
16 Neural Mechanisms Underlying Temporal Aspects of Conscious
Visual Perception

In this chapter, we will examine dynamical aspects of conscious visual perception
related to briefly presented stimuli, and their possible neural underpinnings. The
time course of the contents of conscious perception usually reflects the time course
of events in the world, but this correspondence is not absolute. As is illustrated in
many examples in this book, it can break down in various ways: Physical events can
get wiped out, stretched out in time, temporally blended, or modified. The last of
these occurs in feature inheritance (Herzog & Koch, 2001), which we will study in
some detail here. That these distortions do not seem omnipresent in daily life is
because most of them occur at very short time scales of tens and hundreds of mil-
liseconds. Their effects can often only be made apparent by presenting very specific,
tightly controlled stimulus sequences. For a neuroscientist, these are exactly the
interesting time scales. Because of the short duration of the stimuli involved, the
stimuli can interfere with ongoing neural processing and hopefully reveal mecha-
nisms used by the brain in more generality.

In studying temporal effects in perception, several quantities are of relevance. It
is worthwhile to distinguish them clearly.

Perceived duration. How long do observers perceive an event of a given physical
duration to be? While this question is hardly experimentally tractable, there is exten-
sive literature on its active version, that is, how well humans estimate the passage
of time (temporal cognition, interval timing). In the realm of millisecond stimuli,
there is evidence for the existence of a minimal perceptual moment (Efron, 1970;
Koch, 2004). For durations of seconds to minutes, our judgment of the subjective
duration of a stimulus and its actual, physical duration can differ widely. Many
studies show that the distribution of subjective durations (timed intervals) is invari-
ant under scaling of the physical duration, a property that has implications for asso-
ciative learning (Gibbon et al., 1997; Matell & Meck, 2000).

Temporal positioning of a percept. How long does it take before we see something,
and do we think the event happens at the moment when we become aware of it, or
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earlier? Recent years have witnessed widespread interest in the temporal position-
ing of a percept. This has been fueled by research on the flash-lag effect, in which
a flashed stimulus, when presented spatially aligned with a moving object, is per-
ceived as lagging spatially behind the object (MacKay, 1958; Nijhawan, 1994). It has
been postulated (Eagleman & Sejnowski, 2000a) that the percept that the brain
associates with the flash depends on events following it, but this view has been chal-
lenged (Patel et al., 2000; Nijhawan, 2002). A similar proposal has been made in the
context of filling in the perceptual gap during saccadic suppression (Yarrow et al.,
2001).

Content of conscious perception. What do we see? In this chapter, we will mostly
be concerned with this topic. We will focus on two broad classes of perceptual dis-
tortions occurring in sequences of short stimuli. The first is temporal integration; the
second is backward masking.

16.1 Perceptual Illusions for Short Stimuli

When a small green disk is presented on a screen for 10ms, immediately followed
by a red disk at the same location for 10ms, observers perceive a yellow disk with
a slight red hue (Efron, 1967, 1973). When either stimulus is presented by itself, it
is perceived properly, that is, as either green or red. This shows that for very 
brief stimuli, the brain integrates stimuli over time to create a percept. This can be
modeled by a convolution with a temporal filter. When the green–red sequence is
presented for a sufficiently long period of time (for instance, both components for
500ms), green is seen, followed by red. It is nontrivial to note that the sequence 
10ms green + 10ms red, which by itself would be perceived as yellow, is now part
of the stimulus sequence but nonetheless does not give rise to the percept of yellow
in between the green and the red. This shows that the contents of perception are
not always determined by a simple convolution; any linear filter would predict the
intermediate percept of yellow. Related to this experiment is the everyday obser-
vation that a movie, recorded at 24 frames per second (i.e., each frame is 42ms), is
effortlessly perceived as a continuum.

A similar effect occurs for the rapid presentation of dot patterns (DiLollo, 1980).
When a matrix of 5 ¥ 5 dots is presented with one dot left out, it is easy to detect
the gap. Now the same 24-dot display is split into two complementary 12-dot dis-
plays that follow each other in time, with a 10-ms blank interstimulus interval sep-
arating them.The first set of 12 dots is chosen randomly.The task of detecting which
location was empty in both displays can become much harder, depending on the
temporal parameters. If both halves are shown for 10ms, they become perceptually
blended and the observer will make few errors in detecting the missing dot. When
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the duration of the first display is increased, the percentage of errors increases,
most steeply between 80 and 160ms. Again, we conclude that integration occurs 
for very brief stimuli and also that in order to explain conscious perception, an 
additional mechanism is needed. The reason is that we know that the integration
period can bridge the 10-ms interstimulus interval. Thus, in all conditions, right 
after the onset of the second display, both the first and the second display would 
contribute to the integration, and their superposition would be visible. The idea 
has been invoked of a threshold value that the integrated activity due to one 
stimulus has to exceed for a certain amount of time in order for this stimulus to be
perceived (Herzog et al., 2003c; Koch, 2004; Dehaene et al., 2003). In this view, a
long duration for the first display would cause it to be perceived; after that, some
form of reset would occur, and the first and the second display would not become
superimposed.

That linear temporal integration cannot be the whole story is also clear from the
phenomenon of backward masking. In backward masking, the visibility of a stimu-
lus is destroyed or reduced by another stimulus following it; thus, there must be
some mechanism at work besides that of mere temporal integration. Masking
studies support the concept of the formation of an “object” as central to visual per-
ception, as reported by Enns in this volume and in earlier work with DiLollo and
Rensink (DiLollo et al., 2000). The key idea of their object substitution theory is that
sensory input is processed in two stages. First, a feedforward sweep originating in
the retina subsequently causes activation in the lateral geniculate nucleus (LGN),
primary visual cortex, after which it moves toward higher and higher areas in the
visual hierarchy. In the areas sequentially activated in this propagation, the recep-
tive fields of cells are larger, and more and more complex visual features are
encoded. Then, a feedback sweep acts to compare the generalized pattern activa-
tion generated at a high level, a “hypothesis,” with the ongoing, high-resolution
activity at a (nonspecified) lower level (see also Lee et al., 1998; Ullman, 2000; Lee
& Mumford, 2003). This would serve the purpose of resolving ambiguities within a
pattern hypothesis and of binding patterns to specific locations. Only after confir-
mation of the perceptual hypothesis are its contents, an “object,” perceived. In this
framework, a mask can interfere with the feedback sweep and reset the entire
process, after which only the mask is perceived.

16.2 Feedforward or Feedback?

From the perspective of neuroscience, backward masking and temporal integration
raise questions about the processes determining whether a stimulus is consciously
perceived.An important and long-standing issue in this context is whether feedback
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interactions are necessary for conscious awareness. Neuroanatomically, feedback
connections are a dominant feature in visual cortex (Felleman & Van Essen, 1991),
reaching all the way back into the LGN. Yet, their functions remain veiled. Some
apparently complicated tasks, such as distinguishing animal pictures from nonani-
mal ones, can be performed by the brain very fast, suggesting—although most cer-
tainly not proving—that feedback is not necessary for those (Thorpe et al., 1996;
VanRullen & Koch, 2003a). While classical models of backward masking (Breit-
meyer, 1984; Breitmeyer & Öğmen, 2000; Öğmen, 1993) are based on local, lateral
connections, object substitution theory posits feedback interactions as an essential
ingredient. Several physiological studies in the macaque monkey show that in
figure–ground segregation tasks, the awareness of the figure is correlated with a late
component of V1 activity (Scholte et al., this volume; Lamme et al., 2000; Lamme
et al., 2002; Lamme & Roelfsema, 2000). This has been taken to indicate that feed-
back into V1 is essential for visual awareness. However, on the basis of a computa-
tional study (Li, 2000) it has been argued that local V1 mechanisms can account 
for these figure–ground effects. In a study using transcranial magnetic stimulation,
it was shown that the percept of a moving phosphene evoked in V1 can be masked
by applying stimulation to V1 at a time that would interfere with feedback from 
MT (Pascual-Leone & Walsh, 2001). However, the biophysical effects of such stim-
ulation are still poorly understood, and it should in addition be noted that rather
than demonstrating the necessity of feedback, this result shows the necessary
involvement of V1 at a later stage in conscious visual processing. As was pointed
out in Öğmen et al. (2003), it is possible to have a graph-theoretically feedforward
architecture with an anatomically descending connection, that is, from a higher 
to a lower area in the visual hierarchy (for instance, IT to V1). We will use such 
an architecture in our model (“Template” to “Object” in figure 16.1). In many 
studies, the distinction between anatomical and functional feedback is not properly
drawn.

As a starting point to modeling the time course of visual perception, we take the
above idea of perceptual hypothesis testing: Before an object can be consciously per-
ceived, the brain first confirms its identity by comparing it with the sensory input at
a later time. Especially when input is rapidly changing or when significant amounts
of extrinsic or intrinsic noise are present, it is ecologically meaningful to ascertain
whether the initial input reflects the current state of the world before engaging in
a behavioral response. Models of consciousness often posit the necessity of a “coali-
tion” of cortical areas, connected with each other through loops of feedforward and
feedback connections (Koch, 2004; Baars, 2002; Baars et al., 2003; Grossberg, 1999;
Dehaene et al., 2003). In these models, the main goal of a feedback circuit is pre-
sented primarily as a form of working memory rather than as a means of testing
perceptual hypotheses; these two viewpoints may coincide.
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Perceptual hypothesis testing can be mathematically modeled in terms of neural
populations. One starts by describing a visual stimulus as a bundle of perceptual
features, such as position, orientation, color, and shape, which are together—and not
necessarily independently—encoded in neural populations. This encoding is noisy,
so a sharply defined input will give rise to a broad population response. Let us con-
centrate on a single feature dimension, say, orientation, at one particular point in
the visual field. The task of the brain is to decode the value of this quantity from
the noisy population response, possibly making use of prior knowledge. Each pos-
sible orientation can be regarded as a hypothesis. Because of the numerosity of the
hypotheses, the problem is one of parameter estimation, and hypothesis testing will
consist of comparing neural population responses.

16.3 Parameter Estimation

Parameter estimation based on population codes is an example of Bayesian infer-
ence, with population activity patterns representing uncertainty about stimuli in the
form of probability distributions. Bayesian inference has been postulated to be a
general operating principle of the brain (Pouget et al., 2003; Rao et al., 2002; Yuille
& Bülthoff, 1996).The idea here is that the brain tries to infer the identity of a source
Z of an event in the world by optimally making use of the noisy (probabilistic) infor-
mation contained in the sensory input S. It does this using Bayes’s rule:
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into the object area. Finally, integration and thresholding determine the contents of perception.



(16.1)

P(S|Z) is called the likelihood function, and P(Z) is called the prior distribution. The
priors can contain many factors, including genetically specified biases, previous
experiences, and response biases.

Psychophysical evidence that the brain performs Bayesian inference partly comes
from studies of how the brain combines noisy cues from two sensory modalities, or
two cues from the same sensory modality, into a single percept (for instance, see
Knill & Richards, 1996; Ernst & Banks, 2002). In these combinations, the best esti-
mate is obtained by multiplying the probability distributions obtained from the two
different cues and of the priors, if any, and locating the peak of the product distri-
bution. If we denote the two cues by S1 and S2, this is captured by

(16.2)

Our problem concerns two cues appearing at different times, and Z is the orien-
tation to be inferred. We assume that the likelihood function corresponding to the
cues is encoded in the population activity pattern, where each neuron signals the
probability of the stimulus given the neuron’s preferred orientation.1 In the absence
of priors—that is, if P(Z) is a flat distribution—the best estimate based on the 
two cues is then obtained by multiplication of the activities at each cell in the 
population.

In our model, one can also regard multiplication of population activities as an
implementation of Bayes’s rule of equation 16.1, where the one population encodes
the likelihood function and the other one contains the priors. This is valid if the
bottom-up input is compared with an expectation that has been generated not from
directly preceding stimuli but from previous experience.

There are several examples of neural circuits performing multiplication, varying
from spatial receptive fields in the barn owl (Pena & Konishi, 2001), to gain fields
in the monkey’s posterior parietal cortex (Andersen et al., 1997), to motion-
sensitive neurons in the blowfly (Egelhaaf et al., 1989). There is evidence for single-
cell mechanisms able to execute multiplicative computations (Gabbiani et al., 2002).
Salinas and Abbott (1996) showed that multiplicative responses can also arise in a
network model through population effects.

Our model is based on the idea of optimal cue combination, but it is, strictly
speaking, not Bayesian. The reason is that we use the magnitude of the product
response across the population as information about the similarity of the two 
population activities that are multiplied: The higher the product activity, the more
similar the two activity patterns were. The key idea is then to use the product activ-
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ity in some higher visual area as representing an object. If earlier and later activity
patterns match, the multiplication will produce a high outcome and the stimulus will
be perceived. If the match is not good, because the first stimulus has been replaced
by a dissimilar one, either masking or pure temporal integration occurs. The latter
gives rise to a percept in which stimuli physically present at different times are per-
ceived simultaneously, in a sort of superposition. It can also happen that the match
is not perfect and the first stimulus is not perceived but still modulates the per-
ception of the second stimulus. We claim that this is what happens in feature 
inheritance.

16.4 Feature Inheritance

In the orientation paradigm of feature inheritance (Herzog & Koch, 2001), detailed
in chapter 15 (Herzog, this volume), a bar slightly tilted with respect to the vertical
is presented for 30ms (the target), immediately followed by a grating of 3–5 verti-
cal bars, presented for 300ms (the “mask”). The percept is a slightly tilted grating.
The perceived tilt is much smaller than the actual tilt of the first stimulus, but always
in the same direction as the (perceptually invisible) target. This illusion is surpris-
ing in several respects: first, the invisibility of the target; second, the spread of the
tilt over the entire grating2; and finally, the long duration of 300ms over which the
effect extends.

We now consider what happens to feature inheritance when the temporal param-
eters are varied. When the duration of target presentation is increased to several
hundred milliseconds, the target and the mask are perceived veridically, that is, as a
sequence of two stimuli. When the target is flashed by itself, it is clearly perceived.
When the mask is of very long duration (e.g., 1,000ms), one first observes the illu-
sory, feature inheritance percept, which subsequently changes into the veridical
percept of the original mask. When the target and the mask are very different in
orientation, both the mask and the target are visible (so-called shine through,
although this term was originally coined to describe the case in which the masking
grating has many lines). We would like to simulate each of these cases.

Some of the spatial characteristics of the shine-through effect that can give rise
to the spread of the feature over the grating have been explained with a feedfor-
ward, two-layer neural network model (Herzog et al., 2003a) and with a system of
interconnected excitatory–inhibitory neuron pairs (Li, 2003). The issue of feature
inheritance, that is, of how the orientation is decoded and assigned to the mask,
and how the target becomes invisible, has not yet been addressed. A crucial issue is
the invisibility of the target, on the one hand, if and only if a mask follows, and 
the perception of a tilted mask, on the other hand.A feedforward system with lateral
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interactions would have difficulties in explaining how it is that the target is not per-
ceived at all if a mask follows. This suggests that the earlier presented target influ-
ences the neural processing of the later presented mask in some kind of top-down
fashion.

In our model, we focus on the temporal characteristics of visual perception. For
simplicity, our only dimension is orientation space at the central location. We will
see that with the mechanism sketched above, the temporal aspects of the inheri-
tance process can be understood without any spatial interactions.

16.5 Model

The architecture of our model is shown in figure 16.1. It consists of early visual pro-
cessing, a pretemplate and a template area, an object area, an integration area, and
a perception area. We describe each area in terms of an analogue population activ-
ity. This is much cruder than a biophysical model, but we believe that this level of
analysis will suffice for our purposes.

16.5.1 Early Visual Processing

Early visual processing, conveniently denoted as V1, although it is not necessarily
limited to primary visual cortex, is modeled by convolving the black-and-white
image of the oriented bar with a family Gq(x,y) of two-dimensional Gabor filters,
one for every integer number of degrees of angle q. This describes the spatial recep-
tive fields of cells with different orientation selectivities. We need a fine resolution
in orientation space, because the effect we eventually want to show is rather subtle.
The response in V1 to an image S(t) is a 180-unit population activity pattern (S(t)
* Gq)(x,y) at each spatial location. Now we restrict ourselves to the central point (x
= y = 0), where both the target and one bar of the masking grating are presented;
this gives a population activity pattern I(q,t). The half width at half height of this
pattern is 13°. The pattern depends on time in a manner determined only by the
stimulus sequence.

The temporal dynamics of V1 responses to visual stimuli is known to be affected
by synaptic depression (Chance et al., 1998). This causes cells to initially respond
very strongly (the transient response), followed by a decrease in sensitivity and a
leveling off of firing rate (the sustained response). For our purposes, it can be
modeled simply by a multiplicative factor in the input (Chance et al., 1998). The dif-
ferential equation for the V1 response AV1(q,t) at angle q and time t reads

(16.3a)t q a qV
V

V d
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1 1
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where the synaptic depression S(t) is governed by

(16.3b)

16.5.2 Pretemplate and Template

The template is a higher level area that receives and stores the input for compari-
son with the later input. This area has a biophysically very long time constant 
(200ms), which can be obtained, for instance, by a local positive feedback loop or
self-excitation. In order to encode a hypothesis, activity in this area should not be
readily overwritten by new input. This is the purpose of the pretemplate area, a
gateway that receives bottom-up input from V1 and global inhibition from the tem-
plate area. A new input has to compete with the existing hypothesis before it can
form a new hypothesis. The activity in the pretemplate area APT is determined by

(16.4)

where [..]+ denotes rectification (i.e., the function value is zero when the argument
is negative, and it is equal to the argument otherwise) and the inhibitory activity
A1

PT is determined by

(16.5)

Here, e is a delay without which the inhibition would only amount to a subtractive
normalization. The template is solely driven by pretemplate input,

(16.6)

16.5.3 Object Representation

This area is where the comparison between template and low-level activity takes
place. It receives bottom-up input from V1, which is multiplied by the activity in the
template area. The activity AO is described by

(16.7)

16.5.4 Integrator

The governing equation of the integration area reads
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(16.8)

This area implements the fact that evidence has to build up over time before neural
activity is sufficient for perception. Neurons in this area may be comparable to
neurons in parietal and prefrontal cortex integrating sensory evidence until a deci-
sion criterion is reached (Gold & Shadlen, 2001; Freedman et al., 2002). Although
this integration is in dynamics similar to the one in the template area, it serves a
different goal. Here it is a mechanism for evidence accumulation, while there it guar-
antees the sustaining of a hypothesis.

16.5.5 Perception

The population activity pattern in the perception area determines the contents 
of the percept: in our case, which orientation or orientations are seen. The activity
in the integration area is thresholded as follows:

(16.9)

The denominator serves as a normalization. The threshold T is given by

(16.10)

There is a baseline threshold T0 and a threshold dependent on the total activity in
the object area. In feature inheritance, no percept should be created before the mul-
tiplicative interaction in the object area has finished, although the stimulus is 
300ms long. On the other hand, any single 10-ms stimulus is perceived. This means
that the perceptual threshold should be dependent on activity in a lower area. In
this simple model, we take this activity to be the total activity in the object area.
Such a dynamic threshold is equivalent to feedforward inhibition from the object
area into the integration area.

The activity in the perception area is read out by registering sufficiently high local
maxima, where “sufficiently high” at a certain point in time is taken to be at least
50% of the highest overall activity in the perception area until that moment. The
duration of sufficiently high activity in the perception area is interpreted as the dura-
tion of the percept. Whether this is realistic is an open question. It has been noted
that distinguishing the simultaneous presence of multiple distinct stimuli from the
population noise intrinsic to the encoding of a single stimulus can be a problem
(Sahani & Dayan, 2003), but we do not address that issue here.
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16.6 Results

We presented this network with an oriented bar at an angle of 80° with respect 
to the horizontal for 30ms, followed by a vertical bar for 300ms. We tuned 
the parameters in the model such that it produces the desired phenomenology.
Figure 16.2 shows the activity in each of the areas in the model when the target is
oriented at 80°. The model produces a single peak at an orientation of 87°, corre-
sponding to the percept in feature inheritance. The target is rendered invisible.
Figure 16.3 shows the multiplication of V1 with template activity in the object area
at t = 200ms.
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A single short stimulus (10ms) is perceived even though the activity it produces in
the integration area is much lower (figure 16.4). Because of the integrator, the per-
ceived duration is much longer than the stimulus duration. Figure 16.4b shows the
effect of varying physical duration on perceived duration.The graph has a plateau at
a value of about 250ms. Because of the many parameters in our model and the ad hoc
readout rule, we cannot reliably use this as a quantitative test, but it is qualitatively in
accordance with the concept of a “minimal perceptual moment” (Efron, 1970).

A sequence of long-duration stimuli gets perceived veridically because the match
between template and bottom-up activity is good (figure 16.5a). We compared a
target at 80° (figure 16.5a) with one at 40° (figure 16.5b). The first one produces a
smooth transition between the percept of target and mask, because the orientations
are close enough together that the template activity representing the target can
interact with the mask activity. This can be interpreted as apparent rotation. (In the
real experiment [Herzog, this volume], observers were presented with an entire
grating rather than with a single bar; the grating could serve as a perceptual cue
against apparent rotation.) In the second case, we find a sudden transition. We do
not know of any psychophysical studies of the strength of apparent motion as a
function of spatial and temporal distance for rotations, although there have been
such studies of linear motion (Korte’s laws, and Burt & Sperling, 1981).
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(a) Target and mask are presented sequentially, each for 500 ms, with a small orientation difference. They
are perceived sequentially, with apparent rotation. (b) If two orientations with a large orientation dif-
ference (target, 40°; mask, 90°) are presented for the same durations (500 and 500 ms), they are observed
sequentially, without any apparent motion. PC, perception area; Int, integrator; Obj, object; T, template;
PT, pretemplate.



For two brief stimuli (both 20ms), the percept also depends on the orientation
difference. The model shows that when the difference is small, a single line with the
average orientation is perceived (figure 16.6a). This is different from feature inher-
itance in that it does not involve any hypothesis testing; the line is also predicted to
be at a slightly different orientation. When the difference is large, two lines super-
imposed on each other will be perceived (temporal integration; see figure 16.6b).
This percept is essentially different from the one in figure 16.5b, while, physically
speaking, the 20 + 20-ms stimulus sequence is contained within the 500 + 500-ms
sequence. A condition that the model can also deal with is that of a target at 40° for
30ms, followed by a masking grating for 300ms, that is, the temporal parameters at
which feature inheritance would occur were the target at 80°. In this case, a sort of
superposition is observed (see figure 16.7). In the cases of figures 16.6 and 16.7, we
can again not interpret the onsets and durations as quantitative predictions. In the
superposition percepts, different perceptual durations for the components do not
necessarily mean that an observer will see them superimposed only part of the time.

Table 16.1 shows the impact of leaving out certain aspects of the model on the
reproduction of the phenomenology in three conditions, on the existence of a
minimal perceptual moment, and on consistency with object substitution theory.

16.7 Discussion

Modeling the contents of perception based on neuronal population activity usually
requires many simplifications. With our approach, we merely hope to outline a
mechanism that can simultaneously explain the temporal characteristics of feature
inheritance, backward masking, and temporal integration. The key properties of our
network, which—so we claim—give rise to a visual percept, are as follows:

• a Bayes-motivated comparison interaction between a dynamic template and
bottom-up input, leading to the formation of an “object”

• linear temporal integration, followed by a threshold

• feedforward inhibition proportional to the strength of an “object”

Speculations about the existence of both a threshold and an integration period for
perception are supported by neurosurgical experiments (Libet, 1966, 1973, 1993; for
an overview, see Koch, 2004).

If we examine the architecture of the model, we see that there is no loop between
the model areas V1, template, and object; thus, there is no feedback in a graph-
theoretical sense. However, it is possible that the template area is higher in the 
cortical hierarchy than the object area. Thus, a physiologist may characterize this
interaction as a feedback interaction, although there is no recursion involved (cf.

Temporal Aspects of Conscious Visual Perception 289



290 W. J. Ma, F. Hamker, and C. Koch

V
1

Population activity
1

90

180 0

1

2
Peak activity

80

90

Local maxima

P
T

1
90

180 0

0.5

80

90

T

1
90

180 0

1

2

80

90

O
bj

1
90

180 0

1

2

80

90

In
t

1
90

180 0

5

10

80

90

P
C

Time (ms)
1 400 800

1
90

180
1 400 800

0

0.1

0.2

Time (ms)
1 400 800

80

90

Time (ms)

Stimuli Percept

20 20

a
V

1

Population activity
1

90

180 0

0.5

1
Peak activity

40

90
Local maxima

P
T

1
90

180 0

0.2

0.4

40

90

T

1
90

180 0

0.5

1

40

90

O
bj

1
90

180 0

0.5

40

90

In
t

1
90

180 0

2

4

40

90

P
C

Time (ms)
1 400 800

1
90

180
1 400 800

0

0.05

0.1

Time (ms)
1 400 800

40

90

Time (ms)

Stimuli Percept

20 20

b

Figure 16.6
Perception of two 20-ms stimuli immediately following each other is determined by temporal integra-
tion. (a) When the orientation difference is small, a single line at the average orientation is perceived.
This is an effect different from feature inheritance. (b) When the orientation difference is large, the two
lines are perceived simultaneously and separately. PC, perception area; Int, integrator; Obj, object;T, tem-
plate; PT, pretemplate.
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Figure 16.7
With a large orientation difference and the same timing as in feature inheritance, a superposition is
observed. PC, perception area; Int, integrator; Obj, object; T, template; PT, pretemplate.

Table 16.1
Impact of leaving out selected aspects of the model on the reproduction of phenomenology

30/300 30/300 20/20 Minimal Consistent
orientations orientations orientations perceptual with object
close, far apart, far apart, moment? substitution
figure 16.2 figure 16.7 figure 16.6b figure 16.4b theory?

Full model X X X X X

Template constant X X
(linear feedforward)

Short tT X X

No pretemplate X X X

No integrator X X

Fixed threshold X X X

Note. X = yes.



figure 7 in Öğmen, 2003). V1 is essentially involved in later interactions, but there
is no feedback into V1.

The integration area can be thought of as a form of iconic memory, a high-
capacity, rapidly decaying form of storage, lasting for at least a few hundred mil-
liseconds (Coltheart, 1983, 1999). That does not mean that we think of iconic
memory as instantiated in a single area. This role of the integration area is consis-
tent with the claim that iconic memory is essential for visual awareness (Koch, 2004):
It is as if enough evidence has to be collected before one can become aware of a
stimulus.

Because we only consider orientation space at one location in physical space, our
model is rather limited in scope. A next step would be to combine it with a detailed
model of lateral interactions in space (e.g., Herzog et al., 2003a, or Li, 2004) in order
to arrive at a more complete explanation of feature inheritance. It might then be
possible to explain the spreading of the feature over the whole grating. Moreover,
feature inheritance is a form of incomplete backward masking. In describing the
phenomenology of backward masking, the multiplicative interaction would imple-
ment hypothesis testing in the sense of DiLollo et al. (2000). Both the transition
from temporal integration to masking and the transition from temporal integration
to normal vision can be seen in our model. The former is determined by the dura-
tion of the mask, the latter by the duration of the target.

Another shortcoming of our model is the absence of stochastic noise in the cells.
Including it ought to explain variability of human performance in feature inheri-
tance and thus allow a fit of the psychometric curves of Herzog and Koch (2001).
Such a model would likely also allow the application of a more fundamental deci-
sion rule, such as a maximum-likelihood one (instead of “sufficiently high local
maxima”). Noise is also the reason that for very short stimulus durations, seeing
becomes a signal-detection task.

A general issue that requires further study is the implementation of Bayesian
mechanisms in neural circuitry. While many instances of multiplication have been
found in the brain, Gabbiani et al. (2002) remains the only study of the local bio-
physical mechanisms involved. One proposal to perform Bayesian inference without
coding multiplication in neurons has been put forward by Rao (2004). By repre-
senting probabilities in the logarithmic domain, multiplication is turned into addi-
tion, which is more easily implemented in the neural circuitry. He has shown that
feedforward and recurrent connections perform Bayesian inference for arbitrary
hidden Markov models; however, some strong mathematical assumptions are made
in the process.

In conclusion, we have implemented the simple idea that the contents of per-
ception are the result of a continuous comparison of sensory input with a template
updated with some inertia, an integration stage, and a dynamic threshold.
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16.8 Appendix: Model Details

All areas are modeled as populations of analogue, noiseless neurons. Orientation
filtering in “V1” occurs through convolutions with Gabors.The horizontally oriented
one is

with a = 0.5, sx = 5, and sy = 30. The time constants of the different areas are as
follows: tv1 = 20ms, tS = 40ms, tPT = 60ms, t1

PT = 10ms, tT = 200ms, tO = 20ms, tI =
200ms, and tP = 20ms. The time constants of some of these areas are very long, but
they can be effective time constants due to a positive feedback loop or attractor
dynamics. The synaptic delay e between pretemplate and template areas is taken to
be 3ms; between other areas, synaptic delay is irrelevant for our model.The pretem-
plate–template subsystem with global feedback inhibition (see equations 16.4–16.6)
implements the fact that a candidate hypothesis, sent from V1 into the pretemplate
area, has to compete with the stored hypothesis. A threshold proportional to the
total activity in the template area is equivalent to an inhibitory term in the pretem-
plate activity.

Weights are as follows: aV1 = 1, aPT = 1, a1
PT= 4/180, aT = 15, a1

T = 3, aO = 0.5, a1
O=

20, a1 = 20, aP = 1, and athr = 0.26. Synaptic depression in V1 has weight ad = 0.8.
These have been tuned to reproduce the experimental results; this tuning is not nec-
essarily unique. The baseline threshold is T0 = 0.05. The minimum value that a local
maximum in the perception area has to exceed at a certain time in order to “be per-
ceived” is taken to be 50% of the overall maximum until that time.

The differential equations were integrated using the Euler method in MATLAB
(MathWorks, Inc.). All initial activities were zero.
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Notes

1. An alternative approach, making use of the noise distribution of neuronal responses, can be found in
Pouget et al. (2003).

2. In the offset paradigm (i.e., when the target is a pair of offset lines, a vernier), the offset is 
also bequeathed to the entire grating, but the observer’s attention is always on one of its 
edges (Herzog & Koch, 2001). It is unknown whether this holds for the orientation paradigm as 
well.
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