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CHAPTER 32
Probabilistic population codes and the exponential
family of distributions
J. Beck1, W.J. Ma1, P.E. Latham2 and A. Pouget1,�
1Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY, USA
2Gatsby Computational Neuroscience Unit, London WC1N 3AR, UK

Abstract: Many experiments have shown that human behavior is nearly Bayes optimal in a variety of tasks.
This implies that neural activity is capable of representing both the value and uncertainty of a stimulus, if
not an entire probability distribution, and can also combine such representations in an optimal manner.
Moreover, this computation can be performed optimally despite the fact that observed neural activity is
highly variable (noisy) on a trial-by-trial basis. Here, we argue that this observed variability is actually
expected in a neural system which represents uncertainty. Specifically, we note that Bayes’ rule implies that
a variable pattern of activity provides a natural representation of a probability distribution, and that the
specific form of neural variability can be structured so that optimal inference can be executed using simple
operations available to neural circuits.
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Introduction

The information available to our senses regarding
the external world is ambiguous and often cor-
rupted by noise. Despite such uncertainty, humans
not only function successfully in the world, but
seem capable of doing so in a manner that is op-
timal in a Bayesian sense. This has been observed
in a variety of cue combination tasks, including
visual and haptic cue combination (Ernst and
Banks, 2002; Kording and Wolpert, 2004), visual
and auditory cue combination (Gepshtein and
Banks, 2003), and visual–visual cue combination
(Knill and Richards, 1996; Saunders and Knill,
2003; Landy and Kojima, 2001; Hillis et al., 2004).
Since cue combination processes lie at the heart of
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nearly every aspect of human perception, it is im-
portant to understand how cue combination tasks
can be performed optimally, both in principle and
in cortex.

Cue combination can be illustrated with the fol-
lowing example: consider a cat seeking a mouse
using both visual and auditory cues. If it is dark
and the mouse is partially occluded by its sur-
roundings, there is a high degree of uncertainty in
the visual cues available. The mouse may even be
hiding in a field of gray mouse-sized rocks and
facing in any number of directions, increasing this
uncertainty. In such a context, when visual infor-
mation is highly uncertain, the Bayesian cat would
base an estimate of the position of the mouse pri-
marily upon auditory cues. In contrast, when light
is abundant, the mouse is easily visible, and audi-
tory input becomes the less reliable of the two
cues. In this second case, the cat should rely
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primarily on visual cues to locate the mouse. If the
cat’s auditory and visual cue-based estimates of
the mouse’s position (sa and sv respectively) are
independent, unbiased and Gaussian distributed
with standard deviations of sa and sv, then the
optimal estimate of the position of the mouse is
given by

saþv ¼
sa=s2a þ sv=s2v
1=s2a þ 1=s2v

(1)

Cue combination studies have shown Eq. (1) to be
compatible with behavior even when sa and sv are
adjusted on a trial-by-trial basis. Thus one may
conclude that the cortex utilizes a neural code that
represents the uncertainty, if not an entire prob-
ability distribution, for each cue in a way that is
amenable to the optimal cue combination as de-
scribed by Eq. (1).

At first glance, it may seem that cortical neurons
are not well-suited to the task of representing
probability distributions, as they have been ob-
served to exhibit a highly variable response when
presented with identical stimuli. This variability is
often thought of as noise, which makes neural de-
coding difficult in that estimates of various task-
relevant parameters become somewhat unreliable.
Here, however, we will argue that it is critical to
realize that neural variability and the representa-
tion of uncertainty go hand-in-hand. For example,
suppose that each time our hypothetical cat ob-
serves a mouse, a unique pattern of activity reli-
ably occurs in some region of cortex. If this were
the case, then observation of that pattern of ac-
tivity would indicate with certainty that the mouse
is in the cat’s visual field. Thus, only when the
pattern of activity is variable in such a way that it
overlaps with patterns of activity for which the
mouse is not present, can the pattern indicate that
the mouse is present only with ‘‘some probability.’’
In reality, absolute knowledge is an impractical
goal. This is not just because sensory organs are
unreliable, but also because many problems faced
by biological organisms are both ill-posed (there
are an infinite number of three-dimensional con-
figurations that lead to the same two-dimensional
image on the retina) and data limited (the signal
reaching the brain is too noisy to determine pre-
cisely what two-dimensional image produced it).
Regardless, the above example indicates that neu-
ral variability is not only compatible with the rep-
resentation of probability distributions in cortex,
but is, in fact, expected in this context.

Ultimately, this insight is simply an acknowl-
edgement of Bayes’ rule, which states that when
the presentation of a given stimulus, s, yields a
variable neural response vector r, then for any
particular response r, the distribution of the stim-
ulus is given by

pðsjrÞ ¼
pðrjsÞpðsÞ

pðrÞ
(2)

The construction of a posterior distribution,
p(s|r), from a likelihood function, p(r|s), in this
manner corresponds to an ideal observer analysis
and is, by definition, optimal. We are not suggest-
ing that a Bayesian decoder is explicitly imple-
mented in cortex, but rather that the existence of
Bayes’ rule renders such a computation unneces-
sary, since a variable population pattern of activity
already provides a natural representation of the
posterior distribution (Foldiak, 1993; Anderson,
1994; Sanger, 1996; Zemel et al., 1998). This view
stands in contrast to previous work (Rao, 2004;
Deneve, 2005) advocating the construction of a
network that represents the posterior distribution
by directly identifying neural activity with either
the probability of a specific value of the stimulus,
the log of that probability, or convolutions
thereof.

It is not immediately clear whether or not op-
timal cue combination, or other desirable opera-
tions, can be performed. We will address this issue
through the construction of a Probabilistic Popu-
lation Code (PPC) that is capable of performing
optimal cue combination via linear operations. We
will then show that when distributions over neu-
ronal activity, i.e., the stimulus-conditioned neu-
ronal responses, p(r|s), belong to the exponential
family of distributions with linear sufficient statis-
tics, then optimal cue combination (and other type
of Bayesian inference, such as integration over
time) can be performed through simple linear
combinations. Members of this family of likeli-
hood functions, p(r|s), will then be shown to be
compatible with populations of neurons that
have arbitrarily shaped tuning curves, arbitrary
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covariance matrices, and can represent arbitrary
posterior distributions.
Probabilistic Population Codes

We define a PPC as any code that uses Bayes’ rule
to optimally and accessibly encode a probability
distribution. Here, we say that a code is accessible
to a given neural circuit when that circuit is capa-
ble of performing the operations necessary to per-
form Bayesian inference and computation. For
instance, in this work, we will be assuming that
neural circuits are, at the very least, capable of
performing linear operations and will seek the
population code for which cue combination can be
performed with some linear operation. To under-
stand PPCs in a simplified setting, consider a
Poisson distributed populations of neurons for
which the tuning curve of neuron indexed by i is
fi(s). In this case

pðrjs; gÞ ¼
Y
i

e�gf iðsÞðgf iðsÞÞ
ri

ri!
(3)

where ri is the response or spike count of neuron i

and g the amplitude, or gain, of population. When
the prior is flat, i.e., p(s) does not depend on s,
application of Bayes’ rule yields a posterior distri-
bution that takes the form

pðsjr; gÞ ¼
pðrjs; gÞpðsjgÞ

pðrjgÞ

¼
1

LpðrjgÞ

Y
i

e�gf iðsÞðgf iðsÞÞ
ri

ri!

¼
1

LpðrjgÞ

Y
i

1

ri!

 !
exp

X
i

ri log g� gf iðsÞ

 !

exp
X
i

ri log f iðsÞ

 !

¼
1

LpðrjgÞ

Y
i

1

ri!

 !
exp

X
i

ri log g� gc

 !

exp
X
i

ri log f iðsÞ

 !

/ exp
X
i

ri logðf iðsÞÞ

 !
ð4Þ
where 1/L ¼ p(s), and we have assumed that tuning
curves are sufficiently dense so that

P
i f iðsÞ ¼ c:

Because this last line of the equation represents an
unnormalized probability distribution over s, we
may conclude that the constant of proportionality
depends only on r and is thus also independent of
the gain g.

From Eq. (4), we can conclude that, if we knew
the shape of the tuning curves fi(s), then for any
given pattern of activity r (and any gain, g), we
could simply plot this equation as a function of s
to obtain the posterior distribution (see Fig. 1). In
the language of a PPC we say that knowledge of
the likelihood function, p(r|s), automatically im-
plies knowledge of the posterior distribution p(s|r).
In this simple case of independent Poisson neu-
rons, knowledge of the likelihood function means
knowing the shape of the tuning curves. As we will
now demonstrate, this knowledge is also sufficient
for the identification of an optimal cue combina-
tion computation.

To this end, suppose that we have two such
populations, r1 and r2, each of which encodes some
piece of independent information about the same
stimulus. In the context of our introductory ex-
ample, r1 might encode the position of a mouse
given visual information while r2 might encode the
position of the mouse given auditory information.
When the two populations are conditionally inde-
pendent given the stimulus and the prior is flat, the
posterior distribution of the stimulus given both
population patterns of activity is simply given by
the product of the posterior distributions given
each population independently

pðsjr1; r2Þ / pðr1; r2jsÞ

/ pðr1jsÞpðr2jsÞ

/ pðsjr1Þpðsjr2Þ ð5Þ

Thus, in this case optimal cue combination corre-
sponds to the multiplication of posteriors and
subsequent normalization.

As illustrated in Fig. (2), a two layer network
which performs the optimal cue combination op-
eration would combine the two population pat-
terns of activity, r1 and r2, into a third population,
r3, so that

pðsjr3Þ ¼ pðsjr1; r2Þ (6)
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Fig. 1. Two population patterns of activity, r1 and r2, which were drawn from the distribution given by Eq. (3) with Gaussian-shaped

tuning curves. Since the tuning curve shape is known, we can compute posterior p(s|r) for any given r, either by simply plotting the

likelihood, p(r|s), as a function of the stimulus s or, equivalently, by using Eq. (4).
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For identically tuned populations, r3 is simply the
sum, r1+r2. Since r3 is the sum of two Poisson
random variables with identically shaped tuning
curves, it too is a Poisson random variable with the
same shaped tuning curve (but with a larger am-
plitude). As such, the Bayesian decoder applied to
r3 takes the same form as the Bayesian decoder for
r1 and r2. This implies

pðsjr3Þ / exp
X
i

r3i logðf iðsÞÞ

 !

/ exp
X
i

ðr1i þ r2iÞ logðf iðsÞÞ

 !

/ exp
X
i

r1i logðf iðsÞÞ

 !
exp

X
i

r2i logðf iðsÞÞ

 !

/ pðsjr1Þpðsjr2Þ

/ pðsjr1; r2Þ ð7Þ

and we conclude that multiplication of the two
associated posterior distributions corresponds to
the addition of two population codes. When the
tuning curves are Gaussian, this result can also be
obtained through a consideration of the variance
of the maximum likelihood estimate obtained from
the posterior distribution associated with the pop-
ulation r3. This results from the fact that, for
Gaussian tuning curves, the log of fi(s) is quadratic
in s and thus the posterior distribution is also
Gaussian with maximum likelihood estimate, ŝðrÞ;
and estimate variance, s2ðrÞ: These quantities are
related to the population pattern activity r, via the
expressions

ŝðrÞ ¼

P
isiriP
iri

1

s2ðrÞ
¼

1

s2tc

X
i

ri ð8Þ

where si is the preferred stimulus of the ith and stc
gives the width of the tuning curve. The estimate,
ŝðrÞ; is the well-known population vector decoder,
which is known to be optimal in this case (Snippe,
1996). Now, we use the fact that the expression for
the mean and variance of the posterior associated
with r3 is the same as the expression associated
with r1 and r2. This implies that

1

s23ðr3Þ
¼

1

s2tc

X
i

r3i ¼
1

s2tc

X
i

r1i þ r2i

¼
1

s21ðr1Þ
þ

1

s22ðr2Þ
ð9Þ

and

ŝ3ðr3Þ ¼

P
ir3isiP
ir3i

¼

P
ir1isi þ

P
ir2isiP

ir1i þ
P

ir2i

¼
ŝ1ðr1Þ=s21ðr1Þ þ ŝ2ðr2Þ=s22ðr2Þ

1=s21ðr1Þ þ 1=s22ðr2Þ
ð10Þ

Comparison with Eq. (1) demonstrates optimality.
Moreover, optimality is achieved on a trial-by-trial
basis, since the estimate of each population is
weighted by a variance which is computed from
the actual population pattern of activity.

It is also important to note that, in the compu-
tation above, we did not explicitly compute the
posterior distributions, p(s|ri), and then multiply
them together. Rather we operated on the popula-
tion patterns of activity (by adding them together)
and then simply remarked (Fig. 2) that we could
have applied Bayes’ rule to optimally decode these
population patterns and noted the optimality of
the computation. This is the essence of a PPC.
Specifically, a PPC consists of three things: (1) a set
of operations on neural responses r; (2) a desired
set of operations in posterior space, p(s|r); and (3)
the family of likelihood functions, p(r|s), for which
this operation pair is optimal in a Bayesian sense.
In the cue combination example above, the oper-
ation of addition of population patterns of activity
(list item 1) was shown to correspond to the op-
eration of operation of multiplication (and renor-
malization) of posterior distributions (list item 2),
when the population patterns of activity were
drawn from likelihood functions which corre-
sponded to an independent Poisson spiking popu-
lations with identically shaped tuning curves (list
item 3). Moreover, simple addition was shown to
be optimal regardless of the variability of each cue,
i.e., unlike other proposed cue combination
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schemes (Rao, 2004; Navalpakkam and Itti, 2005),
this scheme does not require that the weights of the
linear combination be adjusted on a trial-by-trial
basis.
Generalization to the exponential family with linear
sufficient statistics

So far we have relied on the assumption that pop-
ulations consist of independent and Poisson spik-
ing neurons with identically shaped tuning curves.
However, this is not a limitation of this approach.
As it turns out, constant coefficient linear opera-
tions can be found that correspond to optimal cue
combination for a broad class of Poisson-like like-
lihood functions described by the so-called expo-
nential family with linear sufficient statistics. This
family includes members that can have any tuning
curve shape, any correlation structure, and can
represent any shape of the posterior, i.e., not just
Gaussian posteriors. Below, we show that, in the
case of contrast-invariant turning curves, the re-
quirement that optimal cue combination occur via
linear combination of population patterns of ac-
tivity with fixed coefficients only limits us to like-
lihood functions for which the variance is
proportional to the mean.
Optimal cue combination via linear combination of
population codes

Consider two population codes, r1 and r2, encod-
ing visual and auditory location cues, which are
jointly distributed according to p(r1, r2|s). The goal
of an optimal cue combination computation is to
combine these two populations into a third pop-
ulation pattern of activity r3 ¼ F(r1, r2), so that an
application of the Bayes rule yields

pðsjr3Þ ¼ pðsjr1; r2Þ (11)

Note that optimal cue combination can be trivially
achieved by selecting any invertible function
F(r1, r2). To avoid this degenerate case, we assume
the lengths of the vectors r1, r2, and r3 are the
same. Thus the function F cannot be invertible.
The likelihood of r3 is related to the likelihood of
r1 and r2 via the equation

pðr3jsÞ ¼

Z
pðr1; r2jsÞdðr3 � F ðr1; r2ÞÞdr1dr2 (12)

Application of Bayes’ rule and the condition of
optimality [Eq. (11)], indicates that an optimal cue
combination operation, F(r1, r2), depends on the
likelihood, p(r1, r2|s).

Interestingly, if the likelihood is in the exponen-
tial family with linear sufficient statistics, a linear
function F(r1, r2) can be found such that Eq. (11) is
satisfied. Members of this family take the func-
tional form

pðr1; r2jsÞ ¼
f12ðr1; r2Þ

Z12ðsÞ
expðhT1 ðsÞr1 þ hT2 ðsÞr2Þ (13)

where the superscript ‘‘T’’ denotes transpose,
f12ðr1; r2Þ is the so-called measure function, and
Z12ðsÞ the normalization factor, often called the par-
tition function. Here h1(s) and h2(s) are vector func-
tions of s, which are called the stimulus-dependent
kernels associated with each population. We make
the additional assumption that h1(s) and h2(s) share
a common basis b(s) which can also be represented
as vector of functions of s. This implies that we may
write hi(s) ¼ Aib(s) for some stimulus independent
matrix Ai (i ¼ 1, 2). We will now show that, when
this is the case, optimal combination is performed
by the linear function

r3 ¼ Fðr1; r2Þ ¼ AT
1 r1 þ AT

2 r2 (14)

Moreover, this we will show that the likeli-
hood function p(r3|s) is also in the same family of
distributions as p(r1, r2|s). This is important, as it
demonstrates that this approach — taking linear
combinations of firing rates to perform optimal
Bayesian inference — can be either repeated itera-
tively over time or cascaded from one population to
the next.

Optimality of this operation is most easily
demonstrated by computing the likelihood,
p(r3|s), applying Bayes’ rule to obtain p(s|r3) and
then showing that p(s|r3) ¼ p(s|r1, r2). Combining
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Eqs. (12–14) above indicates that

pðr3jsÞ ¼

Z
f12ðr1; r2Þ

Z12ðsÞ
expðhT1 ðsÞr1

þ hT2 ðsÞr2Þdðr3 � AT
1 r1 � AT

2 r2Þdr1dr2

¼

Z
f12ðr1; r2Þ

Z12ðsÞ
expðbTðsÞAT

1 r1

� bTðsÞAT
2 r2Þd r3 � AT

1 r1 � AT
2 r2

� �
dr1dr2

¼
expðbTðsÞr3Þ

Z12ðsÞ

Z
f12ðr1; r2Þ

dðr3 � AT
1 r1 � AT

2 r2Þdr1dr2

¼
f3ðr3Þ

Z12ðsÞ
expðbT sð Þr3Þ ð15Þ

where f3ðr3Þ is a new measure function that is
independent of s. This demonstrates that r3 is also
a member of this family of distributions with a
stimulus-dependent kernel drawn from the com-
mon basis associated with h1(s) and h2(s). As in the
independent Poisson case, the Bayesian decoder
applied to a member of this family of distributions
takes the form

pðsjr1; r2Þ /
expðhT1 ðsÞr1 þ hT2 ðsÞr2Þ

Z12ðsÞ
(16)

and we may conclude that optimal cue combination
has been performed by this linear operation, since

pðsjr3Þ / exp
ðbTðsÞr3Þ

Z12ðsÞ

/ exp
ðbTðsÞAT

1 r1 þ bTðsÞAT
2 r2Þ

Z12ðsÞ

/ exp
ðhT1 ðsÞr1 þ hT2 ðsÞr2Þ

Z12ðsÞ

/ pðsjr1; r2Þ ð17Þ

Note that the measure function f12ðr1; r2Þ; which
was defined in Eq. (13), is completely arbitrary so
long as it does not depend on the stimulus.
Nuisance parameters and gain

In the calculation above, we assumed that the
likelihood function, p(r|s), is a function only of
the stimulus. In fact, the likelihood often depends
on what are commonly called nuisance parameters.
These are quantities that affect the response
distributions of the individual neural populations,
but that the brain would like to ignore when
performing inference. For example, it is well-
known that contrast and attention strongly affect
the gain and information content of a popula-
tion, as was the case in the independent Poisson
example above. For members of the exponential
family of distributions, this direct relationship
between gain and information content is, in fact,
expected. Recalling that the posterior distribution
takes the form

pðsjrÞ / expðhTðsÞrÞ (18)

it is easy to see that a large amplitude population
pattern of activity is associated with a significantly
sharper distribution than a low amplitude pattern
of activity (see Fig. 1). From this we can conclude
that amplitude or gain is an example of a nuisance
parameter of particular interest as it is directly
related to the variance of the posterior distri-
bution.

We can model this gain dependence by writing
the likelihood function for populations 1 and 2 as
p(r1, r2|s, g1, g2) where gk is the gain parameter for
population k (k ¼ 1, 2). Although we could apply
this Bayesian formalism and treat g1 and g2 as part
of the stimulus, if we did that the likelihood for r3
would contain the term exp(bT(s, g1, g2) r3) [see
Eq. (16)]. This is clearly inconvenient, as it means
we would have to either know g1 and g2, or
integrate these quantities out of the posterior
distribution to extract the a posterior distribution
for the stimulus alone, i.e., we would have to find a
neural operation which effectively performs the
integral

pðsjrÞ ¼

Z
pðs; gjrÞdg (19)

Fortunately, it is easy to show that this problem
can be avoided if the nuisance parameter does not
appear in the stimulus-dependent kernel, i.e., when
the likelihood for a given population takes the
form

pðrjs; gÞ ¼ fðr; gÞ expðhTðsÞrÞ (20)
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When this is the case, the posterior distribution is
given by

pðsjr; gÞ / expðhTðsÞrÞ (21)

and the value of g does not affect posterior
distribution over s and thus does not affect the
optimal combination operation. If h(s) were a
function of g, this would not necessarily be true.
Note that the normalization factor, Zðs; gÞ; from
Eq. (16) is not present in Eq. (20). This is because
the posterior is only unaffected by g when Zðs; gÞ
factorizes into a term that is dependent only on s

and a term that is dependent only on g and this
occurs only when Zðs; gÞ is independent of s.
Fortunately, this seemingly strict condition is
satisfied in many biologically relevant scenarios,
and seems to be intricately related to the very
notion of a tuning curve. Specifically, when silence
is uninformative (r ¼ 0 gives no information about
the stimulus), it can be shown that the normal-
ization factor, Zðs; gÞ; is dependent only on g

pðsÞ ¼ pðsjr ¼ 0; gÞ

¼
fð0; gÞpðsÞ
Zðs; gÞ

Z
fð0; gÞpðs0Þ
Zðs0; gÞ

ds0
� ��1

¼
pðsÞ

Zðs; gÞ

Z
pðs0Þ

Zðs0; gÞ
ds0

� ��1

ð22Þ

Since the second term in the product on the right
hand side is a function only of g, equality holds
only when Zðs; gÞ is independent of s.
Relationship between the tuning curves, the
covariance matrix and the stimulus-dependent
kernel h(s)

At this point we have demonstrated that the family
of likelihood function described above is compa-
tible with the identification of linear operations on
neural activity with the optimal cue combination
of associated posterior distribution. What remains
unclear is whether or not this family of likelihood
functions is capable of describing the statistics
of neural populations. In this section, we show
that this family of distribution is applicable to
a very wide range of tuning curves and covaria-
nce matrices, i.e., members of this family of
distributions can model the s-dependence of the
first and second order statistics of any population.
We will then show that when the shape of the
tuning curve is gain invariant, we expect to observe
that the covariance matrix should also be propor-
tional to gain. This is an important result, as it is a
widely observed property of the statistics of
cortical neurons.

We begin by showing that the tuning curve and
covariance matrix of a population pattern of
interest are related to the stimulus-dependent
kernel by a simple relationship obtained via
consideration of the derivative of the mean of
the population pattern of activity, f(s, g), with
respect to the stimulus as follows:

f 0ðs; gÞ ¼
d

ds

Z
rfðr; gÞ expðhTðsÞrÞdr

¼

Z
rrTh0ðsÞfðr; gÞ expðhTðsÞrÞdr

¼

Z
rrTh0ðsÞpðrjs; gÞdr

¼ hrrTis;gh
0ðsÞ � fðs; gÞfTðs; gÞh0ðsÞ

¼ Cðs; gÞh0ðsÞ ð23Þ

Here his;g is an expected value conditioned on s

and g, C(s,g) the covariance matrix and we have
used the fact that fTðs; gÞh0ðsÞ ¼ 0 for all distribu-
tions given by Eq. (20), which follows from the
assumption that silence is uninformative. Next, we
rewrite Eq. (23) as

h0ðsÞ ¼ C�1ðs; gÞf 0ðs; gÞ (24)

and observe that, in the absence of nuisance
parameters, a stimulus-dependent kernel can be
found for any tuning curve and any covariance
matrix, regardless of their stimulus-dependence.
Thus this family of distributions is as general as
the Gaussian family in terms of its ability to
model the first and second order statistics of any
experimentally observed population pattern of
activity. However, when nuisance parameters,
such as gain, are present the requirement that the
stimulus-dependent kernel, h(s), be independent of
these parameters restricts the set of tuning curves
and covariance matrices that are compatible
with this family of distributions. For example,
when the tuning curve shape is gain invariant
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(i.e., f 0ðs; gÞ ¼ gf̄
0
ðsÞ where f̄ðsÞ is independent of

gain), h(s) is independent of the gain if the
covariance matrix is proportional to the gain.
Since variance and mean are both proportional to
the gain, their ratio, known as the Fano factor, is
also constant. Thus we conclude that constant
Fano factors are associated with neurons that
implement a linear PPC using tuning curves which
have gain invariant shape. Hereafter, likelihood
functions with these properties will be referred to
as ‘‘Poisson-like’’ likelihoods.
Constraint on the posterior distribution over s

In addition to being compatible with a wide variety
of tuning curves and covariance matrices, Poisson-
like likelihoods can be used to represent many
types of posterior distributions, including non-
Gaussian ones. Specifically, as in the independent
Poisson case, when the prior p(s) is flat, application
of Bayes rule yields

pðsjrÞ / expðhTðsÞrÞ (25)

Thus, the log of the posterior is a linear combination
of the functions that make up the vector h(s), and we
may conclude any posterior distribution may be well
approximated when this set of functions is ‘‘suffi-
ciently rich.’’ Of course, it is also possible to restrict
the set of posterior distributions by an appropriate
choice for h(s). For instance, if a Gaussian posterior
is required, we can simply restrict the basis of h(s) to
the set quadratic functions of s.
An example: combining population codes

To illustrate this point, in Fig. 3 we show a
simulation in which there are three input layers in
which the tuning curves are Gaussian sigmoidal
with a positive slope, and sigmoidal with a negative
slope (Fig. 3a). The parameters of the individual
tuning curves, such as the widths, slopes, ampli-
tude, and baseline activity, are randomly selected.
Associated with each population is a stimulus-
dependent kernel, hk(sk ¼ 1, 2, 3. Since the set of
Gaussian functions of s form a basis, b(s), each
of these stimulus-dependent kernels can be repre-
sented as a linear combination of these functions,
i.e., hk(s) ¼ Akb(s). Thus the linear combination of
the input activities, A1

Tr1+ A2
Tr2+ A3

Tr3, corre-
sponds to the product of the three posterior dis-
tributions. To ensure that all responses are
positive, a baseline is removed, and the output
population pattern of activity is given by

r4 ¼ AT
1 r1 þ AT

2 r2 þ AT
3 r3

�minðAT
1 r1 þ AT

2 r2 þ AT
3 r3Þ ð26Þ

Note that the choice of a Gaussian basis, b(s),
yields more or less Gaussian-shaped tuning curves
(Fig. 3c) in the output population and that the
resulting population pattern of activity is highly
correlated. Additionally, for this basis, the re-
moval of the baseline can be shown to have no
affect of the resulting posterior, regardless of how
that baseline is chosen.

Figure 3b–d shows the network activity patterns
and corresponding probability distributions on a
given trial. As can be seen in Fig. 3d, the prob-
ability distribution encoded by the output layer is
identical to the distribution obtained from multi-
plying the input distributions.
Discussion

We have shown that when the neuronal variability
is Poisson-like, i.e., it belongs to the exponential
family with linear sufficient statistics, Bayesian in-
ference such as the one required for optimal cue
combination reduces to simple linear combina-
tions of neural activities.

In the case in which probability distributions are
all Gaussian, reducing Bayesian inference to linear
combination may not appear to be so remarkable,
since Bayesian inferences are linear in this case.
Indeed, as can be seen in Eq. (1), the visual–
auditory estimate is obtained through a linear
combination of the visual estimate and auditory
estimate. However, in this equation, the weights
of the linear combination are related to the var-
iance of each estimate, in such a way that the
combination favors the cue with the smallest var-
iance, i.e., the most reliable cue. This is problem-
atic, because it implies that the weights must be
adjusted every time the reliability of the cues



d

a
F

iri
ng

 r
at

e 
(H

z)

P
ro

ba
bi

lit
y

–200 0 100 200
Preferred stimulus

–100–200 0 100 200
0

2

4

6

8

10

Preferred stimulus

stimulus 

b

S
pi

ke
 c

ou
nt

s

0

5

1

1

c

A
ct

iv
ity

0

5

10

15

20

25

–60 –40 –20 0 2

0

0.0

0.0

0.0

0.0

–100

–200 0 100 200
Preferred stimulus

–100

–200 0 100 200
Preferred stimulus

–100

Fig. 3. Inference with non-translation invariant Gaussian and sigmoidal tuning curves. (a) Mean activity in the three input layers when

s ¼ 0. Blue curves: input layer with Gaussian tuning curves. Red curves: input layers with sigmoidal tuning curves with positive slopes.

Green curves: input layers with sigmoidal tuning curves with negative slopes. The noise in the curves is due to variability in the

baseline, widths, slopes, and amplitudes of the tuning curves, and to the fact that the tuning curves are not equally spaced along the

stimulus axis. (b) Activity in the three input layers on a given trial. These activities were sampled from Poisson distributions with means

as in a. Color legend as in a. (c) Solid lines: mean activity in the output layer. Circles: output activity on a given trial, obtained by a

linear combination of the input activities shown in b. (d) Blue curves: probability distribution encoded by the blue stars in b (input

layer with Gaussian tuning curves). Red-green curve: probability distribution encoded by the red and green circles in b (the two input

layers with sigmoidal tuning curves). Magenta curve: probability distribution encoded by the activity shown in c (magenta circles).

Black dots: probability distribution obtained with Bayes rule (i.e., the product of the blue and red-green curves appropriately

normalized). The fact that the black dots are perfectly lined up with the magenta curve demonstrates that the output activity shown in c

encodes the probability distribution expected from Bayes rule.
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changes. By contrast, with the approach described
in this chapter, there is no need for such weight
adjustments. If the noise is Poisson-like, a linear
combination with fixed coefficients works across
any range of cue reliability. This is the main ad-
vantage of our approach. Moreover, it explains
how humans remain optimal even when the reli-
ability of the cue changes from trial to trial, with-
out having to invoke any trial-by-trial adjustment
of synaptic weights.

Another appealing feature of our theory is that
it suggests an explanation for why all cortical neu-
rons exhibit Poisson-like noise. In early stages of
sensory processing, the statistics of spike trains are
not necessarily Poisson-like, and differ across sen-
sory systems. In the subcortical stages of the au-
ditory system, spike timing is very precise and
spike trains are oscillatory, reflecting the oscilla-
tory nature of sound waves. By contrast, in the
LGN (the thalamic relay of the visual system), the
spike trains in response to static stimuli are neither
very precise nor oscillatory. Performing optimal
multisensory integration with such differences in
spike statistics is a difficult problem. If our theory
is correct, the cortex solves the problem by first
reformatting all spike trains into the Poisson-like
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family, so as to reduce optimal integration to sim-
ple sums of spikes. This transformation is parti-
cularly apparent in the auditory system. In the
auditory cortex of awake animals, the response of
most neurons show Poisson-like statistics, in sharp
contrast with the oscillatory spike train seen in
early subcortical stages.

The idea that the cortex uses a format that re-
duced Bayesian inference to linear combination is
certainly appealing, but one should not forget that
many aspects of neural computation are highly
nonlinear. In its present form, our theory does not
require those nonlinearities. However, we have
only considered one type of Bayesian inference,
namely, products of distributions. There are other
types of Bayesian inference, such as marginalizat-
ion, that are just as important. In fact, marginal-
ization is needed to perform the optimal nonlinear
computations which are needed for most sensori-
motor transformations. We suspect that nonline-
arities will be needed to implement marginalization
optimally in neural hardware when the noise is
Poisson-like, and may also be necessary to imple-
ment optimal cue combination when noise is not
Poisson-like. We intend to investigate these and
related issues in future studies. It is also important
to note that, in its most general formulation, a PPC
does not necessarily assign equality of the opera-
tions of addition of neural responses to optimal
cue combination of related posteriors. Rather this
is just a particular example of a PPC which seems
to be compatible with neural statistics.
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