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Optimality of Global Inhibition 

In the main text, we showed that a simple summation of MT spike counts leads to perfect 

information preservation in LIP. Thus, one way to preserve information would be to 

connect each MT neuron to a single LIP neuron which then perfectly integrates its inputs. 

One problem with this approach is that LIP neurons are likely to saturate very quickly to 

their maximum firing rate. This saturation can be prevented by using global recurrent 

inhibition, that is, by subtracting at each time step a term proportional to the total activity 

in the LIP layer.  

 Importantly, this type of inhibition does not result in any information loss. More 

specifically, inhibition modeled in this way maintains the Poisson-like statistics and 

leaves the associated posterior unaltered. To show this, suppose that at each time step the 

activity in LIP, r, is Poisson-like with stimulus-dependent kernel h(s), and that inhibition 

acts by subtracting a vector n, which is drawn from some conditional probability 

distribution p(n|r). In this case, the inhibited population pattern of activity is given by 

z=r-n and we are interested in obtaining the conditions for which z is Poisson-like with 

kernel h(s) and contains the same amount of information as r. As it turns out, one simple 

condition for which this is the case is when n is in the null space of the derivative of h(s) 

with respect to s, i.e., when h’T(s)n =0 . Specifically, we observe that,  
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where we have used the fact that if n is in the null space of h’(s), then f(n)=exp(hT(s)n) is 

independent of s. Since p(r|s)=φ(r,c)exp(hT(s)r), it is clear from Eq. A1 that p(r|s) and 

p(z=r-n|s) (as a function of s) only differ by a multiplicative constant. This in turn 

implies that the posterior distributions p(s|r) and p(s|z=r-n) are identical, and thus 

subtracting n induced no information loss. Of course, this result is only useful if h’(s) has 

a non-trivial null space. Fortunately, given the symmetry conditions which are enforced 

both on MT and the connectivity to LIP, it is easy to show that the vector comprised of 

only ones, 1=[1,1,…,1]T, has the desired property. As a result, we can conclude that any 

global inhibition in LIP of the form, z=r-f(r)1, when f(r) is a scalar (and possibly 

random) function of r, will not affect either the information content or the Poisson-like 

statistics of LIP.  

 

Optimal Action Selection 

As stated in the main text, a line attractor network in the superior colliculus (SC) layer of 

the network can recover the maximum likelihood estimate of saccade direction from LIP 

activity if the LIP spike counts follow ‘Poisson-like’ distributions (the LIP analog of Eq. 

4 in the main text) and the dynamics in the SC layer is such that 
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where v†SC(s) is the left null eigenvector of the Jacobian in the superior colliculus layer 

evaluated on the attractor and h'LIP(s) is the derivative of the kernel with respect to s in 

the LIP layer (Eq. 5 in the main text). 



 

 This result is a corollary of our previous work on optimal estimation with line 

attractor networks1,2 and Bayesian inference with population codes3. In that work, we 

showed that the variance of an unbiased estimate obtained from a line attractor is 

minimized when the left null eigenvector of the attractor is given by 
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Here, ΣLIP(s) is the stimulus-dependent covariance matrix of the LIP activity and f'LIP(s) 

is the derivative with respect to the stimulus s of the stimulus-dependent mean, also 

called the tuning curve. Taking the derivative of the tuning curve associated with 

Poisson-like distribution yields,  
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where we have used the fact that fT(s,c)h’(s)=0, which results from the fact that the 

probability distribution integrates to 1. Eq. A4 implies that  
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and comparison with Eq. (A3) yields the relationship described by Eq. (A2) and Eq. (8) 

in the main text.  

We have shown in general that the variance of the estimate obtained from a line 

attractor network is minimized when Eq. (A3) is satisfied1,2. This would seem to imply 

that the SC layer provides the best possible unbiased estimator, in the sense that variance 

is minimal. However, all we have shown is that is that the SC layer provides the best 



 

estimator that can be obtained by a line attractor. This last qualifier is crucial, since 

response distributions exists for which the line attractor network is suboptimal1,2. 

Fortunately, the Poisson-like family is not one of these. This can be seen by comparing 

the variance of the line attractor network estimate with the Cramer-Rao bound associated 

with the Poisson-like family of distributions. 

As is easy to show based on previous work2, the variance of the unbiased network 

estimate in the SC layer, denoted σ2
SC, is given by 
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To compute the Cramer-Rao bound in LIP, denoted σ2
CR, we use the standard relation4 
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where the angle brackets represent an average with respect to p(rLIP|s). If LIP neurons fire 

with Poisson-like statistics, then it is easy to show that  
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where we have once again used the fact that h'(s)·fLIP(s,c)=0 for Poisson-like 

distributions. Using Eq. (A8), σ2
CR becomes 
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Recalling that h'(s) = (ΣLIP(s,c))-1f'LIP(s,c), we conclude that 
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Comparing Eqs. (A6) and (A10), we see that they are identical. Thus, the line attractor 

network achieves the Cramer-Rao bound when the variability in LIP is Poisson-like. Note 

that if the response variability in LIP is not Poisson-like, there is no guarantee that the 

line attractor network can reach the Cramer-Rao bound, which means there is no 

guarantee that there is a set of parameters for which the line attractor network is optimal.  

 

 

 

Network Simulations with LNP Neurons 

Fig. S1 shows two examples of raster plots for 200 trials with the coherence set to 51.2%. 

The top neuron has its receptive field in the direction of the motion in the display, while 

the bottom neuron has a receptive field 180º away.  

 

Analysis of LIP Data 

In the main text, we show that the LIP layer of our model encodes a probability 

distribution which reflects both the reliability of the sensory evidence (Fig. 3a-b) and the 

performance of the animal (Fig. 5a). To test quantitatively whether these predictions hold 
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Figure S1: Raster plots for two neurons in the LIP layer of the model. The direction of motion is the 
same on all trials with the coherence set to 51.2%. The stopping bound was deactivated to allow the 
neurons to integrate for the full duration of the trial (500ms). a. Neurons with a receptive field 
corresponding to the direction of motion in the display. b. Same as in a but for a neuron with a receptive 
field 180o away from the direction in the display. 

0 100 200 300 400 500

0

40

80

120

160

200

Time (ms)

Tr
ia

l N
um

be
r

0 100 200 300 400 500

0

40

80

120

160

200

Time (ms)

Tr
ia

l N
um

be
r

a b

Figure S1: Raster plots for two neurons in the LIP layer of the model. The direction of motion is the 
same on all trials with the coherence set to 51.2%. The stopping bound was deactivated to allow the 
neurons to integrate for the full duration of the trial (500ms). a. Neurons with a receptive field 
corresponding to the direction of motion in the display. b. Same as in a but for a neuron with a receptive 
field 180o away from the direction in the display. 



 

in vivo, we would need to estimate both p(s|rLIP) and the posterior used by the animal to 

make a decision. This would require multi-unit recordings in LIP, preferably in a 

continuous decision making task. Such data are not currently available. Instead, we use a 

data set from Roitman and Shadlen5, in which the monkey had to decide between two 

directions, 180º apart, and one from Churchland et al.6, in which the monkey had to 

decide between four directions, 90º  apart. Only two types of neurons were recorded, 

those with preferred saccade directions corresponding to one of the two choice targets. 

These neurons were recorded on different trials.  

 Given these limitations, we cannot test our predictions quantitatively, but we can 

test them qualitatively. With only two targets and two types of neurons, we can estimate 

the log odds, averaged over many trials of the same coherence, from the average activity 

of the two groups of neurons. Using Eq. (6) in the main text (applied to LIP activity), and 

assuming a left-right symmetry, it can be shown that: 
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where LIP
0r  and LIP

180r  are the activities of 

the LIP neurons tuned to 0° and 180°, 

respectively. Therefore, if we can 

measure a quantity proportional to 
LIP LIP

0 180r r r∆ = −  in LIP, we can test 

our predictions qualitatively. 

Specifically, we can ask whether the 

average log odds in LIP grows with time 

and whether it grows faster for higher 

coherence (as in the case of the model, 

see Fig. 3a). In addition, we can ask 

whether the average log odds grows with 

coherence (as shown for the model in 
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Figure S2: Log odds in LIP. For each coherence, the average firing 
rate of the slowest 50% of trials at that coherence is plotted, both for 
neurons which contain the chosen target (solid lines) and neurons which 
contain the other target (dashed lines).  Each average is computed only 
up to the termination time of the fastest trial in the average, minus 60 
ms to account for the saccade.  This is meant to ensure that neither 
saccadic bursts nor terminated trials are included in the average. 
Straight lines starting from a common point are fitted through both the 
upward and downward moving traces, as illustrated by the dotted line 
for 25.6% coherence.  When the upper trace hits 65 Hz, the difference 
between the upper and the lower line is computed.  This difference is 
approximately proportional to the average log odds of choice.  
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Fig. 5a). Since coherence is monotonically related to performance (through the 

psychometric curve), the finding that the average log odds grows with coherence would 

also show that the average log odds at decision time reflects the animal’s performance).  

We first describe how we estimated r∆  at decision time. Estimating the firing 

rates is in principle straightforward, but in practice complicated by the fact that different 

trials terminate at different times and that LIP neurons exhibit a saccade-related burst at 

the end of each trial. This means we cannot perform a straightforward average of all 

trials. What we do instead is consider, at each motion strength, the 50% of the trials that 

take the longest to terminate, and note that our results are robust to the fraction of trials 

included. To eliminate the saccadic burst, which is not part of the integration, we remove 

the last 60 ms of all trials. We then average separately the firing rates for Tin (the neuron 

whose response field corresponds to the chosen target) and for Tout (the neuron whose 

response field corresponds to a saccade 180º away from the chosen target) – in other 

words, we are conditioning neural responses on the direction of the saccade (note that for 

this particular analysis, we ignore T90 in the four-choice data). Both averages were 

computed only for the duration of the shortest trial in the average. We then perform a 

linear regression, assuming that the integration starts at 190 ms and 44 spikes/s (for the 

Churchland data, 155 ms and 27 spikes/s). We extrapolate the linear fits to 65 spikes/s 

(see Fig. S2) (for the Churchland et al data, 73 spikes/s). At the time the upper trace hits 

65 spikes/s (73 spikes/s, respectively), we measure the difference between the fits to both 

traces. Fig. 5c in the main text shows that the difference increases with coherence. 

Because the fits are linear, the value of the bound is irrelevant to this result – a different 

bound would only give an overall scale factor.  

Given the various approximations we have made (e.g. linear fits, a percentage of 

the trials excluded, no correlations), the difference in firing rates obtained with this 

method, r∆ , is not the true difference in firing rates at decision time, but a number 

monotonically related to this variable. Ultimately, this is not a problem since we do not 

need to know the absolute value of the log odds; only their relative values matter for our 

prediction. Therefore, the scaling between r∆  and log odds can be set arbitrarily. In 



 

Figs. 5c and d, when we plot the log odds, we chose a scaling (and a shift) to match Figs. 

5a and b. 

 To obtain the error bars in Fig. 5, we assumed that the rates increase linearly with 

time and are perturbed by noise, 
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where 190 60it i= + ⋅  are the times in ms at which the rates are computed (i = 0,1,2,…). 

Integration is taken to start at 190 ms after stimulus onset. Rates are computed by 

dividing the average number of spikes across all trials in an interval of length 60 ms 

centered at it  by the length of that interval. b is the rate at the start of integration, which 
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The decision time (w.r.t. the start of integration) is 
0
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t

−
=  , where a0 is the 

integration slope for the Tin neuron. The log odds at decision time can now be rewritten as  
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It is estimated by substituting the estimates of the slopes, 0a  and 180a .Since we know the 

errors in both slopes, the error in the log odds at decision time can be approximated as 
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To test the other prediction (average log odds as a function of time and coherence, Fig. 

3a), we performed the same analysis with two modifications. Instead, of conditioning the 

activity of the neurons on direction of saccade, we conditioned them on direction of 

motion. Also, when plotting log odds in Fig. 3d, we use the following scaling: log odds = 

0.6× r∆ . 

 

Optimality in the Presence of the Bound 

It is important to note that the presence of a bound does not affect the optimality of the 

action selection mechanism described in the main text. This may seem counterintuitive as 

the exact mechanism which implements the bound has a strong effect on the shape of the 

noise distribution p(rLIP(t)|s). However, it is possible to show that any stopping criterion 

which depends only upon the pattern of activity rLIP(t), does not affect the information 

content of LIP at stopping time. This can be demonstrated by simply showing that the 

posterior distribution associated with the complete history of activity in MT can be 

reconstructed from the activity in LIP. However, it is perhaps more informative to 

demonstrate this fact by showing the similarity in the actual computations of the noise 

distributions for LIP in the presence and absence of a bound. Therefore, consider the time 

history of activity from MT, rMT(t1:tN), which is supposed to be Poisson-like:  
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When LIP is just the temporal sum of MT activity, we can conclude LIP activity at time 

tN is distributed according to 
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On the second-to-last line, we just rewrote the first term as an integral over all paths of 

rMT(t1:tN) that have the property that rMT t1 : tN( )
n=1

N

∑ = rLIP tN( ). Thus, in the absence of the 

bound, rLIP(tN) is also Poisson-like. This is because the sum over all possible paths of 

rMT(t1:tN) which lead to a particular rLIP(tN) only affects the measure function φ
LIP , which 

is independent of s. When a decision boundary is crossed for the first time at time tN we 

no longer sum over all paths of rMT(t1:tN) which lead to a particular rLIP(tN), but rather 

only over those paths which did not cross the decision boundary prior to time tN. When 

the boundary function is only a function of rLIP(tn) and thus only a function of rMT(t1:tN) 

the only thing that changes in Eq. (A13) is the number of terms in the sum on the second 

to last line, i.e. we now only integrate over the paths that led to rLIP(tN) but did not cross 

the bound. Therefore, when the decision bound is implemented by any function which is 

only a function of LIP or MT activity, i.e. independent of s, we can conclude that the 



 

presence of the bound only affects the measure function, and is therefore Poisson-like 

with  
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Finally, comparison of the associated MT and LIP posteriors, (Eqs. (2) and (6) in the 

main text) demonstrates that no information was lost in the MT-to-LIP transformation.  
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