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Recent psychophysical experiments indicate that humans perform near-optimal Bayesian inference in a wide variety of tasks,

ranging from cue integration to decision making to motor control. This implies that neurons both represent probability

distributions and combine those distributions according to a close approximation to Bayes’ rule. At first sight, it would seem that

the high variability in the responses of cortical neurons would make it difficult to implement such optimal statistical inference in

cortical circuits. We argue that, in fact, this variability implies that populations of neurons automatically represent probability

distributions over the stimulus, a type of code we call probabilistic population codes. Moreover, we demonstrate that the Poisson-

like variability observed in cortex reduces a broad class of Bayesian inference to simple linear combinations of populations of

neural activity. These results hold for arbitrary probability distributions over the stimulus, for tuning curves of arbitrary shape and

for realistic neuronal variability.

Virtually all computations performed by the nervous system are subject
to uncertainty and taking this into account is critical for making
inferences about the outside world. For instance, imagine hiking in a
forest and having to jump over a stream. To decide whether or not to
jump, you could compute the width of the stream and compare it to
your internal estimate of your jumping ability. If, for example, you can
jump 2 m and the stream is 1.9 m wide, then you might choose to jump.
The problem with this approach, of course, is that you ignored
the uncertainty in the sensory and motor estimates. If you can jump
2 ± 0.4 m and the stream is 1.9 ± 0.5 m wide, jumping over it is very
risky—and even life-threatening if it is filled with, say, piranhas.

Behavioral studies have confirmed that human observers not only
take uncertainty into account in a wide variety of tasks, but do so in a
way that is nearly optimal1–5 (where ‘optimal’ is used in a Bayesian
sense, as defined below). This has two important implications. First,
neural circuits must represent probability distributions. For instance, in
our example, the width of the stream could be represented in the brain
by a Gaussian distribution with mean 1.9 m and s.d. 0.5 m. Second,
neural circuits must be able to combine probability distributions nearly
optimally, a process known as Bayesian inference.

Although it is clear experimentally that human behavior is nearly
Bayes-optimal in a wide variety of tasks, very little is known about the
neural basis of this optimality. In particular, we do not know how
probability distributions are represented in neuronal responses, nor
how neural circuits implement Bayesian inference. At first sight, it
would seem that cortical neurons are not well suited to this task, as their
responses are highly variable: the spike count of cortical neurons in
response to the same sensory variable (such as the direction of motion
of a visual stimulus) or motor command varies greatly from trial to
trial, typically with Poisson-like statistics6. It is critical to realize,
however, that variability and uncertainty go hand in hand: if neuronal

variability did not exist, that is, if neurons were to fire in exactly the
same way every time you saw the same object, then you would always
know with certainty what object was presented. Thus, uncertainty
about the width of the river in the above example is intimately related
to the fact that neurons in the visual cortex do not fire in exactly the
same way every time you see a river that is 2 m wide. This variability is
partly due to internal noise (like stochastic neurotransmitter release7),
but the potentially more important component arises from the fact that
rivers of the same width can look different, and thus give rise to
different neuronal responses, when viewed from different distances or
vantage points.

Neural variability, then, is not incompatible with the notion that
humans can be Bayes-optimal; on the contrary, as we have just seen,
neural variability is expected when subjects experience uncertainty.
What it not clear, however, is exactly how optimal inference is achieved
given the particular type of noise—Poisson-like variability—observed
in the cortex. Here we show that Poisson-like variability makes a broad
class of Bayesian inferences particularly easy. Specifically, this variability
has a unique property: it allows neurons to represent probability
distributions in a format that reduces optimal Bayesian inference to
simple linear combinations of neural activities.

RESULTS

Probabilistic population codes (PPC)

Thinking of neurons as encoders of probability distributions is a
departure from the more standard view, which is to think of them as
encoding the values of variables (like the width of a stream, as in our
previous example). However, as several authors have pointed out8–12,
population activity automatically encodes probability distributions.
This is because of the variability in neuronal responses, which implies
that the population response, r �{ri,y, rN}, to a stimulus, s, is
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given in terms of a probability distribution, p(r|s). This response
distribution then very naturally encodes the posterior distribution
over s, p(s|r), through Bayes’ theorem8,9,

pðsjrÞ / pðrjsÞpðsÞ ð1Þ
To take a specific example, for independent Poisson neural varia-

bility, equation (1) becomes,

pðsjrÞ /
Y

i

e�fiðsÞfiðsÞri
ri!

pðsÞ;

where fi(s) is the tuning curve of neuron i. In this case, the posterior
distribution, p(s|r), converges to a Gaussian as the number of neurons
increases (assuming a flat prior over s, an assumption we make now
only for convenience, but drop later). The mean of this distribution is
close to the stimulus at which the population activity peaks (Fig. 1).
The variance, s2, is also encoded in the population activity—it
is inversely proportional to the amplitude of the hill of activity13–15.
Using g (for gain; see Fig. 1) to denote the amplitude of the hill of
activity, we have g / 1=s2. Thus, for independent Poisson neural
variability (and, in fact, for many other noise models, as we discuss
below), it is possible to encode any Gaussian probability distribution
with population activity. This type of parameterization is sometimes
known as a product of experts16.

A simple case study: multisensory integration

Although it is clear that population activity can represent probability
distributions, can they carry out any optimal computations—or
inference—in ways consistent with human behavior? Before asking
how neurons can do this, however, we need to define precisely what we
mean by ‘optimal’.

In a cue combination task, the goal is to integrate two cues, c1 and c2,
both of which provide information about the same stimulus, s. For

instance, s could be the spatial location of a stimulus, c1 could be a
visual cue for the location, and c2 could be an auditory cue. Given
observations of c1 and c2, and under the assumption that these
quantities are independent given s, the posterior over s is obtained
via Bayes’ rule, pðsjc1; c2Þ / pðc1jsÞpðc2jsÞpðsÞ.

When the prior is flat and the likelihood functions, p(c1|s) and
p(c2|s), are Gaussian with respect to s with means m1 and m2 and
variances s1

2 and s2
2, respectively, the mean and variance of

the posterior, m3 and s3
2, are given by the following equations

(from ref. 17):

m3 ¼ s2
2

s2
1+s2

2

m1+
s2

1

s2
1+s2

2

m2 ð2Þ

1

s2
3

¼ 1

s2
1

+
1

s2
2

ð3Þ

Experiments show that humans perform a close approximation to
this Bayesian inference—meaning their mean and variance, averaged
over many trials, follow equations (2) and (3)—when tested on cue
combination2,3,18,19.

Now that we have a target for optimality—equations (2) and
(3)—we can ask how neurons can achieve it. Again we consider
two cues, c1 and c2, but here we encode them in population activities,
r1 and r2, respectively, with gains g1 and g2 (Fig. 2). These probabilistic
population codes (PPCs) represent two likelihood functions,
p(r1|s) and p(r2|s). We also assume (for now) that (i) r1 and r2 have
the same number of neurons, and (ii) two neurons with the same
index i share the same tuning curve profile; that is, the mean value
of both r1i and r2i are proportional to fi(s). What we now show is
that when the prior is flat (p(s) ¼ constant), taking the sum of
the two population codes, r1 and r2, is equivalent to optimal Bayesian
inference. By taking the sum, we mean that we construct a third
population, r3 ¼ r1 + r2, which is the sum of r1 and r2 on a neuron-
by-neuron basis: r3i¼ r1i + r2i. If r1 and r2 follow Poisson distributions,
so will r3. Therefore, r3 encodes a likelihood function with variance
s3

2, where s3
2 is inversely proportional to the gain of r3. Notably, the

gain of the third population, denoted g3, is simply the sum of the gains
of the first two: g3 ¼ g1 + g2 (Fig. 2). Because gk is proportional to 1/sk

2

(k¼ 1, 2, 3), with a constant of proportionality that is independent of k,
this relationship between the gains implies that 1/s3

2 ¼1/s1
2 +1/s2

2.
This is exactly equation (3). Consequently, the variance of the dis-
tribution encoded by r3 is precisely the variance of the posterior
distribution, p(s|c1,c2).

General theory and the exponential family of distributions

Does the strategy of adding population codes lead to optimal
inference under more general conditions, such as non-Gaussian dis-
tributions over the stimulus and non-Poisson neural variability? In
general, the sum, r3 ¼ r1 + r2, is Bayes-optimal if p(s|r3) is equal to
p(s|r1)p(s|r2) or, equivalently, if pðr1 + r2jsÞ / pðr1jsÞpðr2jsÞ. This is
not the case for most probability distributions (such as additive
Gaussian noise with fixed variance; see Supplementary Note online)
but, as shown in Supplementary Note, the sum is Bayes-optimal if
all distributions are what we call Poisson-like; that is, distributions of
the form

pðrkjs; gkÞ ¼ fkðrk; gkÞ expðhTðsÞrkÞ ð4Þ
where the index k can take the value, 1, 2 or 3, and the kernel h(s)
obeys

h0ðsÞ ¼
X�1

k
ðs; gkÞf 0kðs; gkÞ ð5Þ
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Figure 1 Certainty and gain. (a) The population activity, r, on the left is the

single trial response to a stimulus whose value was 70. All neurons were

assumed to have a translated copy of the same generic Gaussian tuning curve

to s. Neurons are ranked by their preferred stimulus (that is, the stimulus

corresponding to the peak of their tuning curve). The plot on the right shows

the posterior probability distribution over s given r, as recovered using Bayes’

theorem (equation (1)). When the neural variability follows an independent

Poisson distribution (which is the case here), it is easy to show that

the gain, g, of the population code (its overall amplitude) is inversely

proportional to the variance of the posterior distribution, s2. (b) Decreasing

the gain increases the width of the encoded distribution. Note that the

population activity in a and b have the same widths; only their amplitudes

are different.
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Sk is the covariance matrix of rk, and f ¢k is the derivative of the tuning
curves. In the case of independent Poisson noise, identically shaped
tuning curves, f(s), in the two populations, and different gains, it turns
out that h(s) ¼ log f(s), and fk(rk,gk) ¼ exp(-cgk)Pi exp(rki log gk)/rki!
with c a constant.

As indicated by equation (5), for addition of population codes to be
optimal, the right-hand side of this equation must be independent of
both gk and k. As f ¢ is clearly proportional to the gain, for the first
condition to be satisfied Sk(s,gk) must also be proportional to the gain.
This is exactly what is observed in cortex, where it is found that the
covariance matrix is proportional to the mean spike count6,20, which in
turn is proportional to the gain. This applies in particular to indepen-
dent Poisson noise, for which the variance is equal to the mean, but is
not limited to that distribution. For instance, we do not require that the
neurons be independent (that is, that Sk(s,gk) be diagonal). Also,
although we need the covariance to be proportional to the mean, the
constant of proportionality does not have to be 1. This is important
because how the diagonal elements of the covariance matrix scale with g
determines the Fano factor, and values reported in cortex for this
scaling are not always 1 (as would be the case for purely Poisson
neurons) but instead range from 0.3 to 1.8 (refs. 6,20).

The second condition, that h¢(s) must be independent of k, requires
that h(s) be identical, up to an additive constant, in all input layers. This

occurs, for instance, when the input tuning curves are identical and the
noise is independent and Poisson. When the h(s)’s are not the same, so
that h(s)- hk(s), addition is no longer optimal, but optimality can still
be achieved with linear combinations of activity, that is, a dependence
of the form r3 ¼ A1

Tr1 + A2
Tr2 (provided the functions of s that make

up the components of the hk(s)’s are drawn from a common basis set;
details in Supplementary Note). Therefore, even if the tuning curves
and covariance structures are completely different in the two popula-
tion codes—for instance, Gaussian tuning curves in one and sigmoidal
curves in the other—optimal Bayesian inference can be achieved with
linear combinations of population codes.

To illustrate this point, we show a simulation (Fig. 3) in which there
are three input layers in which the tuning curves are Gaussian, sigmoidal
increasing and sigmoidal decreasing, and the parameters of the tuning
curves, such as the widths, slopes, amplitude and baseline activity, vary
within each layer (that is, the tuning curves are not perfectly translation
invariant). As predicted, with an appropriate choice of the matrices A1,
A2 and A3 (Supplementary Note), a linear combination of the input
activities, r3 ¼ A1

Tr1+ A2
Tr2+ A3

Tr3, is optimal.
Another important property of equation (4) worth emphasizing is

that it imposes no constraint on the shape of the probability distribu-
tion with respect to s, so long as h(s) forms a basis set. In other words,
our scheme works for a large class of distributions over s, not just
Gaussian distributions.

Finally, it is easy to incorporate prior distributions. We encode the
desired prior in a population code (using equation (1)) and add that to
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Figure 3 Inference with non–translation invariant Gaussian and sigmoidal tuning curves. (a) Mean activity in the three input layers. Blue curves, input layer
with Gaussian tuning curves. Red curves, input layers with sigmoidal tuning curves with positive slopes. Green curves, input layers with sigmoidal tuning

curves with negative slopes. The noise in the curves is due to variability in the baseline, widths, slopes and amplitudes of the tuning curves and to the fact that

the tuning curves are not equally spaced along the stimulus axis. (b) Activity in the three input layers on a given trial. These activities were sampled from

Poisson distributions with means as in a. Color legend as in a. (c) Solid lines, mean activity in the output layer. Circles, output activity on a given trial,

obtained by a linear combination of the input activities shown in b. (d) Blue curves, probability distribution encoded by the blue stars in b (input layer with

Gaussian tuning curves). Red-green curve, probability distribution encoded by the red and green circles in b (the two input layers with sigmoidal tuning

curves). Magenta curve, probability distribution encoded by the activity shown in c (magenta circles). Black dots, probability distribution obtained with Bayes

rule (that is, the product of the blue and red-green curves appropriately normalized). The fact that the black dots are perfectly lined up with the magenta curve

demonstrates that the output activity shown in c encodes the probability distribution expected from Bayes rule.

Figure 2 Inference with probabilistic population codes for Gaussian

probability distributions and Poisson variability. The left plots correspond

to population codes for two cues, c1 and c2, related to the same variable s.

Each of these encodes a probability distribution with a variance inversely

proportional to the gains, g1 and g2, of the population codes (K is a constant

depending on the width of the tuning curve and the number of neurons).

Adding these two population codes leads to the output population activity

shown on the right. This output also encodes a probability distribution with a
variance inversely proportional to the gain. Because the gain of this code is

g1 + g2, and g1 and g2 are inversely proportional to s1
2 and s2

2, respectively,

the inverse variance of the output population code is the sum of the inverse

variances associated with c1 and c2. This is precisely the variance expected

from an optimal Bayesian inference (equation (3)). In other words, taking the

sum of two population codes is equivalent to taking the product of their

encoded distributions.

1434 VOLUME 9 [ NUMBER 11 [ NOVEMBER 2006 NATURE NEUROSCIENCE

ART ICLES
©

20
06

 N
at

ur
e 

P
ub

lis
hi

ng
 G

ro
up

  
ht

tp
://

w
w

w
.n

at
ur

e.
co

m
/n

at
ur

en
eu

ro
sc

ie
nc

e



the population code representing the likelihood function. This predicts
that in an area encoding a prior, neurons should fire before the
start of the trial. Moreover, if the prior at a particular spatial loca-
tion is increased, all neurons with receptive fields at that location
should fire more strongly (their gain should increase). This is indeed
what has been reported in area LIP (ref. 21) and in the superior
colliculus22. One problem with this approach is that the encoded prior
will vary from trial to trial due to the Poisson variability. Whether such
a variability in the encoded prior is observed in human subjects is not
presently known5.

Simulations with integrate-and-fire neurons

So far, our results rely on the assumption that neurons can compute
linear combinations of spike counts, which is only an approximation of
what actual neurons do. Neurons are nonlinear devices that integrate
their inputs and fire spikes. To determine whether it is possible to
perform near-optimal Bayesian inference with realistic neurons, we
simulated a network like the one shown in Figure 2 but with
conductance-based integrate-and-fire neurons. The network consisted
of two input layers, denoted 1 and 2, that sent feedforward connections
to the output layer, denoted layer 3. The activity in the input layers
formed noisy hills with the peak in layer 1 centered at s ¼ 86.5 and the
peak in layer 2 at s ¼ 92.5 (Fig. 4a shows the mean input activities in
both layers). We used different values of the positions of the input hills
to simulate cue conflict, as is commonly done in psychophysics
experiments. The amplitude of each input hill was determined by the
reliability of the cue it encoded: the higher the reliability, the higher the
hill, as expected for a PPC with Poisson-like variability (Fig. 1). The
activity in the output layer also formed a hill, which was decoded using
a locally optimal linear estimator23. Parameters were chosen such that
the spike counts of the output neurons exhibit realistic Fano factors
(Fano factors ranging from 0.76 to 1.0). As we have seen, Fano factors
that are independent of the gain are one of the key properties required
for optimality. Additionally, the conductances of the feedforward and
lateral connections were adjusted to ensure that the average firing rates
of the output neurons were approximately linear functions of the
average firing rates of the input neurons. Because of the convergent
feedforward connectivity and the cortical connections, output units

with similar tuning ended up being correlated (Fig. 4b; additional
details of the model in Methods and Supplementary Note).

The goal of these simulations was to assess whether the mean and
variance of the distributions encoded in the output layer are consistent
with optimal Bayesian inference (equations (2) and (3)). To simulate
psychophysical experiments, we first presented one cue at a time; that
is, we activated either layer 1 or layer 2, but not both. We systematically
varied the certainty of the cue by changing the value of the gain of the
activated input layer. For each gain, we computed the mean and
variance of the distribution encoded in the output layer when only
one cue was presented. These were denoted m1 and s1

2, respectively,
when only input 1 was active, and m2 and s2

2 when only input 2 was
active. We then presented both cues together, which gave us m3 and s3

2,
the mean and variance of the distribution encoded in the output layer
when both cues are presented simultaneously. To test whether the
network was Bayes-optimal, we plotted (Fig. 4c) m3 against

m1

s2
2

s2
1+s2

2

+m2

s2
1

s2
1+s2

2

(equation (2)), and (Fig. 4d) s3
2 against

s2
1s

2
2

s2
1+s2

2

(equation (3)) over a wide range of values of certainty for the two cues
(corresponding to gains of the two input hills). If the network is
performing a close approximation to Bayesian inference, the data
should lie close to a line with slope 1 and intercept 0.

It is clear (Fig. 4c,d) that the network is indeed nearly optimal on
average for all combinations of gains tested, as has been found in
human data1–4. This result holds even when the input layers use
different sets of tuning curves and different patterns of correlations
(Fig. 4d), thus confirming the applicability of our analytical findings.
Therefore, linear combinations of probabilistic population codes are
Bayes-optimal for Poisson-like noise.

Experimental predictions

These ideas can be tested experimentally in different domains, as
Bayesian inference seems to be involved in many sensory, motor and
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Figure 4 Near-optimal inference with a two-layer network of integrate-and-fire neurons similar in spirit to the network shown in Figure 2. The network consisted

of two input layers that sent feedforward connections to the output layer. The output layer contained both excitatory and inhibitory neurons and was recurrently

connected; the input layers were purely excitatory and had no recurrent connections. (a) Average activity in the two input layers for identical gains. The

positions of the two hills differ on average by 6 to simulate a cue conflict (the units are arbitrary). (b) Covariance matrix of the spike count in the output layer.

The diagonal terms (the variances) were set to zero in this plot because they swamp the signal from the covariance (and are uninformative). Because of lateral

connections and correlations in the input, output units with similar tuning are correlated. (c) Mean of the probability distribution encoded in the output layer

when inputs 1 and 2 are presented together (mean network estimate) versus mean predicted by an optimal Bayesian estimator (mean optimal estimate,

obtained from equation (2); see Methods). Each point corresponds to the means averaged over 1,008 trials for a particular combination of gains in the input
layers. The symbols correspond to different types of input. Circles, same tuning curves and same covariance matrix for both inputs. Plus signs, same tuning

curves and different covariance matrices. Crosses, different tuning curves and different covariance matrices (see Methods). (d) Same as in c but for the

variance. The optimal variance is obtained from equation (3). In both c and d, the data lie near the line with slope ¼ 1 (diagonal dashed line), indicating that

the network performs a close approximation to Bayesian inference.
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cognitive tasks. We now consider three specific predictions that can be
tested with single- or multiunit recordings:

First, we predict that if an animal exhibits Bayes-optimal behavior in
a cue combination task, and the variability of multisensory neurons is
Poisson-like (as defined by equation (4)), one should find that
the responses of these neurons to multisensory inputs should be the
sum of the responses to the unisensory inputs. This prediction seems at
odds with the main result that has been emphasized in the literature,
namely, superadditivity. Superadditivity refers to a multimodal
response that is greater than the value predicted by the sum of the
unimodal responses24. Recent studies25,26, however, have shown
that the vast majority of multisensory neurons exhibit additive
responses in anesthetized animals. What is needed now to test
our hypothesis is similar data in awake animals performing optimal
multisensory integration.

Our second prediction concerns decision making, more specifically,
binary decision making (as in ref. 27). In these experiments, animals are
trained to decide between two saccades (in opposite directions) given
the direction of motion in a random-dot kinematogram. In a Bayesian
framework, the first step in decision making is to compute the posterior
distribution over the decision variable, s, given the available evidence.
In this particular task, the evidence takes the form of a population
pattern of activity from motion-sensitive neurons, probably from area
MT. Denoting rt

MT to be the population pattern of activity in area MT
at time t, the posterior distribution over s since the beginning of the
trial can be computed recursively using Bayes’ rule,

pðsjrMT
t ; . . . ; rMT

1 Þ / pðrMT
t jsÞpðsjrMT

t�1; . . . ; r
MT
1 Þ ð6Þ

Note that this inference involves, as with cue combination, multi-
plying probability distributions. Thus, if we represent the posterior
distribution at time t – 1, p(s|rt-1

MT,y, r1
MT), in a probabilistic

population code (say in area LIP) then, upon observing a new pattern
of activity from MT, we can simply add this pattern to LIP activity. In
other words, LIP neurons will automatically implement equation (6)
simply by accumulating activity coming from MT. This predicts that
LIP neurons behave like neural integrators of MT activity, which is
consistent with what a previous study has found28. In addition, this
predicts that the profile of tuning curves of LIP neurons over time
should remain identical; only the gain and the baseline should change.
This prediction has yet to be tested.

Third, our theory makes a general prediction regarding population
codes in the cortex and their relation to behavioral performance.
If a stimulus parameter is varied in such a way that the subject is less
certain about the stimulus, the probability distribution over stimuli
recovered by equation (1) (as assumed by PPCs) should reflect that
uncertainty (in the case of a Gaussian posterior, for example, the
distribution should get wider). This prediction has been verified in two
cases in which it has been tested experimentally: motion coherence29,30

and contrast31,32.
This last prediction may not be valid in all areas of the brain. For

instance, it is conceivable that motor neurons encode a single action,
not a full distribution over possible actions (as would be the case for
any network computing maximum-likelihood estimates; see for
instance ref. 33). If that were the case, applying Bayes’ rule to the
activity of motor neurons would not return a posterior distribution
that reflects the subject’s certainty about this action being correct.

DISCUSSION

We have argued that the nervous system may use probabilistic
population codes (PPCs) to encode probability distributions over
variables in the outside world (such as the orientation of a bar or the

speed of a moving object). This notion is not entirely new. Several
groups8–10,34 have pointed out that probability distributions can be
recovered from neuronal responses through equation (1). However, we
go beyond this observation in two ways. First, we show that Bayesian
inference—a nontrivial and critically important computation in the
brain—is particularly simple when using PPCs with Poisson-like
variability. Second, we do not merely propose that population activity
encodes distributions—this part is always true, in the sense that
equation (1) can always be applied to a population code. The new
aspect of our claim is that the probability distributions encoded in
some areas of the cortex reflect the uncertainty about the stimulus,
whereas in other areas they do not (in particular in motor areas, as
discussed at the end of the previous section).

Other types of neural codes beside PPCs have been proposed for
encoding probability distributions that reflect the observer’s uncer-
tainty3,11,12,28,35–43. In most of these, however, the Poisson-like varia-
bility is either ignored altogether or treated as a nuisance factor that
corrupts the codes. In only one of them was Poisson-like variability
taken into account and, in fact, used to compute explicitly the log
likelihood of the stimulus43, presumably because log-likelihood repre-
sentations have the advantage that they turn products of probability
distributions into sums28,35,41–43. A crucial point of our work, however,
is to show that, when the neural variability belongs to the exponential
family with linear sufficient statistics (as is the case in ref. 43), products
turn into sums without any need for an explicit computation of the log
likelihood. This is important because there are a number of problems
associated with the explicit computation of the log likelihood. For
instance, the model described in ref. 43 is limited to independent
Poisson noise, unimodal probability distributions and winner-take-all
readout. This is problematic, as the noise in the cortex is correlated,
probability distributions can have multiple peaks (for example, the
Necker cube), and winner-take-all is a particularly inefficient read-out
technique. More importantly, the log-likelihood approach runs into
severe computational limitations when applied to many Bayesian
inference problems such as ones involved in Kalman filters41. By
contrast, the PPC approach works for correlated Poisson-like noise
and a wide variety of tuning curves, the latter being crucial for optimal
nonlinear computations34,44. Our framework can also be readily
extended to Kalman filters (J. Beck, W.J. Ma, P.E. Latham & A. Pouget,
Cosyne Abstr. 47, 2006). Finally, it has the advantage of being recursive:
with PPCs, all cortical areas use the same scheme to represent prob-
ability distributions (as opposed to log-likelihood schemes, in which
some areas use the standard tuning curve plus noise model while others
explicitly compute log likelihood). Recursive schemes map very natu-
rally onto the stereotyped nature of cortical microcircuitry45.

One limitation of our scheme, and of any scheme that
reduces Bayesian inference to addition of activities, is that neural
activities are likely to saturate when sequential inferences are required.
To circumvent this problem, a nonlinearity is needed to keep neurons
within their dynamical range. A nonlinearity like divisive normal-
ization46,47 would be ideal because it is near linear for low firing rates,
where uncertainty is large and thus there is much to be gained from
performing exact inference, and saturating at high firing rates, where
uncertainty is small and there is little to be gained from exact inference
(see Fig. 1).

In conclusion, our notion of probabilistic population codes offers a
new perspective on the role of Poisson-like variability. The presence of
such variability throughout the cortex suggests that the entire cortex
represents probability distributions, not just estimates, which is pre-
cisely what would be expected from a Bayesian perspective (see also
ref. 48 for related ideas). We propose that these distributions are
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collapsed onto estimates only when decisions are needed, a process that
may take place in motor cortex or in subcortical structures. Notably,
our previous work shows that attractor dynamics in these decision
networks could perform this step optimally by computing maximum a
posteriori estimates33.

METHODS
Spiking neuron simulations. A detailed description of the network is given in

Supplementary Note; here we give a brief overview. The network we simulated

is a variation of the model reported in ref. 23. It contains two input layers and

one output layer. Each input layer consists of 1,008 excitatory neurons. These

neurons exhibit bell-shaped tuning curves with preferred stimuli evenly

distributed over the range [0,180] (stimulus units are arbitrary). The input

spike trains are near-Poisson with mean rates determined by the tuning curves.

The output layer contains 1,260 conductance-based integrate-and-fire neurons,

of which 1,008 are excitatory and 252 inhibitory. Each of those neurons receives

connections from the input neurons. The conductances associated with the

input connections follow a Gaussian profile centered on the preferred stimulus

of each input unit.

The connectivity in the output layer is chosen so that the output units exhibit

Gaussian tuning curves whose widths are close to the widths of the convolved

input (that is, the width after the input tuning curves have been convolved with

the feedforward weights). The balance of excitation and inhibition in the output

layer was adjusted to produce high Fano factors (0.7–1.0), within the range

observed in vivo6,20. Finally, additional tuning of connection strengths was

performed to ensure that the firing rates of the output neurons were approxi-

mately linear functions of the firing rates of the input neurons.

We simulated three different networks. In the first (blue dots in Fig. 4c,d),

for both populations the widths of the input tuning curves were 20 and

the widths of the feedforward weights were 15. In the second (red dots in

Fig. 4c,d), the widths of the input tuning curves were 15 and 25, and the

widths of the corresponding feedforward weights were 20 and 10. The effective

inputs for the two populations had identical tuning curves (with a width of 35)

but, unlike in the first network, different covariance matrices. Finally, in the

third network (green dots in Fig. 4c,d), the widths of the input tuning curves

were 15 and 25, and the width of the feedforward weights was 15. In this

case both the tuning curves and the covariance matrices of the effective inputs

were different.

Estimating the mean and variance of the encoded distribution. To de-

termine whether this network is Bayes-optimal, we need to estimate the

mean and variance of the probability distribution encoded in the output

layer. In principle, all we need is p(r|s), equation (1). The response, however, is

1,008-dimensional. Estimating a distribution in 1,008 dimensions requires

an unreasonably large amount of data—more than we could collect in

several billion years. We thus used a different approach. The variances can be

estimated using a locally optimal linear estimator, as described in ref. 23.

For the mean, we fit a Gaussian to the output spike count on every trial and

used the position of the Gaussian as an estimate of the mean of the encoded

distribution. The best fit was found by minimizing the Euclidean dis-

tance between the Gaussian and the spike counts. The points in

Figure 4c,d are the means and variances averaged over 1,008 trials (details in

Supplementary Note).

Note: Supplementary information is available on the Nature Neuroscience website.
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