model
does not take into account the angle of deviation, $. For
any set size, N, and any value of the capacity, K,
percentage correct is independent of deviation angle (see
Figure 6b). Since deviation threshold is defined as the
smallest value of the deviation angle for which proportion
correct exceeds 0.841, the limited-capacity model predicts
that only two possible threshold values are possible: zero
and infinity, depending on whether PC in Equation 22
randomly is larger or smaller than 0.841, respectively.
We can compute for which values of N the deviation
threshold is infinite by solving the equation PC(N, 1) G ½ +
½ erf(1/¾2). The solution is

N 9 K=erfð1=
ffiffiffi
2

p
Þ , 1:46K: ð23Þ

This means that if K = 3, the threshold deviation
according to the limited-capacity model will be infinite
whenever N Q 5. This leads to threshold-versus-set size
curves that look like those in Figure 6c.
In the limited-capacity model, there is no difference

between near-threshold and suprathreshold paradigms, so
Equation 22 is valid for both Experiments 2 and 3.

Experiments 4 and 5: D of N

When D of N trajectories deviate, the limited-capacity
model predicts that PC(N, D) = 1 when N G K + D (since

then at least one deviating trajectory is attended to). When
N Q K + D, the model predicts, through a basic
combinatorial argument, the following proportion correct:

PC N;Dð Þ ¼ 1j
1

2

NjD
K

� ��
N
K

� �
: ð24Þ

This is shown as a function of D and for different values
of K in Figures 6d and 6e (with N = 6 and N = 8,
respectively). Again, percentage correct is independent of
deviation angle (Figure 6f). Equation 24 is valid regard-
less of whether different values of D are blocked or
interleaved.
The limited-capacity observer is used to define the

notion of effective capacity or effective number tracked
(Tripathy et al., 2007). When percentage correct is
measured for given D and N, the effective capacity of
the human observer is defined as the capacity of a
hypothetical limited-capacity observer with the same
percentage correct, where PC is interpolated between
integer values of K using an exponential fit. We applied
the same method to the simulated responses of different
models, to obtain model effective capacity.

Slots-plus-averaging model

The slots-plus-averaging model (Zhang & Luck, 2008)
is a variation of the limited-capacity model that takes
uncertainty into account to some extent but still assumes
that no more than K items can receive resource. The
model was developed for short-term memory but can also
be applied to attentional tracking. The shortcomings of the
limited-capacity model for visual-short term memory were
pointed out in a set of two-interval suprathreshold feature
change detection experiments (Wilken & Ma, 2004). This
work suggested instead that short-term memory limita-
tions originate from the variability in the sensory encoding
of items combined with a finite but continuous resource. A
direct estimation task was introduced, in which subjects
estimated in the second interval the feature value of one
item, which was among multiple items present in the first
interval. This confirmed that precision with which items
are maintained in memory smoothly decreases with set
size. In response, Zhang and Luck proposed the slots-plus-
averaging model, which attempted to address the decline
of precision with set size by postulating that resources
come in a small number of discrete chunks, K (slots).
When there are fewer slots than items (N Q K), the number
of slots is equivalent to the capacity in the traditional
limited-capacity model. However, when there are more
slots than items (N G K), multiple slots will be allocated to
the same item, thereby increasing the quality of its
encoding, in a way similar to the sampling argument
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Figure 6. Predictions of the traditional limited-capacity model when 1 (a–c) or D (d–f) of N trajectories deviate. (a) Percentage correct as a
function of set size, N, for different values of the capacity, K. (b) Psychometric functions for different set sizes. In this example, K = 4.
(c) Deviation threshold (at 84.1% correct) as a function of set size for different values of K. The cyan curve (K = 4) is derived from the
psychometric functions in panel b. The bright green line (flat at 0-) represents the deviation threshold when all N trajectories deviate
(Experiment 1). (d) Percentage correct as a function of D, when N = 6, for different values of K. (e) Same when N = 8. (f) Psychometric
functions for N = 8, K = 4, and different values of D (D = 4 and D Q 5 lines nearly overlap). Percentage correct is independent of deviation
angle. Its values in this example can be read off from the cyan curve (K = 4) in panel e.
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mentioned in “Neural constraint on uncertainty.” Items
that do not receive any slot are not maintained at all.
Therefore, this model is a hybrid between the limited-
capacity model and a continuous-resource model like the
constrained Bayesian observer. Here, we only describe
aspects of the slots-plus-averaging model that can be
directly applied to the tracking task we study.
As the slots-plus-averaging model has not yet been

applied to change detection or attentional tracking, we
make our best guess as to how the concepts outlined in
(Zhang & Luck, 2008) would translate to our context. As
in the traditional limited-capacity model, the slots-plus-
averaging model would postulate a categorical distinction
between attended and unattended items, with the observer
having no information at all about an unattended item.
However, unlike the traditional limited-capacity model,
the slots-plus-averaging model acknowledges the exis-
tence of variability in the representation of attended items.
One would expect this variability in internal representa-
tion to lead the observer to sometimes mistake a non-
deviating trajectory for a deviating one, or the other way
round, just like in any near-threshold discrimination task.
Bayesian models automatically take these confusions into
account and prescribe how noisy observations from
different trajectories should be combined into a single,
optimal decision rule. However, since probabilistic infer-
ence across multiple items is contrary to the thinking
behind limited-capacity models, we will instead assume
that the observer somehow knows which of the trajecto-
ries were deviating.
We use PC($, N, D) to denote predicted proportion

correct at deviation angle $, when D of N trajectories are
deviating. For the deviation threshold when D of N
trajectories are deviating, we use the notation $thr(N, D).

Experiment 1: N of N

We call the number of slots K. When N Q K, each
attended item will be encoded with a certain standard
deviation AK (one slot each). This standard deviation
corresponds to the combined pre- and post-midline
uncertainty. Averaging K such observations will produce
standard deviation AK/¾K. When N e K, each item will be
encoded with standard deviation AN = AK

ffiffiffiffiffiffiffiffiffiffi
N=K

p
(one slot

each). Averaging N such observations will produce
standard deviation AK/¾K. We conclude that the deviation
threshold will be $thr(N, N) = AK/¾K, independent of N.
That this is the same as in the Bayesian model is not
surprising, since the naı̈ve averaging operation happens to
be optimal when all trajectories deviate.

Experiments 2 and 3: 1 of N

When N Q K, there is a probability of K/N that the
deviating trajectory is allocated a slot. When this happens,
its internal representation will have standard deviation AK.

Then, probability correct equals the probability that an
observation drawn from a normal distribution with mean
$ (which is positive) and standard deviation AK is itself
positive (so that the correct deviation sign will be
reported).
This probability is ½ + ½ erf($/(AK¾2)). On the other

hand, when the deviating trajectory is not allocated a slot,
performance will be at chance. Consequently, the predicted
proportion of correct responses is, after simplification,

PC $;N Q K; 1ð Þ ¼ 1

2
1þ K

N
erf

$

AK

ffiffiffi
2

p
� �

: ð25Þ

As a check, when $ is large compared to AK, the error
function will tend to 1, and PC is the same as in the
traditional limited-capacity model, Equation 22. It follows
from Equation 25 that proportion correct is bounded by
PC($ = V, N, 1) = ½(1 + K/N). Just as in the traditional
limited-capacity model, PC never reaches 0.841 if N 9
1.46K (see Equation 23). For these values of N, $thr(N, 1) =
V. For other values of N, i.e., those which satisfy K e N G
1.46K, we can compute the threshold deviation from
Equation 25 as:

$thr K e N e 1:46K; 1ð Þ ¼ AK

ffiffiffi
2

p
erfj1 N

K
erf

1ffiffiffi
2

p
� �

: ð26Þ

When N e K, each item will be attended and have at
least one slot allocated to it. The average number of slots
allocated will be K/N. As a consequence, the standard
deviation of its internal representation will be reduced by
a factor

ffiffiffiffiffiffiffiffiffiffi
K=N

p
: AN = AK

ffiffiffiffiffiffiffiffiffiffi
N=K

p
. (This ignores the

discrete nature of the slots, which prevent allocation of
fractional slots. For example, when there are four slots and
three items, one item will get one more slot than the other
two. Taking that into account would yield a minor
correction and is not essential to the model comparison.)
We assume that the observer somehow knows which of

the trajectories was deviating, leaving the task of
determining the sign of the deviation. Therefore, propor-
tion correct will be

PC $;N e K; 1ð Þ ¼ 1

2
þ 1

2
erf

$

AK

ffiffiffiffiffiffi
K

2N

r
: ð27Þ

When K = N, this is equal to Equation 25, and when $ is
large compared to AK, it is equal to 1 as in the traditional
limited-capacity model. Thus, for N e K, threshold is
$thr(N e K, 1) = AK

ffiffiffiffiffiffiffiffiffiffi
N=K

p
. The percentage of “counter-

clockwise” responses is plotted as a function of $ for
different values of N in Figure 7a. The psychometric
function for N = 1 is identical to the one when N of N

Journal of Vision (2009) 9(11):3, 1–30 Ma & Huang 12



trajectories are deviating (regardless of N). Performance
saturates at a level far below 100% for any sufficiently
large N, a distinctive feature that casts serious doubt on
any limited-capacity model (Bays & Husain, 2009).
The predictions of the slots-plus-averaging model for

threshold versus set size are shown, both for 1-of-N and
for N-of-N, in Figure 7b. In order to give each value of K a
fair chance to fit the data, we chose AK = AK = 1¾K, with
AK = 1 = 3-. (Note that AK = 1 = AN = 1.) With this choice,
$thr(1, 1) = 3- for any K, close to the measured value.

Experiments 4 and 5: D of N

When multiple trajectories deviate, the combinatorics
get slightly more complicated, but the logic is the same.
We assume that when multiple deviating trajectories
receive a slot, the observer averages the corresponding
observations (on top of averaging over multiple slots
allocated to the same item, when N G K). The predictions
are in Appendix A.

Bayesian model with capacity limit

In this model, there exists a capacity limit K, but
inference is optimal within the selected subset of K items.
We consider this model in order to determine whether a
capacity limit on a Bayesian ideal observer can describe

the data better than a continuous resource constraint.
Predictions are derived in Appendix A.

Averaging model

Finally, we consider a simple model in which the
observer makes a judgment by comparing the average
motion directions across all dots before and after they pass
the midline (Tripathy et al., 2007). Since all motion is to
the right, a vector average of these directions is well
approximated by a linear average. Therefore, this observer
responds “C = 1” when

XN
i¼1

yi
A2

9
XN
i¼1

xi
A2

: ð28Þ

This is equivalent to the summation model in signal
detection theory, in which the signals and noise from local
detectors get summed (Baldassi & Verghese, 2002;
Graham, Kramer, & Yager, 1987). In fact, Equation 28
is identical to Equation 11, the optimal decision rule when
all trajectories deviate (like there, we keep the 1/A2 factor
for generality). This rule is not optimal in the other
experiments. However, since it relies solely on the
computation of a single global motion signal, it does not
require the tracking of individual dots. Therefore, if human
observers would be following this strategy, one could even

Figure 7. Predictions of the slots-plus-averaging model for the threshold experiments. (a) Percentage “counterclockwise” responses as a
function of the deviation angle, $, for different numbers of trajectories, N, when 1 trajectory is deviating. In this example, K = 4. Note that
saturation performance is far below 100% when N 9 K, as is characteristic of all limited-capacity models. (b) Deviation threshold as a
function of set size for different numbers of slots, K, when either 1 of N or all N trajectories are deviating. For example, the cyan curve (K =
4) is derived from the psychometric functions in panel a. To ensure that the threshold at N = 1 is identical for all K (at a value close to the
data), we chose AK = AK = 1¾K (see text for details). The solid lines show AK = 1 = AN = 1 = 3-. Changing AK = 1 only has the effect of shifting
the curves vertically. Figure 6a represents asymptotic performance (at very large $) in the slots-plus-averaging model.
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question whether the task under study is a tracking
paradigm.
Tripathy and colleagues (2007) conducted an experi-

ment to rule this model out. In this experiment, there were
always two targets, both deviating at either 38- or j38-.
Set size was 6, 8, or 10. However, the distractors (all 4, 6,
or 8 of them) also deviated, half of them clockwise by a
fixed angle, and half of them counterclockwise by the
same angle. This fixed angle was varied by block and
could take the values 0-, 19-, 38-, 57-, and 76-. The task
was to determine the direction of deviation of the two
targets. If human observers were averaging the motion
directions before and after the midline, then performance
should not be affected by the angle of deviation of the
distractors since the mean and variance of the average are
not affected. However, percentage correct was found to
decrease monotonically with the fixed deviation angle of
the distractors.
In this paper, we add to this evidence by including the

averaging model in our model comparisons. Note that
“averaging” in this model has a different meaning than in
the slots-plus-averaging model; in the former, averaging
means pooling over all items to extract a global signal,
while in the latter, averaging is over the observations
provided by multiple discrete slots allocated to the same
item.

Results

Experiment 1: Near-threshold, N of N

The data show that deviation threshold is more or less
independent of N, with a value of about 3- (Figure 8a,
green line). The slots-plus-averaging model (Figure 8c)
and the constrained Bayesian model (Figure 8f) predict
the same. The latter is because the benefit of averaging over
N observations is canceled by the increase of uncertainty
with N, as explained in the Theory and methods section.
The traditional limited-capacity model predicts that thresh-
old is exactly zero for any N (Figure 8b). The unconstrained
Bayesian model and the averaging model predict that thresh-
old decreases as 1/¾N (Figures 8d and 8g), reflecting only
the benefit of averaging without an increase in uncertainty.
The Bayesian model with capacity limit predicts the same
decrease for N e K, and a constant threshold for N 9 K
(Figure 8e). The traditional limited-capacity model, the
unconstrained Bayesian model, the Bayesian model with
capacity limit, and the averaging model can be ruled out
based on this experiment.

Experiment 2: Near-threshold, 1 of N

The data show that the deviation threshold increases
rapidly with N, taking values of more than 30- at N = 4

(Figure 8a, red line). The three limited-capacity models
(traditional capacity limit, slots-plus-averaging, uncon-
strained Bayesian) predict that threshold will rise to infinity
at set sizes exceeding 1.46K (Equation 23; Figures 8b, 8c,
and 8e). This occurs because performance, even for very
large $, is limited by the fact that a subset of size K is
chosen and all other items are ignored. Indeed, asymptotic
proportion correct is (1 + K/N) / 2 (Equations 22 and 25,
Figures 6b and 7a). Moreover, for smaller values of N, the
limited-capacity model and the slots-plus-averaging
model predict no or only a slow increase of threshold
with set size, because they ignore uncertainty in stimulus
representation (Figure 8b) or uncertainty about which
trajectory deviates (Figures 8b and 8c).
The slots-plus-averaging model has threshold grow as

¾N for N e K (Equation 27) and predicts $thr = 9- when
K = 3 and N = 4 (Equation 26), which is far from the
observed value. The effects of changing K were explored
in Figures 6c and 7b. According to the averaging model,
threshold grows as ¾N throughout (Figure 8g).
Both the unconstrained and the constrained Bayesian

model describe these data better (Figures 8d and 8f). The
constrained model predicts the fastest increase of all
models due to the increase of uncertainty with set size.
However, the increase in the data is still not completely
explained. This model comparison would be aided by data
at N = 5. In the Bayesian models, an increased jitter in the
initial motion directions leads to an increase in threshold,
as was found but not expected in (Tripathy & Barrett,
2004).

Experiment 3: Suprathreshold, 1 of N

The data show that percentage correct declines smoothly
with set size for any given value of $ (Figure 9a). The
curves are clearly separated for different values of $. The
limited-capacity model predicts no separation between
the curves, regardless of the value of K (Figure 9b).
The slots-plus-averaging model and the Bayesian model

with capacity limit behave very similarly in this experi-
ment (Figures 9c and 9e). Both are limited-capacity
models for K Q N, and thus the difference between
performance and chance drops as 1/N (see Equations 25
and A12). They predict an abrupt transition at N = K for
$ = 76-, contrary to the data. Both also predict a much
smaller separation between the curves at $ = 38- and $ =
76- than is indicated by the data. In the unconstrained
Bayesian model and the averaging model, performance
decline is too slow to fit the data (Figures 9d and 9g); this
is because uncertainty is constant with set size. Only the
constrained Bayesian model describes the dependence of
performance on N and $ reasonably well (Figure 9f)
because of the increase of uncertainty with set size. All
models, except for the otherwise implausible limited-
capacity model, underpredict performance at N = 1 and
$ = 19-.
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Figure 8. Model comparison for Experiments 1 and 2. (a) Deviation threshold at 84.1% correct versus set size, replotted from Tripathy and
Barrett (2004) (error bars are SEM, 2 subjects). (b–g) Model predictions.
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Figure 9. Model comparison for Experiment 3 (suprathreshold, 1 trajectory deviating). Percentage correct as a function of the number of
trajectories, for three different angles of deviation, $. (a) Data replotted from Tripathy et al. (2007) (three subjects). (b–g) Model
predictions. In panel b, for a given K, all curves overlap but have been separated slightly for visibility. In panel e, the vertical dashed line
(at the capacity limit, N = K) marks the transition from unconstrained Bayesian behavior to limited-capacity behavior.
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Figure 10. Model comparison for Experiment 4 (suprathreshold, N = 8, D trajectories deviating, trials blocked). Percentage correct as a
function of the number of deviating trajectories, at N = 8, for three different angles of deviation, $. (a) Data replotted from Tripathy et al.
(2007) (three subjects). (b–g) Model predictions. In panels b, c, and e, K = 3. In panels b and c, overlapping curves have been separated
slightly for visibility.
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Figure 11. Effective number tracked versus number of deviations, D, in a suprathreshold paradigm, for set sizes N = 6, 8, and for different
angles of deviation. Inset: percentage correct versus D at N = 8, used to compute effective number tracked. (a) Data replotted from
Tripathy et al. (2007). (b–g) Model predictions. In panels c–f, D 9 2 points are not shown when model performance exceeds 96%, since
effective number tracked cannot be reliably estimated then.
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Experiment 4: Suprathreshold, D of N,
blocked

Percentage correct increases smoothly with the number
of deviating trajectories (Figure 10a). Again, the data show
a clear separation of the curves for different values of $.
The limited-capacitymodel predicts no separation between

the curves, regardless of the value of K (Figure 10b). The
slots-plus-averaging model (Figure 10c) and the Bayesian
model with capacity limit (Figure 10e) are again virtually
identical in this experiment, but both predict too little
separation between the curves at $ = 38- and $ = 76-, as
does the unconstrained Bayesian model. Limited-capacity
models predict that performance is independent of $ at least
for sufficiently large $ (Figures 10b, 10c, and 10e), while
the unconstrained Bayesian model and the averaging model
overestimate performance (Figures 10d and 10g). The
constrained Bayesian model reproduces the correct values
and dependencies (Figure 10f), notably only with two free
parameters. Since N is fixed in this experiment, the
differences between models predictions arise from the
numerical value of A1 rather than on the dependence of A
on N. A1 was taken to be 11.3-, in rough accordance with a

separate experiment (see Appendix B). A larger value
would allow the slots-plus-averaging model to fit better than
it does now but be less consistent with that experiment.
Effective capacity, the capacity of an equivalent limited-

capacity observer, is an alternative way of expressing these
results. The data show that effective capacity depends on
the angle of deviation, but not much on set size or number
of deviations (Figure 11a). Again, this is reproduced by
the constrained Bayesian model (Figure 11f) and not as
well by the other models (Figures 11b–11e and 11g).
Effective capacity is sensitive to small changes in
proportion correct, especially near ceiling. Following the
experiment (Tripathy et al., 2007), points were left out
when performance was near ceiling. The absence of a
point at D = 3 and $ = 76- in Figure 11f indicates that the
model overestimates performance there.

Experiment 5: Suprathreshold, D of N,
interleaved

Trials with different values of $ (19-, 38-, 57-) and
different values of D (1, 2) were interleaved, with N = 10.

Figure 12. Model comparison for Experiment 5 (suprathreshold, N = 10, D trajectories deviating, trials interleaved). Effective number
tracked as a function of the number of deviating trajectories, for N = 10 and three different angles of deviation, $. Different values of $, and
different values of D, were interleaved in this experiment. (a) Data replotted from Tripathy et al. (2007) (three subjects). (b–g) Model
predictions. In panels b, c, and e, K = 3. In panels b and c, overlapping curves have been separated slightly for visibility.

Journal of Vision (2009) 9(11):3, 1–30 Ma & Huang 19



The limited-capacity and slots-plus-averaging models
behave the same as in Experiment 4. The Bayesian
models do not, since Bayesian observers make use of the
statistical structure of the task. In Experiment 5, the
observer does no longer know $ or D on a trial-by-trial
basis. The key point of this experiment is again that
effective capacity depends on the magnitude of the
change, contrary to the prediction of the traditional
limited-capacity model. The values and the separation of
the data are best matched by the constrained Bayesian
model (Figure 12).

Free parameters

Better model fits are sometimes caused by a larger
number of free parameters. This is not the case here. The
free parameters of the different models are as in Table 1.
Thus, the constrained Bayesian model has a number of
free parameters that are smaller than or equal to that of
three of the five alternative models. The models with
fewer parameters, the traditional limited-capacity model
and the averaging model, can be ruled out on the basis of
their poor fits to the data.
The number of parameters is low in all models because

the models do not incorporate the details of the task, such
as the time course of the trajectories and their intersec-
tions, or the effect of eccentricity. However, since all
trends in the data are well reproduced by the constrained
Bayesian model, it is likely that it captures the key factors
that determine performance.

Predictions

Although we found that the constrained Bayesian model
fits the available experimental data well, a critical test of
its strength is whether it can make new predictions
different from those of other models. Here, we make two
predictions for experiments that have not yet been done,
offering opportunities to falsify the constrained Bayesian
model.

Prediction 1: Near-threshold, D of N

We would like to predict threshold as a function of the
number of deviating trajectories, for a fixed total number
of trajectories. This requires a different Bayesian decision
rule than Experiment 4 because the latter was supra-
threshold with $ fixed and known.
The decision rule is derived in Appendix A and used to

generate the prediction in Figure 13a. The dependence of
threshold deviation on D at fixed N will exhibit a rapid
decrease of threshold between D = 1 and D = 2. The slots-
plus-averaging model predicts a very different pattern than
the constrained Bayesian model, with the largest differ-
ences occurring at D = 1 (Figure 13b).

Prediction 2: Unequal reliabilities

The Bayesian models so far have assumed that the total
uncertainty in the direction of each trajectory, A, is the
same for all trajectories. However, the theory is by no
means restricted to this. Since Bayesian theory assumes
that a probability distribution over each stimulus is
encoded on a single trial, a Bayesian observer should be
able to take into account uncertainty when making a
perceptual decision (Knill & Pouget, 2004; Knill &
Richards, 1996). In other words, if different trajectories
within a single display come with different amounts of
uncertainty, the more uncertain ones should be weighted
less. A powerful test of Bayesian optimality is therefore to
vary the reliability of different objects in the same display
and predict performance. This is routinely done in cue
combination studies.
To make this specific, we consider the suprathreshold

paradigm with 1 of N trajectories deviating (Experiment 3).
We assume that each trajectory comes with its own uncer-
tainty, Aj for the jth trajectory. The Bayesian decision rule
is now a modified version of Equation 20, namely

XN
i¼1

e
j $2

2A2
i e

$ yijxið Þ
A2
i j e

j$ yijxið Þ
A2
i

 !
9 0: ð29Þ

(obtained from the same derivation, but with a different Ai

for each trajectory). From this expression, it is clear that
the extent to which a trajectory contributes to a decision is
inversely proportional to its variance. This is interesting
when different values Ai are present within the same
display.

Simpson’s paradox

For clarity of explanation, we will first ignore positional
uncertainty (imagine an experiment in which trajectories
never intersect and are well separated). We assume two

Model
Number of free
parameters

Free
parameters

Traditional limited capacity 1 K
Slots plus averaging 2 K, AK

Unconstrained Bayes 2 A1, Apos,1

Bayes with capacity limit 3 K, A1, Apos,1

Constrained Bayes 2 A1, Apos,1

Averaging 1 A1

Table 1. Free parameters of the models considered.
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levels of directional uncertainty: high and lowVthese
could correspond to low and high contrast, respectively.
We consider a suprathreshold discrimination experiment
with 1 of N trajectories deviating (N fixed), where on each
trial, we randomly assign high uncertainty (low contrast)
to H items and low uncertainty (high contrast) to the
remaining N j H ones. This leads to displays in which the
number of high-uncertainty items can be anywhere from 0
to N. We take N = 6 and $ = 38- and call the single
deviating trajectory the target. Then the blue line in the
inset in Figure 14a indicates percentage correct as a
function of H, according to the constrained Bayesian
model (parameters were taken identical to those in
Experiment 3). It is not surprising that overall performance
declines monotonically with H, as high-uncertainty items
contain less information. However, if we divide the trials
into two classes by the uncertainty of the target, then
class-conditioned performance increases with H. The
reason this happens is that because in each class, since
target uncertainty is fixed, all that changes when H
increases is the number of high-uncertainty distractors.
The Bayesian decision rule, Equation 29, suppresses
evidence from high-uncertainty items, so if those items
are distractors, this increases the relative contribution of
the target and therefore the performance on the discrim-
ination task.
How is it possible that percentage correct increases in

each of two classes but decreases when the two classes are
combined into a single data set? This is a well-known
phenomenon known as Simpson’s paradox (Yule, 1903).
Overall percentage correct is not a fixed weighted average
of the class-conditional percentages. At each value of H,
the weights in the averaging are determined by the relative
numbers of observations in each class at that value of H,
but these proportions depend on H. The higher H, the
higher the probability that the target has high uncertainty.

This probability is H/N, giving increasing weight to the
percentage for the high-uncertainty class as H increases.
In an equation:

PC $;N Q K; 1;Hð Þ¼

¼ H

N
PChigh $;N QK; 1;Hð Þþ 1j

H

N

� �
PClow $;N QK;1;Hð Þ:

ð30Þ

In the presence of positional uncertainty, an additional
effect is that high-uncertainty items can corrupt the
information from low-uncertainty ones. The combination
of both effects leads to performance curves like those in
Figure 14a (main figure). We still see that between H = 3
and H = 5, conditioned performance increases while
combined performance decreases or stays constant. More-
over, percentage correct is distinctly non-flat as a function
of H.
Finally, we compute the prediction of the slots-plus-

average model for this hypothetical experiment. We
assume that K is given, K G N, and that the internal
representation of a particular item has standard deviation
AK,low when uncertainty is low and AK,high when uncer-
tainty is high. Conditioned performance PClow and PChigh

are obtained by using AK,low and AK,high in Equation 25,
respectively. Neither depends on H, since this model
assumes that the observer has perfect knowledge about
which trajectory, if any, changed among the attended ones.
Unconditioned performance is again a weighted average of
the conditioned performances. This produces the predic-
tion of Figure 14b, in which conditioned performance is
independent of H. Conducting this experiment could

Figure 13. Predicted deviation threshold as a function of the number of deviating trajectories, D, for various set sizes. (a) Constrained
Bayesian model. Since D e N, the blue curve (N = 1) consists of a single point. The dashed line indicates the common deviation threshold
when N of N trajectories deviate. (b) Slots-plus-averaging model. For N = 5 and D = 1, threshold is infinite (see also Figure 8e).
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provide further evidence to distinguish the constrained
Bayesian model from the slots-plus-averaging model and
possibly from other models.

Discussion

No item limit in tracking

We compared six models of human performance in
tracking multiple dots in a deviation discrimination task,
using data from five published experiments, both near-
threshold and suprathreshold. The models featured various
combinations of a noise model and a decision model.
Three of them contained a fixed limit on the number of
items that can be tracked, while the others did not. Our
main finding was that a continuous increase of uncertainty
with set size, derived from a limited number of available
spikes, could explain the data better than a fixed item
limit. Signatures of item-limit models include an infinite
deviation threshold for sufficiently large set sizes and too
small performance improvements as the deviation angle
increases in suprathreshold conditions. We were able to
rule out the recently proposed slots-plus-averaging model
and a simple averaging model in which observers do not
track individual items. We also eliminated the possibility
that the observer was Bayesian without any constraints, or
Bayesian with an item limit. The most successful model
combines a spike constraint with otherwise optimal
inference, in which a decision is based on the statistical
structure of the task and the noisy sensory evidence
available on a given trial. This model fits in a long line of
probabilistic models of perception but adds to it by
introducing the spike constraint.

Clearly, one could come up with hybrids between the
models tested here. For example, an observer might select
a subset of items and average their corresponding
observations before and after the midline (instead of
averaging just the target observations, as in the slots-plus-
averaging model). Alternatively, an observer might be
Bayesian but subject to both an item limit and a
continuous increase in uncertainty, or average all obser-
vations subject to such an increase. Importantly, we
cannot rule out that the data can be explained by a
suboptimal decision rule coupled with an increase in
uncertainty that scales differently from ¾N. However, any
alternative model can now be tested against the bench-
mark set by the constrained Bayesian model. (Results not
reported here suggest that the above alternatives are also
inadequate.)
The model makes testable predictions for both behavior

and neural activity. We predict the pattern of deviation
thresholds as D of N trajectories deviate (Figure 13). We
predict the occurrence of Simpson’s paradox when dots
are allowed to vary in contrast (Figure 14). These
experiments are expected to yield additional evidence
against several alternative models.
At the neural level, we expect that trajectories are

encoded in populations whose gain scales roughly as 1/N.
A different population should encode the Bayesian
decision variable, d, and therefore the posterior distribu-
tion over the binary variable C.

Broader scope

Most cognitive psychologists and psychology textbooks
have long fancied limited-capacity models, both for atten-
tion and working memory, presumably because of their
mathematical simplicity and their seeming inevitability

Figure 14. Predicted percentage correct predicted as a function of the number of high-uncertainty items, H, and conditioned on the target
having low (green) or high (red) uncertainty, or not conditioned (blue). In this example, N = 6, D = 1, and $ = 38-. (a) Constrained Bayesian
model. The inset shows the basic effect (Simpson’s paradox) in the absence of positional uncertainty (positional uncertainty is normally
present, though it might be reduced by avoiding trajectory intersections). (b) Slots-plus-averaging model. Conditioned performance is
predicted to be independent of the number of high-uncertainty items.
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when dealing with categorical, high-level objects such
as letters (Pashler, 1988). Limited-capacity models state
that a few items are encoded noiselessly and all others
are not encoded at all. Decades of work in psychophy-
sics and neuroscience have convincingly demonstrated
that the noiseless encoding of stimuli is patently absurd
(Aldo Faisal, Selen, & Wolpert, 2008). In partial
recognition of this absurdity and faced with contra-
dictory evidence (Wilken & Ma, 2004), limited-capacity
advocates recently dropped the noiselessness assumption
by proposing the slots-plus-averaging model (Zhang &
Luck, 2008). However, this model contained the equally
unsubstantiated notion that noise level in working mem-
ory is controlled by the number of discrete “slots” assigned
to a single item. Moreover, they failed to recognize the
implications of variability for tasks with targets and
distractors, such as change detection. When the repre-
sentation of individual stimuli is variable, then whether
an item is a target also becomes subject to uncertainty and
has to be inferred probabilistically. In the visual search
community, signal detection modelers have, for many
years, been waging a battle to explain exactly this (e.g.,
Eckstein, Thomas, Palmer, & Shimozaki, 2000; Palmer
et al., 2000; Verghese, 2001). In the realms of atten-
tional tracking and working memory, the same realiza-
tion is taking longer to materialize. The present work
demonstrates that a proper probabilistic treatment of the
decision process in a change discrimination task points
to a continuous resource limitation rather than an item or
slot limit.
Bayesian models are known to explain behavior in

numerous tasks that require observers to infer one feature
of one stimulus. Perceptual decisions are often more
complex, requiring the combination of information from
multiple stimuli to extract a global, higher-level variable
(like C here). Our results provide new evidence that the
brain also uses Bayesian inference in such judgments,
however sometimes under a constraint of uncertainty
increasing with set size. Moreover, our findings emphasize
the parallel importance of feature and positional uncer-
tainty. An important open question is why the attentional
tracking task studied here is subject to an increase of
uncertainty with set size, while visual search tasks do not
seem to be (see also Palmer, 1990).

Relation to signal detection theory

The Bayesian models presented here should be viewed
in the tradition of signal detection theory, which takes the
noisy representation of stimuli as a given. However, the
decision rules we derived differ from those typically used
in signal detection theory models, such as the max and the
sum rules. The Bayesian decision rules are optimal in any
condition, while the max and sum rules are only optimal
in certain limits and certain conditions. For example, the
sum rule is optimal in Experiment 1 (see Equation 11; it

still needs to be combined with a spike constraint to fit the
data), and we pointed out below Equation 20 that the
Bayesian decision rule in Experiment 3 is, in a limit, well
approximated by the signed-max rule.
In general, an “easier” decision rule might often be a

decent and convenient approximation to the optimal
decision rule, as was pointed out long ago (Nolte &
Jaarsma, 1966). The goodness of such approximations in
the decisions we modeled is an interesting and central
issue. These approximations might even be indicative of
the approach the brain takes (Verghese, 2001). However,
this argument should be treated with caution, as there is
no reason why an approximation that is convenient for a
signal detection modeler is convenient for a realistic
neural network.
It can be argued that signal detection theory, although

probabilistic across many trials, is ultimately a theory of
point estimates. On a single trial, a measurement of a
single one-dimensional stimulus is represented by a single
number. In contrast, Bayesian theory states that on a
single trial, the brain represents a full posterior distribu-
tion (degree of belief versus hypothesized stimulus value)
over each stimulus (Knill & Pouget, 2004). This allows
for the automatic encoding of uncertainty, through the
width of this probability distribution. This uncertainty, A,
appears in many optimal decision rules, such as those in
cue combination (Knill & Richards, 1996). In the present
paper, Equations 18 and 20 are examples. Encoding
uncertainty on a trial-to-trial and item-to-item basis is
especially critical when uncertainty differs between items
(e.g., some dots have lower contrast than the others) or
between trials (e.g., contrast is changed between trials).
This was not explored in the experiments modeled here,
but we made a prediction about it (Prediction 2) and it
constitutes an important future direction. (Point estimates
of uncertainty might be used instead of posterior distribu-
tions, but this proposal requires more details, and clues as
to how it generalizes to non-Gaussian distributions.)

Limitations

The constrained Bayesian model differs from the data in
several places. The increase of threshold with set size in
Experiment 2 (Figure 2f) is not as steep as the data.
Percentage correct at N = 1 and $ = 19- is predicted to be
below 100% in Experiment 3 (Figure 9f), in contrast to the
data. Effective capacity at higher deviation angles is
overestimated in Experiment 4 (Figure 11f).
Some of these discrepancies may stem from the fact that

many task details have been ignored to keep the model
simple. We conveniently collapse the observer’s judgment
into a static one, even though the time course of the
trajectories is probably relevant. By not modeling tempo-
ral dynamics, errors resulting from confusing trajectories
where they intersect are possibly underestimated (e.g.,
in Figure 2f). Also, possible effects of pursuit eye
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movements, eccentricity, perceptual grouping (Yantis,
1992), and noise correlations between items are not
incorporated. Taking these aspects into account would
require a model with many more parameters. Our purpose
here has been to capture the essence of the task with a
minimal set of assumptions, and a number of parameters
that is equal or comparable to the alternative models. Our
model accounts for a large set of both near-threshold
and suprathreshold data despite having only two free
parameters. We believe that more detailed, task-specific
models could provide somewhat better fits to the data but
would not change the qualitative conclusions.

Priors

As is common in Bayesian modeling, priors are both a
strength and a weakness. Priors reflect background
knowledge and should be incorporated, but it is hard to
know precisely what prior distribution an observer uses.
Sometimes, one can assume reasonable priors that
correspond, or may correspond, to natural statistics (e.g.,
light-from-above prior, prior for low speeds). In other
cases, the best approach is to use priors that correspond to
experimental frequencies of stimuli in the task at hand.
Here, we have taken the second approach since we do not
know of natural statistics for variables like number of
deviations or deviation angle. Moreover, the observers in
these experiments often had knowledge of the experimen-
tal parameters. It will be interesting to explore whether the
priors have a significant impact on the model predictions,
and if so, whether the prior probabilities used by the
observer can be manipulated experimentally. Tripathy and
colleagues (2007) already started doing this by varying the
frequencies of the different deviation angles in Experi-
ment 5, but they found no effect.

Neural implementation

Even though the Bayesian decision variables and
decision rules can get rather complex, this does not mean
they cannot be implemented in a neurally plausible way.
At the behavioral level, computations are performed on
probability distributions over task-relevant variables. At
the neural level, computations are performed on popula-
tion patterns of activity. The mapping between the
operations at both levels is by no means trivial and has
only begun to be explored (Beck et al., 2008; Huys,
Zemel, Natarajan, & Dayan, 2007; Ma et al., 2006). It
is likely that complex decision rules that feature a
combinatorial explosion, like in Equation A7, will have
to be implemented through an approximate algorithm.
Work on the neural basis of Bayes-optimal visual search
(Ma, Navalpakkam, Beck, & Pouget, 2008; Vincent

et al., 2009) might provide clues, as it is another task
where a global binary variable is inferred from multiple
stimuli.
We have argued that the neural constraint leading to the

¾N increase of uncertainty with set size can be imple-
mented using divisive normalization, a mechanism
believed to play a central role in attentional processing
(Reynolds & Heeger, 2009). A full neural model will have
to integrate this mechanism, which presumably acts at the
input level, with the mechanism of the probabilistic
inference process.

Standard multiple-object tracking

There are differences between the task modeled here
and the standard multiple-object tracking paradigm (Pyly-
shyn & Storm, 1988). In the standard paradigm, a number
of objects are labeled as targets at the start of a trial and
the task is to report later whether a probed item is a target
or not. Non-target items should be ignored. In the task we
model, all items have to be tracked during the first half of
the trial, since it is not known which ones will deviate.
Another difference is that trajectories are linear in the task
we model, and much more complex in the standard
paradigm. Since these differences might be important,
we make no claims about the standard multiple-object
tracking paradigm. However, even in the standard multi-
ple-object tracking paradigm, which has complex tempo-
ral dynamics, approximate Bayesian models with a
flexible resource constraint might still explain behavior
best (Vul, Frank, Alvarez, & Tenenbaum, 2009).

Attention or memory?

Change detection is mostly used as a paradigm for
studying working memory since past and present infor-
mation has to be combined over periods of several
seconds. Unlike working memory experiments, the task
we model does not feature a delay period; however,
working memory might still plays a role. Similarities have
been noted between standard multiple-object tracking and
working memory (Cavanagh & Alvarez, 2005). In this
context, it is relevant that there exists strong evidence for
flexible-resource theories for visual working memory
(Bays & Husain, 2008; Wilken & Ma, 2004). Alterna-
tively, it is possible that the task studied here reveals
limitations of sensory (or iconic) memory rather than
attention (Alvarez & Franconeri, 2007; Narasimhan,
Tripathy, & Barrett, 2009). However, this would not
alter the theories we compare. In fact, the approach
presented here makes a model-based comparison
between attentional tracking and various memory sys-
tems possible.
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Appendix A

Miscellaneous model predictions

Bayesian model

Experiment 4: Suprathreshold, D of N, blocked

Following the same logic as in the Theory and methods
section (Experiment 2), we find for the $-conditioned
likelihood
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where I is a set of trajectory indices, ªIª is the number of
elements in this set, and @ªIª=D is shorthand for “sum over
all index sets I of size D.” The log odds are
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The decision rule is to report “C = 1” if
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Experiment 5: Suprathreshold, D of N, interleaved

We assume that the deviation angle $ is drawn from a
discrete distribution with A possible values, $1,I, $A, all
with equal probability, 1/A. Similarly, D is drawn from a
discrete distribution with B possible values, D1,I, DB,
also all with equal probability, 1/B. The derivation starts
with Equation 5 applied to a discrete distribution, p($):

p x; yjCð Þ ¼ 1
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Next, we integrate over the other top-level variable, D:
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Evaluating this leads to the following log odds:
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The decision rule is

XA
a¼1

XB
b¼1

N
Db

� �j1
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Db$

2
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2A2
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jI j¼Db

e
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je

j$a
A2
~
jZI

yijxið Þh i
9 0:

ðA7Þ
This decision rule is applied to permuted vectors xnew

and ynew, as discussed in the Theory and methods section.
When A = 1 and B = 1, Equation A7 is the same as
Equation A3.

Prediction 1

In a threshold paradigm, $ is averaged out because it is
a random variable of unknown value. However, the
calculation of the Bayesian decision variable is the same
as that in Experiment 4, up until the point where that
average is taken. Therefore, we start with Equation A1
and average over $, assuming a uniform prior distribution
p($). The result of this is:

p x; yjCð Þ ¼ !"
N
D

� �j1

 YN
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1ffiffiffiffiffiffiffiffiffiffi
2:A2

p e
j

yijxið Þ2
2A2

!
A

ffiffiffi
:

2

r

I
X
jI j¼D

e
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2DA2
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jZI

yjjxj
� � !2

1þ erf

X
jZI

yjjxj
� �

AC
ffiffiffiffiffiffi
2D

p

0
BB@

1
CCA:

ðA8Þ
The Bayesian decision rule, d 9 0, simplifies to

X
jI j¼D

e
1

2DA2
~
jZI

yjjxj
� � !2

erf

X
jZI

yjjxj
� �

A
ffiffiffiffiffiffi
2D

p 9 0: ðA9Þ

Slots-plus-averaging model

Experiments 4 and 5

We assume that when multiple deviating trajectories
receive a slot, the observer averages over all of them.
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We first consider the case N Q K. Then each trajectory
can receive no more than one slot, and we have to cal-
culate the probability that M deviating trajectories receive
a slot. This is the same problem as: you draw K balls from
a vase that contains D blue and N j D red balls. What is
the probability of drawing M blue balls and K j M red
ones? The answer is given by the hypergeometric prob-
abilities, (DM)(

N j D
K j M) / (

N
K). Here, M is restricted to be

max(K + D j N, 0) e M e min(K, D). When M deviating
trajectories receive a slot, uncertainty is AK/¾M, therefore
proportion correct is ½ + ½ erf($/AK

ffiffiffiffiffiffiffiffiffi
M=2

p
). Overall

proportion correct is this value averaged over M, with
weight factors given by the hypergeometric probabilities:

PC $;N QK;Dð Þ ¼
¼ 1

2
þ 1

2

N
K

� �j1

~
min K;Dð Þ

M¼max KþDjN;0ð Þ
D
M

� �
NjD
KjM

� �
erf

$

AK

ffiffiffiffiffi
M

2

r
:

ðA10Þ
When D = 1, this is equal to Equation 25. Next, we

consider the case N e K. In this case, each trajectory
receives at least one slot. Specifically, the average number
of slots per trajectory is K/N. As a consequence, the
uncertainty in the representation of a single trajectory will
be AN = AK

ffiffiffiffiffiffiffiffiffiffi
N=K

p
. Moreover, all D deviating trajectories

will be represented with this uncertainty. Therefore,
averaging over these D observations yields a representa-
tion with standard deviation AK

ffiffiffiffiffiffiffiffiffiffiffiffiffi
N=KD

p
. Percentage

correct is then

PC $;N eK;Dð Þ ¼ 1

2
þ 1

2
erf

$

AK

ffiffiffiffiffiffiffi
KD

2N

r
: ðA11Þ

This equation is valid regardless of whether different
values of $ and D are blocked (as in Experiment 4) or
interleaved (as in Experiment 5).

Prediction 1

For Prediction 1, we just use the proportions correct
derived above. For N e K, it follows from Equation A11
that $thr(N e K, D) = AK

ffiffiffiffiffiffiffiffiffiffiffiffiffi
N=KD

p
. For N Q K, we have

Equation A10, so $thr(N e K, D) cannot be computed
directly. Instead, we simply find the value of $ for which
percentage correct exceeds 84.1%. If this never happens
(as always in a limited-capacity model when N is
sufficiently large), then threshold is infinite. Figure 13b
was obtained in this way, with AK = 1 = 3-.

Bayesian model with capacity limit

If N e K, all items are attended and performance is
identical to that of the unconstrained Bayesian model

(denoted by a subscript “UB”), $thr(N e K, D) = $thr,UB(N
e K, D). We therefore only consider the case N Q K.

Experiment 1

When all trajectories are deviating, but only K of them
are attended, the deviation threshold at N Q K should be
equal to that at N = K, which is obtained from the
unconstrained Bayesian model: $thr(N Q K, N) = $thr,UB

(K, N).

Experiments 2 and 3

The deviating trajectory is attended with probability K/
N. When it is attended, proportion correct is equal to that
in the Bayesian model at set size K. Otherwise, perfor-
mance is at chance. This yields the following expression
for proportion correct for the Bayesian model with limited
capacity:

PC $;N QK; 1ð Þ ¼ K

N
PCUB $;K; 1ð Þ þ 1

2
1j

K

N

� �
; ðA12Þ

where PCUB($, N = K) is proportion correct in the
unconstrained Bayesian model at deviation angle $ and
set size K. Just like in all limited-capacity models,
asymptotic performance is PC($ = V, N, 1) = ½(1 +
K/N) and $thr(N, 1) = V when N 9 1.46K. When N/KZ[1,
1.46), threshold is finite but higher than in the uncon-
strained Bayesian model. Since PC($ = V, N, 1) G 1, we
can no longer fit a cumulative normal distribution to PC
($) in order to estimate threshold. Instead, we have to fit a
rescaled function, PC($) = ½ + ½ K/NIerf($/(!¾2)),
which has the correct asymptote. Comparing this with
Equation A12, we find PCUB($, K, 1) = ½ + ½ erf($/
(!¾2)), from which it is clear that the parameter ! is
nothing but the deviation threshold of the unconstrained
Bayesian model at set size K, $thr,UB(K, 1). We find
threshold from Equation A12:

PC $thrð Þ ¼ 1

2
þ 1

2
erf

1ffiffiffi
2

p

$thr N QK; 1ð Þ ¼ $thr;UB N ¼ K; 1ð Þ ffiffiffi
2

p
erf

j1 N

K
erf

1ffiffiffi
2

p
� �

:

ðA13Þ
A sanity check: we find $thr(N, 1) = $thr,UB(N, 1) if N =

K; this is correct, since the capacity limit has no effect
when all items are attended.

Experiments 4 and 5

When D of N trajectories are deviating, the logic is very
similar to that of the slots-plus-averaging model. K
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trajectories are picked at random to be attended, and of
these,M will be deviating, where M is constrained by max
(K + Dj N, 0) eM e min(K, D). WhenM of K trajectories
are attended, performance is given by that of the uncon-
strained Bayesian model for M-of-K deviating trajectories:

PC $;N QK;Dð Þ ¼
¼ N

K

� �j1

~
min K;Dð Þ

M¼max KþDjN;0ð Þ
D
M

� �
NjD
KjM

� �
PCUB $;K;Mð Þ:

ðA14Þ

It is not immediately obvious that this reduces to
Equation A12 when D = 1, but it does. (Note that
PCUB($, N, 0) = ½ for any $ and N.) Asymptotic
performance is PC($ = V, N Q K, D) = 1 j ½(N-DK)/
(NK), again below 100%.

Appendix B

Parameters

This appendix lists parameter values used by model.
Wherever possible, parameters were taken from the actual
experimental settings (Tripathy & Barrett, 2004; Tripathy
et al., 2007).

Bayesian models

In Experiment 1, set size took values N = 1, 2, 3, 4, 6, 8.
All trajectories deviated, D = N. Directional uncertainty at
set size 1 was chosen A1 = 2.8- (Apre,1 = Apre,1 = 2-); this
value is comparable to the single-trajectory threshold
reported in Figure 2b of Tripathy and Barrett (2004) at the
dot speed used, 32 deg/s. Positional uncertainty and the
jitter in the initial motion directions are not relevant since
the decision rule is to average over all trajectories.
In Experiment 2, set size took values N = 1, 2, 3, 4, 5.

One trajectory deviated, D = 1. Directional and positional
uncertainty were A1 = 2.8- and Apos,1 = 21V, respectively.
Vertical distances between the midpoints (relevant for
positional uncertainty) were taken to be 10V, with 10V
uniform jitter, as in the experiment. Initial motion
directions were drawn from a uniform distribution on
[j32-, 32-]. In the model, the mean initial motion
direction is irrelevant.
In Experiment 3, N = 1, 2, 3, 4, 6, 8; D = 1; $ = 19-,

38-, 76-. For directional uncertainty at set size 1, we took
A1 = 11.3-. This is larger than in Experiments 1 and 2
because dot speed is lower, 4 deg/s. The value is again
comparable to, though somewhat higher than the single-
trajectory threshold reported in Figure 2b of Tripathy and
Barrett (2004) (observer DB). Positional uncertainty at set

size 1 was chosen Apos,1 = 21V. Vertical distances between
the midpoints: 40Vwith 5Vjitter. Initial motion directions
were drawn from a uniform distribution on [j80-, 80-].
In Experiment 4, parameters were N = 6,8; D = 1, 2, 3,

5, 6, 8; $ = 19-, 38-, 76-; A1 = 11.3-; and Apos,1 = 21V.
Vertical distances between the midpoints: 30V with 5V
jitter. Initial motion directions were drawn from a uniform
distribution on [j80-, 80-]. In Experiment 5, parameters
were identical except for N = 10; D = 1, 2.
In Prediction 1, we used D = 1,I, 5. Other parameters

were as in Experiment 2. In Prediction 2, N = 6 and $ =
38-. The number of high-uncertainty trajectories took
values H = 0, 1, 2,I, 6. Other parameters: A1,low = 11.3-
(directional uncertainty of low-uncertainty trajectory at N
= 1); A1,high = 22.6-; Apos,1,low = 21V; and Apos,1,high = 42V.
The vertical distances between midpoints and the initial
motion directions were chosen as in Experiment 3.
In the Bayesian model with capacity limit, parameters

were identical to those above. The capacity limit, K, was
chosen to be 3.

Limited-capacity model

This model has only one free parameter, K, which was
chosen to be K = 3 or K = 4 in this paper. K = 3 often fits
the data best (though still not very well), and K = 4 is
believed to be the capacity limit in standard multiple-
object tracking (Pylyshyn & Storm, 1988). The effect of
varying K is explored in Figures 6 and 9b.

Slots-plus-averaging model

As in the limited-capacity model, we used K = 3. The
effect of changing K is explored for the near-threshold
experiments in Figure 7b. For the suprathreshold experi-
ments, changing K does not improve the resemblance of
the model predictions to the data in Figures 9, 10, 11, and
12. We adjusted the uncertainty parameter of the model,
AK, for different K to give the model a fair chance, as
explained below Equation 27. In all of these except Figure
7b, AK = 1 = 11.3-, as in the Bayesian model (keep in mind
that AK = 1 = AN = 1). Therefore, AK = 3 = 11.3-I¾3 = 19.6-.
For Experiments 1 and 2 (Figures 7 and 8) and Prediction
1 (Figure 13), AK = 1 = 3-, and AK = 3 = 3-I¾3 = 5.2-. In
Prediction 2, we used N = 6; K = 3; $ = 38-. The number
of high-uncertainty items took values H = 0, 1, 2,I, 6.
Directional uncertainty was AK,low = 11.3-I¾3 = 19.6- and
AK,high = 22.6-¾3 = 39.1-.

Averaging model

In the averaging model, the only free parameter, A1,
was chosen A1 = 2.8- in Experiments 1 and 2, and A1 =
11.3- in Experiments 3–5.
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Appendix C

A higher power?

The constrained Bayesian model assumes a square root
dependency of uncertainty on set size, A ò ¾N. This
relationship was derived from a neural argument, and it
accounts well for the behavioral data. However, in a
recent short-term memory experiment, a power law with a
higher exponent was found, A ò N! with ! , 0.74 (Bays
& Husain, 2008). A higher exponent might also be
consistent with earlier data (Wilken & Ma, 2004). A
higher power could arise from several causes, such as
(a) feature uncertainty might be confounded with posi-
tional uncertainty; (b) the total amount of spikes expended
decreases with set size; and (c) the form of neural
variability is different from Poisson-like, leading to a
different relationship between neural gain and uncertainty.
The value of the exponent, and its origins, deserve further
study. No data about ! are available for attentional
tracking. Here, we only examine the consequences of a
higher power on the constrained Bayesian model.
In Experiment 1, the assumption A ò ¾N caused

threshold to be independent of set size, since this increase
in uncertainty exactly canceled out the benefit from
averaging N independent observations. In this scenario,
the number of trajectories a subject attends to does not
affect performance. This changes when A ò N!, with ! 9
0.5. Attending to all trajectories would lead to an increase
in threshold with set size, namely $thr = A/¾N ò N!/¾N ò
N!j½. Then it becomes beneficial to attend to only a
single trajectory, independent of set size. This means that
the prediction of the constrained Bayesian model for

Experiment 1 (green line in Figure 8f) does not change.
However, it now becomes important to verify whether a
similar strategy works if D of N trajectories deviate (D G N).
To examine this question, we consider the example of

N = 5 and D = 3 in the near-threshold paradigm. Attending
to a subset is equivalent to imposing a capacity limit
which may depend on N and D. We compute performance
of an observer with a capacity limit K e N, who follows
the constrained Bayesian model for the items selected on
each trial. This is done in a manner analogous to the
Bayesian model with capacity limit (see Theory and
methods section), except that base performance is now
from the Bayesian model with constraint. Analogous to
Equation A14, we have

PC $;N QK;Dð Þ ¼
¼ N

K

� �j1

~
min K;Dð Þ

M¼max KþDjN;0ð Þ
D
M

� �
NjD
KjM

� �
PCCB $;K;Mð Þ:

ðC1Þ
The results are shown in Figure C1. When the power is
higher than ½ and possibly even when it is equal to ½,
there could be a small benefit in attending to a subset of
the items. In Figure C1a, this follows from the fact that
performance for K G 5 exceeds performance for K = 5
(attending to all items) over a range of $. However, this
slight improvement comes at the cost of deteriorated
performance in a different range of $. We have also
ignored the fact that unattended items may get confused
with attended ones because of positional uncertainty.
Overall, we cannot say that attending to a subset is
beneficial. Whether it is beneficial or not also depends on
N and D, which might make this strategy impractical.

Figure C1. Effect of a higher power in the relationship between uncertainty and set size. We examine whether, in a near-threshold
paradigm, a constrained Bayesian observer would benefit from only attending to K items. (a) Percentage correct as a function of deviation
angle, for different values of the number of attended trajectories, K. We consider the case N = 5, D = 3, and assume A ò N0.8 instead of A
ò N0.5. The case K = 5 corresponds to the constrained Bayesian model (attending to all trajectories). Parameters were as in Experiment 2
and a uniform prior over $ was assumed. Attending to a subset slightly improves performance in some range of $, but at the cost of a
deterioration at other values. This is qualitatively similar for other values of N and D that we tried. (b) As in panel a, but with A ò N0.5.
Attending to a subset (K G 5) unambiguously affects performance negatively.
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Using the above parameters, attending to a subset always
hurts when ! = 0.5 (Figure C1b). We conclude that even if
uncertainty grows faster than the square root of set size,
this does, within limits, not greatly affect the optimal
strategy.
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