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A large body of psychophysical and physiological findings has characterized how
information is integrated across multiple senses. This work has focused on two major
issues: how dowe integrate information, and when do we integrate, i.e., how dowe decide if
two signals come from the same source or different sources. Recent studies suggest that
humans and animals use Bayesian strategies to solve both problems. With regard to how to
integrate, computational studies have also started to shed light on the neural basis of this
Bayes-optimal computation, suggesting that, if neuronal variability is Poisson-like, a simple
linear combination of population activity is all that is required for optimality. We review
both sets of developments, which together lay out a path towards a complete neural theory
of multisensory perception.
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Accurate perception frequently relies on combining uncertain
information frommultiple senses. Imagine that you are trying
to locate a predator hiding in the bushes. You hear a faint
sound of the predator's footsteps and at the same time you see
amovement of the leaves. Thatmovement could be caused by
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the animal, but also by a gust of wind. If the predator caused
the movement, the visual information will help you localize it
with greater precision.

This example illustrates several general aspects of multi-
sensory perception. Combining information across senses can
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be of critical importance to an animal's survival, making it
plausible that evolutionary pressure has optimized the neural
circuits that serve this purpose.Moreover, those circuits have to
solve two problems simultaneously: figuring out whether two
cueshad the samesource (thepredator) or different sources (the
predator and thewind), and in the former case, how to combine
them. Finally, cues can come with different reliabilities. Visual
informationwill bemore reliable ona sunnyday thanona foggy
day, andyoucan trust auditory informationmore if there is little
background noise. These aspects have guided the theoretical
developments we discuss in this review.
1. Optimal cue integration

When a common source is assumed, a systematic strategy to
quantify cue combination is to introduce a small discrepancy
(also called conflict, disparity, or incongruency) between the
cues. The conflict must be small in order to not violate the
common-source assumption. In such a paradigm, the percept
(estimate of the stimulus) inferred from both cues presented
together will lie somewhere in between the percepts inferred
from each cue individually. The intuition is that higher weight
will be given to the most reliable cue, and that therefore the
multi-cue percept will be closest to the percept obtained from
that cue. Recent psychophysical studies have quantified this
intuition, both across (Alais and Burr, 2004; Battaglia et al.,
2003; Ernst and Banks, 2002; van Beers et al., 1996; Wolpert et
al., 1995) and within sensory modalities (Jacobs, 1999; Knill
and Saunders, 2003). As an example, we consider a laboratory
version of the ventriloquist effect (Alais and Burr, 2004), the
well-known illusion in which a performer makes a puppet
appear to speak (Howard and Templeton, 1966; Welch and
Warren, 1980). This experiment involved spatial localization
along the azimuthal dimension, based on brief visual flashes
and auditory clicks. Importantly, observers were instructed to
regard each pair of multisensory signals as being caused by a
single, well-localized event, for instance a ball hitting the
screen. The investigators found that themean auditory–visual
estimates of location, locations ŝAV, could be expressed as a
linear combination of the auditory and visual sA and sV:

̂sAV ¼ wAsA þwVsV
wA þwV

ð1Þ

In this expression, the weights are given by the inverse
variances of estimates in the respective modalities:
wA ¼ 1

r2A
andwV ¼ 1

r2V
. For example, if in a certain condition the

visual variance is larger than the auditory variance (and
therefore vision is less reliable than audition), vision will be
given less weight than audition in the combination.

Moreover, the inverse variance of the auditory–visual
estimates was found to be

1
r2AV

¼ 1
r2A

þ 1
r2V

ð2Þ

This indicates that using two cues led to higher precision than
using any one cue. The right-hand side of Eq. (2) also gives the
highest possible precision that can be achieved by an unbiased
estimator, given σA and σV. Eqs. (1) and (2) state what is meant
by statistical optimality in this task. Although they summarize
average human behavior over many trials (they give the mean
andvarianceofmaximum-likelihoodestimates), it is commonly
assumed that they reflect regularities that hold on a trial-by-
trial basis. On a single trial, we can think of a sensory cue as
providing a probability distribution over the stimulus. If we
denote the auditory-only distribution by p ( s |A), the visual-only
distribution by p(s|V) and themultisensory distribution by p(s|A,
V), then the optimal multisensory distribution is the product
distribution (Clark and Yuille, 1990; Yuille and Bulthoff, 1996)

p sjA;Vð Þ~p sjAð Þp sjVð Þ; ð3Þ

where the proportionality is such that p(s |A,V) is normalized to
1. We have assumed that the auditory and visual distributions
are independent given the stimulus (this is called conditional
independence). When the distributions in Eq. (3) are Gaussian,
Eqs. (1) and (2) directly follow from Eq. (3). As human behavior
follows Eqs. (1) and (2) in a wide variety of paradigms, (multi-
sensory) cue integration has become a poster child of Bayes-
optimal computation.

Several years ago, a review article stated that these findings
of approximate Bayes-optimal cue integration in humans
raised two central questions (Banks, 2004): “1. how does the
brain know the variances of its sensory estimates to make the
correct weight assignments; 2. how does the brain knowwhen
sensory estimates are coming from the same source and not
different sources, so that combining makes sense?” Since
then, significant progress has been made on both these
questions, in particular in the theoretical domain.
2. Optimal cue integration with neural
populations

When studying how neuronal circuits implement near-optimal
cue integration, an important fact to take into account is that the
responses of cortical neurons are typically very variable (Compte
et al., 2003; Dean, 1981; Holt et al., 1996; Tolhurst et al., 1982).
Presenting the same stimulus repeatedly will give rise to many
different population responses. A first sight, such variability is a
nuisance that could compromise optimality. Recent work,
however, has argued that the presence of variability is not the
problem. If we experience uncertainty about a stimulus, this
stimulus must generate variability in the brain, otherwise there
would be no uncertainty. However, the format of the neural
variability is important in the neural implementation of the
optimal cue integration (Eq. (3)) (Ma et al., 2006). If the statistics of
the variability are known (either to the experimenter or to
downstream neurons), then Bayes' rule can be used to convert
the population pattern of activity on a single trial into a
probability distribution over the stimulus. To be precise, if
the population activity on a single trial is denoted by a vector
r=(r1, r2, …, rN), where ri is the activity of the ith neuron and N
is the number of neurons, then one can obtain the so-called
posterior distribution through

p sjrð Þ~p rjsð Þp sð Þ; ð4Þ

where p(r|s) is the response distribution and p(s) is the prior
distribution (Foldiak, 1993; Sanger, 1996). The posterior



Fig. 1 – Schematic of a network that can performoptimalmultisensory cue integration on each trial without having to estimate the
reliabilities of cues. A simple linear combination of the populationpatterns of activity elicited by the cues guarantees optimality, as
longasneuronal variability isPoisson-like (see text). Thisallowsforcorrelated,non-Poissonvariability.Thedialogueboxesshowthe
probability distributions over the stimulus that are encoded in each population on a single trial. The synaptic weightsW1 andW2

have to be chosen according to the tuning curves and covariancematrices in the input layers, but can then stay fixed across trials.
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distribution does not only reflect the most probable value of
the stimulus (the maximum-a-posteriori estimate), but also
the observer's uncertainty (through the width of the distribu-
tion). This form of neural representation is called a probabil-
istic population code.

In probabilistic population codes, the uncertainty about s is
related to the variability in r. It becomes therefore essential
that we characterize precisely the distribution p (r | s ) . Given
the available neural data (Gur et al., 1997; Tolhurst et al., 1982),
it appears that p(r|s) is well approximated by the exponential
family with linear sufficient statistics, a family we call
‘Poisson-like’ for short, and which includes independent
Poisson variability as a special case. Surprisingly, when neural
variability is in this Poisson-like family, it can be shown that
optimal cue integration – which is a multiplicative operation
at the level of the posteriors, see Eq. (3) – is realized through a
simple linear combination of population responses (Ma et al.,
2006), see Fig. 1. This holds irrespective of the shapes of the
tuning curves, or the covariance matrices. It was found that
such a linear combination can also be implemented in a
biophysically realistic neural network of conductance-based
integrate-and-fire neurons. The fact that this neural operation
does not require the estimation of variance at any point
provides an answer to the first question stated above. The
variances are automatically taken into account appropriately
through the interplay of neural variability (Poisson-like) and
network operations (linear combination). The format of the
neural variability is key in this framework: it facilitates
optimal computation. This theory still requires downstream
neurons to collapse the distribution onto a single value when
an action is required, such as a saccadic eyemovement. Again
under the assumption of Poisson-like variability, this read-out
can be done optimally using a line attractor network (Deneve
et al., 1999; Latham et al., 2003). However, importantly, all
information about uncertainty is preserved until this very last
stage in sensorimotor processing.
3. Multisensory integration in relation to other
probabilistic computations

The appeal of probabilistic population codes, in which a
population pattern of activity encodes the certainty about a
stimulus, is that they are not limited to multisensory
perception. Ecologically important tasks often require com-
bining pieces of uncertain sensory information with each
other or with prior information. In multisensory perception,
cues from different modalities get combined. Examples in
other domains include perceptual decision-making (combin-
ing information over time and selecting an action), visual
search (detecting or localizing a target by integrating informa-
tion over space), visual working memory (for example, over
space and time to detect a change), and sensorimotor control
(combining sensory information with an internal model). In
each of these domains, the brain needs to take into account
the certainty about various pieces of information in order to
perform the task optimally. Cue integration offers merely the
simplest illustration of this: if the reliabilities of the cues were
not encoded, optimal cue combination would be impossible.
As a consequence, it is often insufficient if a population of
neurons only encodes a single number, an estimate of the
stimulus. Instead, it is necessary to represent certainty, or
even better, an entire probability distribution over the
stimulus, as in Eq. (4). Neural processing from layer to layer
can then be constructed such that it implements optimal
computations on those probability distributions, without ever
making those distributions “explicit”. Probabilistic population
coding theory thus allows to ask in a very precise way what
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neural operations correspond to given probabilistic operations
at a behavioral level.

It remains to be seen to what extent humans exhibit near-
optimal behavior in the above-mentioned paradigms, which
require probabilistic computation. However, even where
significant deviations from optimality exist, probabilistic
population codes provide a constructive approach, as they
enable a quantitative study of the sources of these deviations
at the neural and behavioral levels in parallel. Probabilistic
population coding theory thus places multisensory integra-
tion within a broad and encompassing framework together
with other probabilistic computations.
4. Comparison with physiology

Using this theoretical framework, it is now possible to link
optimal behavior to neural population activity. Imagine
recording with a multi-electrode array from a population of
multisensory neurons in an awake, behaving animal engaged
in optimal cue combination (as tested behaviorally). Then the
theory predicts that the response of multisensory neurons
when two cues are presented is equal to the sum of their
responses when each cue is presented separately (this follows
from the fact that the multisensory output activity is a linear
combination of the unisensory input activities). A problem
with this simple prediction is that neurons may saturate as
they approach their maximum firing rate. This saturation can
be prevented by using global recurrent inhibition, that is, by
subtracting a term proportional to the total activity. It can be
shown that such inhibition does not affect optimality (Beck,
Ma, et al, submitted). In other words, this scheme predicts
Fig. 2 – Prediction from the neural Bayesian model for the
mean activity of a multisensory neuron as a function of the
stimulus (arbitrary units) during optimal cue integration.
The naïve prediction is that the response to multisensory
input (solid red line) is the sum of the responses to
unisensory inputs (blue and green lines). However, to keep
neurons in their dynamic range, an arbitrary baseline may
be subtracted (black arrows). This does not affect optimality.
Consequently, neurons involved in optimal cue integration
are expected to be additive (solid red line) or subadditive
(dashed red line).
additivity or subaddivity (i.e., additivityminus a baseline shift)
of the multisensory response, see Fig. 2. Moreover, the theory
predicts that the information encoded in the multisensory
population – as can be estimated using various decoding
techniques (Averbeck et al., 2006; Nirenberg and Latham, 2003;
Series et al., 2004) – should correlate with both the reliabilities
of the unisensory inputs and the precision displayed
behaviorally.

While such a conclusive experiment has not yet been
performed, there is an abundance of recordings from single
neurons in the superior colliculus that respond to both auditory
and visual stimuli. Early reports of these neurons emphasized
their superadditivity (meaning that the multisensory response
exceeds the sum of the unisensory responses) (Meredith and
Stein, 1986; Stein et al., 1988; Wallace et al., 1996) and this has
since been a guiding concept in the field, even in behavioral and
functional imaging studies (for reviewsandcriticismof itsuse in
fMRI studies, see Beauchamp, 2005; Laurienti et al., 2005). In
physiology, superadditivity is often invoked as evidence that a
particular neuron is involved in multisensory integration. The
neural Bayesian theory we have just outlined suggests an
alternative: neurons involved in optimal stimulus inference are
expected to display additive or subadditive responses. Interest-
ingly, recent physiological work has shown that superadditive
neurons constitute aminority and account for a relatively small
number of spikes (Perrault et al., 2005; Populin and Yin, 2002;
Stanford et al., 2005; Stanford and Stein, 2007). In contrast, the
majority of multisensory neurons in the cat superior colliculus
exhibit additivity or subadditivity, as predicted by the neural
Bayesian theory.

This is not to say that superadditive neurons do not play a
role in multisensory integration. They may be involved in
other aspects of multisensory integration; for instance, it has
been shown that nonlinear activation functions are needed for
computations such as coordinate transformations and effi-
cient read-out (Deneve et al., 1999; Deneve et al., 2001) and are
found in multisensory neurons likely involved in those
computations (Green and Angelaki, 2007). Interestingly, the
nonlinear activation functions that are typically used in
models (such as in Deneve et al., 1999; Deneve et al., 2001)
predict the greatest nonlinearity for neurons whose unisen-
sory response is weak, consistent with physiology (Stanford et
al., 2005). It is also possible that superadditive neurons do not
fire in the Poisson-like family, in which case optimal
combination could involve a nonlinearity. Finally, the neural
Bayesian theory outlined above does not deal with stimulus
detection; it assumes that the stimulus is present and then
extracts a posterior distribution over stimulus attributes (like
position). In principle, we can extend our framework to
detection, and it is quite possible that a nonlinearity will be
required for optimality in this case. Multi-electrode recordings
in awake, behaving animals should provide invaluable data to
explore these issues further and to help test Bayesian theories
that link physiology and behavior. The motivation for record-
ing multiple neurons at once is that correlations can be
estimated, which is essential to accurately estimate the
information content of the population (Averbeck et al., 2006;
Series et al., 2004).

Multi-electrode recordings could also be used to test other
predictions from probabilistic population coding theory. For
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instance, if neurons represent probability distributions as we
have described, all information contained in the population
should be recoverable with local linear decoders. In other
words, both downstream neurons and experimentalists
should find that nonlinear decoders do not perform any better
than linear ones. This would not only make computation and
learning in downstream layers considerably simpler, but also
neural decoding by experimentalists, since nonlinear deco-
ders require huge amounts of data to be tuned. In addition,
this framework also predicts that one should be able to
estimate, on a trial-by-trial basis, the confidence of the
animal. For instance, if the posterior distribution extracted
from the superior colliculus on a given trial predicts a
precision of, say, 10° in saccadic endpoints, the animal should
exhibit an average precision of about 10° on a large number of
trials of the same type. To our knowledge, this prediction is
specific to this framework.

Alternative theories have been put forward to explain
superadditivity in these multisensory neurons in the superior
colliculus, such as the one by Anastasio et al. (Anastasio et al.,
2000; Patton and Anastasio, 2003). In this theory, the response
of a single neuron is hypothesized to be proportional to the
posterior probability of the stimulus being present in its
receptive field. This model is somewhat limited in the type of
data it can capture. For instance, the model assumes that
neurons respond with the same firing rate whenever a
stimulus is present, regardless of factors like position, contrast
(for a visual target), or frequency (for auditory stimuli).
Unfortunately, this is quite implausible. Moreover, this
theory cannot explain why superior colliculus neurons fire
with near-Poisson statistics: it assumes that incoming spike
trains are Poisson, but predicts that output spike counts
follow a very unusual distribution given target presence (or
absence). As a result, it is difficult to assess whether this
model truly accounts for the firing patterns of neurons in
the superior colliculus, but further work might help to
resolve this issue.
Fig. 3 – Generative model of two auditory–visual signals. The
random variable C indicates the number of causes. If C=1,
then the visual and auditory cues xV and xA have the same
source – this is the generative model of traditional cue
integration. If C=2, the stimuli have independent sources. On
each trial, only xV and xA are available to the observer. The
probability of each value of C is evaluated based on these
cues and on prior information. This probability is then used
to weigh the two hypotheses to optimally infer the source(s).
5. Cue combination without forced integration

The second question concerns the number of sources, or
multiplicity, of multisensory cues. When an auditory and a
visual stimulus are observed, they could have either the
same source or different sources. In cue conflict experi-
ments, the disparity between the cues is usually kept small,
so that the observer has no difficulty imagining that they
originate from the same source (forced integration). How-
ever, in natural circumstances, large disparities in space,
time, or feature space occur frequently. In these conditions,
observers will tend to perceive the signals as originating
from different sources. This should be accounted for by a full
theory of multisensory perception. Older and recent experi-
ments have systematically investigated multisensory combi-
nation of simple stimuli in the presence of larger disparities,
in humans (Bresciani et al., 2006; Choe et al., 1975; Kording et
al., 2007; Roach et al., 2006; Slutsky and Recanzone, 2001;
Thurlow and Jack, 1973; Wallace et al., 2004) and in cats
(Rowland et al., 2007a). In these studies, observers performed
one of four tasks: reporting the perceived origin of one
stimulus while ignoring the other (Bresciani et al., 2005;
Bresciani et al., 2006; Roach et al., 2006; Rowland et al.,
2007a), reporting the perceived origins of the signals in both
modalities separately (Kording et al., 2007; Shams et al.,
2005), reporting whether they perceived the signals to
originate from the same source (Choe et al., 1975; Jack and
Thurlow, 1973; Slutsky and Recanzone, 2001), or reporting
both the perceived origin of one stimulus and the perception
of a common source (Wallace et al., 2004). Across this
diversity of paradigms, it was found that the smaller the
disparity, the greater the relative influence of the “irrelevant”
modality (bias) and the greater the probability of perceiving a
unified percept. Moreover, in the last paradigm, localization
variability was smaller when observers reported a common
source than when they reported different sources, and,
paradoxically, bias was mostly negative when they reported
different sources (Wallace et al., 2004).

These findings have been explained by a Bayesian causal
inference model, proposed recently by two independent
groups ((Beierholm et al., 2007; Kording and Tenenbaum,
2006; Kording et al., 2007; Sato et al., 2007); see also related
models (Bresciani et al., 2006; Roach et al., 2006; Rowland et
al., 2007a; Shams et al., 2005)). According to this model, an
observer entertains two possible hypotheses about the
process that generated the multisensory signals: that they
have a common cause (C=1) or that they have separate,
independent causes (C=2), see Fig. 3. On each trial, the
observer computes the probability of each hypothesis, p(C|xA,
xV), based on the noisy sensory signals on that trial (xA and
xV for auditory and visual, respectively) as well as prior
information, p(C), about the presence of a common cause:

p CjxA; xVð Þ~p xA; xVjCð Þp Cð Þ ð5Þ

In this equation, p(xA, xV|C) is called the likelihood function
of C. Subsequently, these probabilities (for C=1 and C=2) are
used to weigh the stimulus estimates following from each



Table 1 – Subproblems of multisensory integration from a
computational view

Subproblem Behavioral
model

Neural theory

Taking into account
reliabilities of cues

Bayes-optimal
cue integration

Linear combination of
population activities
(assuming Poisson-like
variability)

Efficient read-out Maximum-
likelihood
estimation

Attractor dynamics
(assuming Poisson-like
variability)

One or multiple
sources

Bayes-optimal
causal
inference

Unknown

Different coordinate
frames

Coordinate
transformation

Attractor dynamics, basis
function network
(assuming Poisson-like
variability)
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hypothesis (this follows from the Bayesian formalism). For
example, the estimated location of the auditory stimulus,
ŝA is obtained from the estimate under the common-cause
hypothesis, ŝcommon, and the estimate under the separate-
causes hypothesis, sâuditory ,through (Kording et al., 2007)

̂sA ¼ p C ¼ 1 j xA; xVð Þ ̂scommon xA; xVð Þ
þp C ¼ 2jxA; xVð Þ ̂sauditory xAð Þ ð6Þ

Because the weights p(C=1|x_A,X_V) and p(C=2|x_A,x_V)
depend in a nonlinear fashion on the cues, this scheme
predicts nonlinear cue combination, even though ŝcommon and
ŝauditory themselves are linear functions of xA and x

V when all
probability distributions over the stimulus are Gaussian. This
model can quantitatively account for the auditory localization
bias, unity judgments, and localization variability as a
function of spatial disparity, as well as the paradoxical
negative-bias effect (Beierholm et al., 2007; Kording and
Tenenbaum, 2006; Kording et al., 2007; Sato et al., 2007) and
the ventriloquism aftereffect (Sato et al., 2007). As such, it
provides, at the behavioral level, a rigorous formulation of the
heuristic known as the ‘spatial principle’ (Stein and Meredith,
1993), which states that multisensory stimuli are more likely
or more effectively integrated when they originate from
approximately the same spatial location.

Central to the causal inference model is the fact that the
presence of a common source is not assumed as in
traditional cue integration, but assigned a probability based
on both single-trial evidence and prior information. Prior
information can be manipulated by informing subjects of the
existence of a disparity between the stimuli (Warren, 1979;
Welch, 1972), which, as the model predicts, leads to a
decrease in auditory localization bias. Furthermore, it has
been argued that pairs of multisensory stimuli that tend to
co-occur in natural environments should be treated differ-
ently from “arbitrary” pairs generated in the laboratory (De
Gelder and Bertelson, 2003). In the causal inference model,
this distinction can be captured by the prior probability of a
common cause; all other things being equal, naturalistic
pairs are expected to yield higher weights for the common-
cause hypothesis. The model can be restated in the form of a
mixed prior over pairs of stimuli (Beierholm et al., 2007;
Kording et al., 2007) and is therefore an example of a mixture
model (Yuille and Bulthoff, 1996), used earlier to describe the
combination of depth cues (Knill, 2003). The causal inference
model was compared to other Bayesianmodels andwas found
to describe the data best (Beierholm et al., 2007; Kording et al.,
2007), although another model fared relatively well too (Roach
et al., 2006). More work is needed to compare Bayesianmodels
in other experimental paradigms.

Whereas the Bayesian causal inference model has so far
been used to explain multisensory spatial localization, with
spatial proximity being the cue for the existence of a common
cause, it can easily be applied and extended to other feature
judgments as well as other unity cues. Experiments show that
increasing temporal disparity strongly decreases localization
bias (Bertelson and Aschersleben, 1998; Radeau and Bertelson,
1987; Thomas, 1941), spatial and temporal disparities interact
in eliciting the ventriloquism effect (Slutsky and Recanzone,
2001), and an analog to the ventriloquism effect occurs in the
temporal dimension when stimuli are spatially coincident
(Bertelson and Aschersleben, 2003), although spatial disparity
fails to affect the latter effect (Vroomen and Keetels, 2006). In
the Bayesian causal inference model, any feature used to infer
whether two stimuli have the same origin will affect the
likelihood of a common cause, and thus determine the relative
weights of the hypotheses. This suggests that also the
behavioral version of the so-called “temporal principle”,
stating that multisensory stimuli are more likely or more
effectively integrated when they occur approximately simul-
taneously (Stein and Meredith, 1993), can be formalized in
Bayesian terms.

The multiplicity aspect of multisensory perception
(whether there are one or multiple sources) can be regarded
as a problem of perceptual grouping (Bertelson, 1999; Radeau
and Bertelson, 1987), i.e., deciding which elements of sensory
input belong together and should be bound into a unified
percept. It is similar to simultaneously segregating and
identifying multiple sources within the same modality, a
problem encountered in auditory scene analysis (Bregman,
1990; Feng and Ratnam, 2000) and in viewing superimposed
patterns of moving dots with differing motion directions
(Treue et al., 2000). A related case of perceptual grouping,
contour integration, has been successfully described using
Bayesian models (Elder and Goldberg, 2002; Feldman, 2001;
Geisler et al., 2001). It is widely believed that Bayesian models
of perceptual grouping hold promise as quantitative, prob-
abilistic versions of Gestalt laws (Mamassian, 2006).

The neural implementation of Bayes-optimal causal infer-
ence in multisensory perception is as of yet unknown, but can
be expected to be a generalization of the neural implementa-
tion of optimal cue integration (with forced fusion), i.e., linear
combination for optimal posterior computation (Ma et al.,
2006) and attractor dynamics for efficient estimation (Deneve
et al., 1999; 2001). Doubly distributional population codes
(Sahani and Dayan, 2003) have been proposed to address the
problem of simultaneously encoding uncertain cues about
multiple sources in the same modality in neural populations,
and may be of use in causal inference as well.



10 B R A I N R E S E A R C H 1 2 4 2 ( 2 0 0 8 ) 4 – 1 2
6. Towards a complete theory of multisensory
integration

Three decades ago, the question was posed whether there is a
unified explanation for multisensory localization judgments
under conflict (Warren, 1979). Behavioral theories of Bayes-
optimal cue combination have brought us closer to this goal.
Not only do they explain awide range of existing data, they are
also firmly rooted in a principled, probabilistic description of
the purpose of multisensory perception, which is to increase
precision if two cues have a common origin, but to keep cues
with different origins segregated. They fit in a line of
normative models of perception and decision-making that
have been successful in recent years (Kording, 2007) and have
a long history (Hatfield, 1990). However, whereas Bayesian
approaches to behavioral data in multisensory perception
have become commonplace, models for their underlying
neural mechanisms have just started to appear. We believe
that probabilistic population codes provide a framework that
allows to build testable neural models of Bayes-optimal
behavior without the need to make ad-hoc assumptions.
Importantly, even when one or more of the assumptions are
violated, the framework provides a systematic way to think
about which corrections are needed.

In this review, we have focused on Bayesian cue integra-
tion and inference about the number of sources. From a
computational view, there are two other aspects to multi-
sensory perception: efficient read-out and coordinate trans-
formations. Efficient read-out (decoding) is necessary to
extract the largest possible amount of information from the
multisensory population (Deneve et al., 1999), while coordi-
nate transformations are necessary if the cues are initially
not encoded in the same frame of reference, such as auditory
(head-centered) and visual (eye-centered) cues (Deneve et al.,
2001; Pouget and Sejnowski, 1997; Salinas and Abbott, 1995).
Remarkably, if neuronal variability is Poisson-like, efficient
read-out and coordinate transformations can be implemen-
ted through a basis function network with attractor
dynamics (Deneve et al., 1999; 2001). A complete theory of
multisensory integration should address at least all four
aspects (see Table 1) and connect them in an overarching
framework. It will only be possible to test such a theory
through simultaneous measurements of behavior and of
neural population activity.

Apart from a unifying theory of multisensory perception,
there are still many interesting open questions in traditional
cue integration. One of these is whether Bayesian models for
cue integration can be applied to more complex stimuli, such
as emotional state (De Gelder and Vroomen, 2000) or spoken
syllables, either without (Ross et al., 2007; Sumby and Pollack,
1954) or with conflict (Massaro, 1987; 1998). Another out-
standing issue concerns the relation between the statistics of
the environment on the one hand and the likelihood function
and priors in Bayesian models on the other hand. An
intriguing new study shows that an arbitrary common-cause
association between vision and touch can be learned with a
moderate amount of training (Ernst, 2007). Moreover, people
can learn to optimally take into the account the reliabilities of
arbitrary low-level features of images (Michel and Jacobs,
2008). Finally, a topic of great interest is the time course of
multisensory integration, which requires modeling of the full
decision-making process and would allow to make contact
with the literature on saccadic reaction times (Bell et al., 2005;
Colonius and Arndt, 2001; Colonius and Diederich, 2004;
Corneil et al., 2002; Diederich and Colonius, 2004; Diederich
and Colonius, 2007; Rowland et al., 2007b).
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