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Noisy neurons can certainly compute 
Emilio Salinas 

How do neurons combine separate pieces of information that are only partially reliable? Surprisingly, their noise 
properties may simplify the underlying computations while allowing them to maintain optimal performance. 

Uncertainty is encountered in nearly every 
aspect of life. For instance, in a murder trial, 
the key problem is determining whether 
particular events happened or not, and the 
jury must reach a conclusion by weighing 
 multiple pieces of evidence—testimonies, 
physical exhibits, prior histories—each of 
which is only partially reliable. However, 
the pooling of  multiple sources of partially 
 reliable  information is fundamental even for 
the  simplest perceptual processes: when I’m 
 trying to find my cat, who often escapes into 
the back yard, a slight movement of  shadows 
and a weak sound of trodden leaves may 
 indicate that he is hiding somewhere behind 
the bushes. If  combined properly, the two 
cues may provide a better estimate of the 
cat’s  position than either of them alone, but 
as in the case of the trial, the two signals 
may not be equally informative or equally 
 reliable. Thus, neural circuits must be 
 specially adapted to deal with uncertainty at 
multiple levels, and to weigh different signals 
according to their corresponding reliabilities. 
Now, new theoretical results by Ma and Beck 
in Alex Pouget’s laboratory, in collaboration 
with Peter Latham, provide an important 
and surprising clue to this problem1. 

Mathematically, the rules for calculating 
optimal probabilistic estimates are known 
as Bayesian inference, and  psychophysical 
 experiments show that, under various 
 laboratory conditions, human performance 
in simple tasks that require the  combination 
of uncertain cues is essentially as good as it 
can be given the available information2–4. 
Such optimal performance indicates that the 

brain must implement some form of Bayesian 
 inference, but so far, how this  happens has 
remained unclear. The new paper by Ma 
and colleagues1

 
shows that the variability 

of  cortical neurons has a form that greatly 
simplifies one of the critical operations in 
this process, the  pooling of individual cues. 

To appreciate these results, first note that 
cortical neurons are highly variable, in the 
sense that responses evoked by identical 
stimuli typically change dramatically from 

one presentation to the next,  approximately 
 following Poisson statistics5–7. So, if the 
 average response of a neuron in a given 
 condition is 10 spikes, its variance is also 
roughly equal to 10 spikes. To put this in 
 perspective, radioactive decay, which is the 
prototypical example of a random  process, 
closely follows Poisson statistics. Such high 
 variability could conceivably serve some 
important functional purpose, such as 
 speeding up the responses of a neuronal 
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Figure 1  Optimal pooling of unreliable signals is simplified by Poisson noise. (a) Each point 
represents the number of spikes produced by a model neuron in population A in response to the 
presentation of a stimulus. The set of 21 responses is denoted as rA. (b) A value along the x-axis 
indicates a possible stimulus location. The corresponding value on the curve is the probability 
that, having observed the responses in a, the stimulus location was s. (c,d) As in a and b, but for 
population B, which has a smaller overall response amplitude. This causes the probability density 
P(s|rA) to be wider than P(s|rB). (e) Summed spikes from populations A and B. (f) The red trace is 
the probability density for stimulus location s given the summed responses. The black trace is the 
product of the curves in b and d, normalized, which is the optimal way to take into account both 
rA and rB. The two traces are identical only when response noise is Poisson-like1. The stimulus 
that evoked the responses in this example was located at 0. 
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 population8, or making a network more 
robust to synaptic loss9, but it is commonly 
viewed as a nuisance that mainly reduces 
the computational accuracy of neural 
 circuits. Nuisance or not, it turns out that 
 constructing model neurons with realistic 
variability is rather difficult10–12, so such 
‘neuronal noise’ has for some time been  
 puzzling. In a  somewhat ironic turn of events, 
Ma et al. point out that neurons can compute 
 probabilities efficiently precisely because 
their variability is Poisson-like. 

The advantage of Poisson noise is  illustrated 
in Figure 1 using two p opulations of model 
neurons, A and B. Both  populations consist 
of 21 neurons whose firing rates encode the 
value of a stimulus, s. For  population A, this 
stimulus may  correspond, for instance, to 
the position of my cat’s shadow along the 
hedge, whereas for B it may correspond to 
the position of the sound that he makes 
while  stepping on leaves, measured along 
the same dimension. As is often the case 
with real neurons, each model neuron fires 
 maximally when the stimulus  originates from 
a  particular point, the neuron’s preferred 
location. Here, the auditory cue is assumed 
to be less accurate than the visual one. In 
the model, accuracy is controlled by the 
maximum spike rate in a population, so the 
maximum spike rate of B is smaller than that 
of A. The goal of the example is to compare 
how accurately we can infer the cat’s location 
when the two groups of neurons are analyzed 
independently (Fig. 1a–d) versus when they 
are pooled optimally (Fig. 1e,f), following 
the Bayesian rules. 

Having obtained the two sets of  neuronal 
responses, the next step is to estimate 
the cat’s position from each of them 
 independently. How this is done is not really 
important now—it may be done through a 
 dedicated neural circuit or through some 
other  downstream process. What matters 
is that there is a separate step, the Bayesian 
decoder, that can generate an estimate for a 
single  population. In fact, what the decoder 
 produces is a probability function  describing 
how likely it is for the cat to be found at 
each point along the hedge. The  probability 
 functions derived from the activities in 
A and B are P(s|rA) and P(s|rB), respectively 
(Fig. 1b,d). The former is narrower than 
the latter because the A population is more 
 reliable, so its determination of s is more 
localized, that is, less uncertain. 

Up to this point, the form of the noise 
does not make any difference. However, the 

next crucial step is to consider the A and B 
activities together to produce a single, most 
accurate estimate of s. According to Bayesian 
 inference, the recipe for this is to multiply 
the two  individual probability functions. 
Although this is not particularly  complicated 
 mathematically, it is not at all obvious how 
neurons could do it. The  problem is that to 
perform the  calculation in the  straightforward 
way, the brain would need to process each 
 population’s activity using the decoder, 
 maintain an explicit representation of the 
individual  probability functions, and then 
somehow multiply them point by point. 
Furthermore, if the two sets of responses were 
combined incorrectly, a significant loss of 
information could ensue, making the  estimate 
far worse. This is where the new results come 
to the rescue. 

The main observation made by Ma et al. is 
that if the A and B activities are just added, 
neuron by neuron, the combined activity 
that results can be processed by the Bayesian 
decoder in the same way as either of the 
 original two, but with the advantage that the 
result will be as accurate as possible, as if the 
two probability functions had been multiplied 
(Fig. 1e,f). Mathematically, the statement 
is  P(s|rA + rB) = c P(s|rA) P(s|rB), where c 
is a normalization constant. This is a great 
 simplification, regardless of what the 
decoder actually is, but it is valid only when 
the  neuronal noise is Poisson-like. 

In this example, there are many 
 simplifying assumptions. However, what 
sells the new results is their generality (see 
the  supplementary material linked to ref. 1). 
When the two populations have  different 
 numbers of neurons with different types of 
response functions (tuning curves) that are 
distributed irregularly along the stimulus 
range, the proper  combination of signals 
is just slightly more complicated—instead 
of  simply  adding the activities neuron by 
 neuron, they need to be added or subtracted 
in  various  proportions. Thus, in the general 
case, Poisson-like noise makes the optimal 
pooling operations linear, which is basically 
as simple as they could possibly be. 

What Ma et al. have done is interpret the 
 variability of neurons in a novel way, such 
that neuronal variability is used to repre-
sent  uncertainty. The idea that populations 
of  neurons can represent both the average 
value of a quantity and its uncertainty is not 
new13. The new insight is that the particular 
form of noise that most cortical neurons dis-
play, Poisson noise, simplifies tremendously 

the pooling of partially  reliable pieces of 
 information while adhering to the strict rules 
of optimal  probabilistic inference. 

This will definitely not be the end of 
the story, though—neuronal noise and 
the  neural implementation of Bayesian 
 computations are issues of great interest. 
First, the theory makes specific predictions 
that must be checked experimentally. The 
most direct confirmation would be to find 
that responses to separate, uncertain cues 
are indeed combined linearly during optimal 
performance of a cue- integration task. This 
would require some clever task  designing 
and sophisticated neuronal recording, but 
should be possible. Also, not all cortical 
neurons are expected to be concerned with 
probabilistic  representations, so specific cor-
relations may exist between differences in 
function and differences in noise  properties. 
Second, the theory covers only one step 
in the chain of events between sensory 
 activation and a motor reaction, but other 
contextual factors, such as behavioral goals 
or prior  expectations, might also influence 
how neuronal signals are integrated. Finally, 
other schemes for computing probability or 
 likelihood functions have been proposed14, 
and there may be more alternatives. 

Nevertheless, the possibility that neuronal 
noise is essential for implementing a Bayesian 
calculus is extremely exciting, because it is 
consistent with the assumption that the brain 
must perform very near an optimal point, 
limited by fundamental constraints such as 
energetic costs or neuronal numbers, not by 
sloppiness in its computing elements. 
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