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With courage, press on; then find your rest,

And fulfill the greatness of your life’s quest.

Kidney Band, Late Spring
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Abstract

Humans make decisions every day, and the ability to make accurate decisions is crucial for nav-

igating an ever-changing world. These decisions range from simple perceptual tasks, such as

recognizing traffic lights while driving, to complex social decisions like planning a family va-

cation together. While many studies have explored the outcomes and contributing factors of

decision-making, fewer have delved into the underlying temporal processes.

In this dissertation,we address this gap by examining the temporal processes involved in two

distinct sub-fields of psychology: perceptual decision-making and collaborative decision-making.

Chapter 1 provides a general introduction to approximate inference through active sampling. In

Chapter 2, we develop a novel framework of approximate inference through active sampling

and apply it to the task of perceptual categorization. Chapter 3 offers a broad introduction to

the cognitive mechanisms of collaboration. In Chapter 4, we develop a two-player real-time

collaborative game to investigate the temporal processes of collaboration, with a special focus

on role coordination. Chapter 5 presents a Bayesian linear extrapolation model to explain the

temporal processes of role coordination observed in the previous chapter. Together, my work

enhances our understanding of the temporal processes involved in human decision-making.
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1 | Approximate Inference through

Active Sampling: an Introduction

Imagine you are exploring the basement of your family house when a picture of a young woman

catches your eye. Who is she? Could it be your mother, one of your aunts, your grandmother, or

someone else entirely? The lighting is not dim, and the picture is clear, yet you still deliberate over

the woman’s identity because many of your female relatives bear a resemblance to the picture.

Gradually, you eliminate some possibilities and eventually decide that it is your mother. You

then go upstairs to ask if anyone knows the answer. During this process, you may feel a sense of

curiosity mixed with uncertainty, leading you to recall impressions of your female relatives and

contextual information about your family members. The setting of the basement and the age of

the photo might also influence your reasoning, as older photos might limit the pool of possible

individuals.

Now, let’s step back from this scenario and abstract the process you just experienced. You

received perceptual stimuli from the environment (the old picture) and tried to make a decision

based on it (identifying the woman). This process is known as perceptual inference, and your

deliberation on the woman’s identity illustrates the temporal processes involved inmaking such a

decision. Perceptual inference is crucial for survival and daily functioning, enabling us to navigate

complex and dynamic environments. More daily examples include comprehending the sound of

a friend in a noisy restaurant, recognizing traffic lights while driving, or smelling leftover food

1



to determine if it is spoiled.

Just as the examples above illustrates, the state of the world is typically unknown to agents.

Therefore, reasoning about hidden states of the world based on noisy or ambiguous observations

is central to cognition (al-Haytham, 1989). The leading theory of how humans perform such

inference is Bayesian inference, whereby the brain computes probability distributions over world

state variables of interest via Bayes’ rule (Knill & Richards, 1996).

The hypothesis that the brain implements Bayesian inference accounts for a wide range of

cognitive abilities. These abilities range from perception, where the perceptual system combines

information with varying reliability levels (Ma et al., 2023); motor control, where the motor sys-

tem integrates cues from different modalities (Körding & Wolpert, 2004); and language learning,

where children infer the meaning of a new word from several examples (Xu & Tenenbaum, 2007).

It also extends to everyday reasoning, such as estimating the remaining duration of a movie that

has been playing for 40 minutes (Griffiths & Tenenbaum, 2006).

In Bayesian accounts, a key concept is the likelihood of a world state, which is equal to the

probability of the current observations 𝑥 given that world state. The theory commonly assumes

that the brain calculates the likelihood 𝑝 (𝑥 |world state) based on the learned statistical structure

of the world and derives the posterior probability 𝑝 (world state|𝑥), which is proportional to the

prior 𝑝 (world state) times the likelihood 𝑝 (𝑥 |world state):

𝑝 (world state|𝑥) ∝ 𝑝 (world state) × 𝑝 (𝑥 |world state)

However, this assumption seems unreasonable, as high-precision neural computations are en-

ergetically costly (S. Laughlin, 1981; Lennie, 2003). A more plausible and resource-rational (Grif-

fiths et al., 2015) approach is that the brain produces less costly, imprecise, and noisy estimates

of the likelihood or posterior probability, refining them only when necessary.

In line with this thought, recent studies have found that Bayesian inference is not always con-
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ducted precisely; instead, approximate inference often occurs, particularly when the task struc-

ture becomes complex (Acerbi et al., 2014; Beck et al., 2012; Drugowitsch et al., 2016; Findling

et al., 2019; Lieder et al., 2018; Vul et al., 2014). Several possibilities might contribute to the ap-

proximation. Beck et al. (2012) and Herce Castañón et al. (2019) discuss scenarios where agents

use incorrect parameters during inference, leading to biased results. Therefore, the approximate

inference might be the camouflage of biased inference. Drugowitsch et al. (2016), Findling et al.

(2019), and Lange et al. (2021) suggest that the mental inference process itself (likelihood cal-

culation) may be noisy, even after accounting for perceptual and decision noise (Drugowitsch

et al., 2016). Additionally, S. Gershman and Goodman (2014) attribute approximate inference to

amortized inference, where humans reuse previous relevant history of inferences for new tasks.

Furthermore, S. J. Gershman et al. (2012), Haefner et al. (2016), Lange et al. (2021), Lieder

et al. (2018), Rullán Buxó and Savin (2021), Sanborn and Griffiths (2007), Savin et al. (2014), Shi

and Griffiths (2009), Shivkumar et al. (2018), Vul et al. (2009), and Vul et al. (2014) proposed that

likelihoods or posteriors in the Bayesian inference are approximated using sampling methods

like Markov chain Monte Carlo (Metropolis et al., 1953) or particle filtering (Khan et al., 2004).

Rather than calculating the likelihood or posterior probabilities precisely, humans sample around

the true values. By incorporating approximate inference, researchers have explained various

cognitive phenomena, including anchoring bias (Lieder et al., 2018), and recency and primacy

effects (Lange et al., 2021), across different domains, from multi-object tracking (Vul et al., 2009)

to probability induction (S. Gershman & Goodman, 2014). Some studies also explore the potential

neural mechanisms of approximate inference in the brain (Haefner et al., 2016; Rullán Buxó &

Savin, 2021; Savin et al., 2014; Shi & Griffiths, 2009; Shivkumar et al., 2018).

One practical advantage of the frameworks of sampling-based approximate inference is their

easy adaptability in explaining the temporal processes occurring within approximate inference.

Sampling-based approaches, such as Markov Chain Monte Carlo and particle filtering, allow for

a dynamic and iterative process where the agent continuously refines its estimates based on new
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samples. This iterative process inherently incorporates time as a factor, making it well-suited to

study temporal processes of decision-making. By focusing on how samples are generated and re-

fined over time, researchers can gain a deeper understanding of the cognitive processes involved

in making perceptual decisions. In contrast, other frameworks such as primarily attributing ap-

proximate inference to noise in mental inference processes often provide a static snapshot of the

decision-making outcome (Drugowitsch et al., 2016), without capturing the evolution of these

decisions over time. They may explain why certain decisions are made but not how the decision-

making process unfolds temporally. Thus, adopting a sampling-based approach not only aligns

with empirical observations of how decisions are made but also offers a robust framework for ex-

ploring the dynamic nature of perceptual inference. This is the reason we adopt the framework

of approximate inference through active sampling in the Chapter 2.

Let’s focus on the sampling-based method. If the underlying mechanism of inference indeed

works based on sampling, what would be an effective way of generating these samples? The phi-

losophy behind active sampling is that in a task where an agent needs to iteratively sample from

different sources, optimal performance is achieved by sampling in a way that rapidly reduces un-

certainty. This method has been applied in value-based decision-making, explaining the choices

and eye movements of participants when selecting from multiple valuable objects (Callaway et

al., 2021; Jang et al., 2021; Z.-W. Li & Ma, 2021; Song et al., 2019).

Active sampling is similar to active sensing (Yang, Lengyel, & Wolpert, 2016; Yang, Wolpert,

& Lengyel, 2016), which is defined as the process by which agents sample from unexplored areas

in the physical world to maximize perceptual information gain. Both active sampling and active

sensing reduce reaction time and improve task performance. However, they differ conceptually.

Active sensing acquires new information by interacting with the physical world (e.g., orienta-

tion information in a different area), while active sampling decreases uncertainty by refining the

agent’s internal belief through the allocation of abstract computational resources. Variability in

active sensing arises from the uneven distribution of perceptual information in the search field,
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whereas in active sampling, it stems from the imperfect representation of belief in the brain.

A natural question that arises is how to actively sample, i.e., determining where it is most

worthwhile to sample from. After assuming a sampling cost and reward for the task, this prob-

lem can be addressed by the Bellman equation and dynamic programming, but it is generally

computationally intractable (Sutton & Barto, 2018). To manage this intractability, researchers

approximate optimal sampling decisions using different methods, such as feature engineering

(Callaway et al., 2021) or setting a finite bound so that the sampling process must stop after a

preset number of samples (Jang et al., 2021). Another group of researchers bypasses this question

by assuming humans use heuristics to decide where to sample (Z.-W. Li & Ma, 2021; Song et al.,

2019). Both approaches have achieved some success in accounting for choice and eye movement

data in value-based decision-making.

Lastly, we discuss the neural mechanisms of approximate inference. Numerous neural net-

work models have been proposed to explain this complex process. Shi and Griffiths (2009) intro-

duced a simple network structure comprising a few feature detection neurons based on impor-

tance sampling. Savin et al. (2014) developed a Hopfield network (Hopfield, 1982) that efficiently

uncovers hidden states, despite its primary focus on memory. Haefner et al. (2016) demonstrated

how feedback can be incorporated into neural network models and predicted how different types

of feedback would influence approximate inference. Additionally, Rullán Buxó and Savin (2021)

proposed a spiking network model where the output of neurons can be readily used for decision-

making. In summary, these neural network models of approximate inference explain behavioral

results and provide insights into the possible neural underpinnings of approximate inference.

In the next chapter of this dissertation, we will develop a novel framework of approximate

inference through iterative active sampling. We will specify the structure of this framework and

apply it to three different datasets, accounting for phenomena including choice, confidence, and

response time in perceptual decision-making. The chapter aims to deepen our understanding of

the temporal processes underlying perceptual decision-making by casting approximate inference
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as an active-sampling process.
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2 | Approximate Inference through

Active Sampling of Likelihoods

Accounts for Human

Categorization Behavior

Abstract

Bayesian computations are intractable and expensive, but this is rarely accounted for in existing

Bayesian observer models. In this work, we propose that a) the brain can only compute imprecise

(noisy) estimates of likelihoods and posteriors, and, b) since computations are expensive, the

brain actively chooses which computations to perform to refine such estimates. We call our

framework approximate inference through active sampling (AIAS) and study its implications in

𝑁 -alternative categorization. AIAS accounts for several empirical findings. First, we account for

a puzzling recent finding that decision confidence follows the difference between the two highest

posteriors, rather than the highest posterior itself. AIAS not only provides better fits, but also

yields an accurate prediction of response times based on the number of iterations. Second, we

show that AIAS is able to explain how categorization behavior changes when the visual contrast

varies. Third, we find that the mean response times predicted by AIAS grows approximately
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logarithmically with the number of categories 𝑁 , as per Hick’s law. Overall, AIAS provides a

novel approach to explain human categorization by casting approximate inference as an active-

sampling process with imprecise computations.

Keywords: categorization, approximate inference, active sampling, Hick’s law, confidence,

response time
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2.1 Introduction

The state of the world is typically unknown to agents. Therefore, reasoning about hidden states

of the world based on noisy or ambiguous observations is central to cognition (al-Haytham, 1989).

The leading theory of how humans perform such inference is the theory of Bayesian inference,

whereby the brain computes probability distributions over world state variables of interest via

Bayes’ rule (Knill & Richards, 1996). The hypothesis that the brain implements Bayesian infer-

ence accounts well for data across a wide range of cognitive abilities, ranging from perception

(Ma et al., 2023), motor control (Körding & Wolpert, 2004), language learning (Xu & Tenenbaum,

2007), to everyday reasoning (Griffiths & Tenenbaum, 2006). In Bayesian accounts, a key concept

is the likelihood of a world state, which is equal to the probability of the current observations

given that world state. The theory commonly assumes that the brain calculates the likelihood

exactly based on the learned statistical structure of the world. However, this seems an unrea-

sonable assumption given that high-precision neural computations are costly (S. Laughlin, 1981;

Lennie, 2003). Rather, a more realistic and resource-rational (Griffiths et al., 2015) scenario is that

the brain would compute cheaper imprecise, noisy estimates of the likelihood, refining them only

as needed. Indeed, some evidence exists for noisy (Acerbi et al., 2014; Drugowitsch et al., 2016;

Findling et al., 2019; Herce Castañón et al., 2019; Lange et al., 2021) or sample-based approxima-

tions (S. J. Gershman et al., 2012; Lange et al., 2021; Lieder et al., 2018; Vul et al., 2014). In this

work, we commit to this notion of imprecise likelihood computations and ask: how should the

brain perform Bayesian inference, when each computation step only provides a noisy estimate

of the likelihood? That is, we abstractly model inference as an iterative process that starts with

a crude approximation and proceeds by refining the computation until the costs outweigh the

benefits.

Fig. 2.1 shows the basic intuition behind our framework. In an idealized world, computing

the likelihood is not costly and therefore an agent, given the noisy sensory evidence, instantly
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computes the exact likelihood over all hypothesized stimuli (Fig. 2.1A). However, it is more re-

alistic that the brain can only compute imprecise (noisy) estimates of likelihoods and posteriors

(Fig. 2.1B). When the likelihood computation is imprecise, the true likelihood function becomes

unknown and must be recovered. We model this process as the agent iteratively drawing likeli-

hood samples (Fig. 2.1B, top row). Using these imprecise samples, the true and unknown likeli-

hoods are estimated with uncertainty (Fig. 2.1B, bottom row). Differently from other frameworks,

the brain would actively decide where the new likelihood sample should be drawn from. As the

computation process progresses (Fig. 2.1B, from left to right), more likelihood samples are ac-

tively drawn and aggregated in each iteration, gradually refining the belief over the likelihood

and converging to the true likelihood. As the active process of shaping the approximation to

the likelihood is key to this framework, we will refer to it as Approximate Inference with Active

Sampling (AIAS).

This paper describes the formalism of AIAS and tests it with published human data from

different categorization tasks (Adler &Ma, 2018; H.-H. Li &Ma, 2020). AIAS-basedmodels predict

response time, choice, and confidence with few free parameters. AIAS successfully accounts for

various empirical findings in perceptual categorization, covering a phenomenon where decision

confidence is governed by the twomost probable choices across categories (H.-H. Li &Ma, 2020), a

perceptual task where visual reliability varies (Adler &Ma, 2018), and Hick’s law, which describes

howmean response time changes with the number of alternatives (Hick, 1952). Collectively, these

results provide evidence that humans may conduct approximate inference as an active-sampling

process with imprecise likelihood computations.

2.2 Results

In this section, we first describe the framework of Approximate Inference with Active Sampling

(AIAS), within the context of perceptual categorization tasks. We then apply AIAS to three dis-

10



Figure 2.1: The illustrative plot of Approximate Inference with Active Sampling (AIAS) frame-
work. A) When computing the likelihood is not costly and therefore precise, the true likelihood
over all hypothesized stimuli are instantly calculated, based on the noisy sensory evidence. B)
Likelihoods are approximated by actively drawing likelihood samples, when only imprecise es-
timates of likelihoods and posteriors can be computed. Top row: With noisy sensory evidence
as input, at each iteration, a new noisy likelihood sample (red dot) is actively drawn, centered
around the true and unknown likelihood (dashed line). All previous likelihood samples are shown
as blue dots. Bottom row: The belief over the likelihood function is inferred from all likelihood
samples, with the mean estimate as green line and uncertainty level in grey area. As the compu-
tation process progresses (from left to right), more likelihood samples are drawn, and the belief
over the likelihood is refined and converges to the true likelihood.
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tinct case studies, demonstrating its ability to explain a variety of perceptual and metacognitive

findings.

2.2.1 AIAS-based Model for Categorization Tasks

Generative Model. We consider an 𝑁 -alternative categorization task under uncertainty. In this

section, we take 𝑁 = 3 for simplicity of exposition (Fig. 2.2A). In a standard Bayesian observer

model (Ma et al., 2023), the agent would receive a potentially noisy observation 𝑥 and compute

its likelihood 𝐿1 = 𝑝 (𝑥 |𝐶 = 1), 𝐿2 = 𝑝 (𝑥 |𝐶 = 2), 𝐿3 = 𝑝 (𝑥 |𝐶 = 3). This likelihood would be then

combined with the prior to compute the posterior over categories using Bayes’ rule.

So far, this is textbook Bayesian inference. The key idea of this paper is that this standard

approach ignores the fact that the human mind is unlikely to compute likelihoods 𝐿 exactly,

especially if the generative model is complex. That is to say, the true likelihoods 𝐿1, 𝐿2, 𝐿3 and

the true posterior vector P ≜ (𝑃1, 𝑃2, 𝑃3) are unknown to the agent (Fig. 2.2B,C). Instead, here

we consider imprecise computations, where the agent has only access to noisy samples 𝑙 of the

likelihood function. In other words, we abstract the process of computing the likelihood – and,

thus, the posterior – as an iterative process whereby the agent refines their likelihood estimate by

drawing noisy samples of the likelihoods (Fig. 2.2C), interpreting each sample as a small amount

of computation. Crucially, the agent chooses which estimates need refining. At each time step,

the agent can draw a noisy likelihood sample 𝑙𝑘𝑖 for a chosen category 𝑖 , where 𝑘 is the position in

the sequence of likelihood samples for that category. We remark that this process is not sampling

information from the environment, but sampling is used as a representation of imprecise internal

computations (see also Discussion).

Inference. Our generative model casts Bayesian inference as an inference process itself,

where the agent aims to infer (compute) the true posterior given a set of noisy likelihood evalua-

tions (Acerbi, 2020; Hennig et al., 2015). In particular, given a set of likelihood samples and a prior

over the likelihoods, the agent is able to compute their belief about the true likelihoods, i.e. the
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Figure 2.2: AIAS-based model for categorization tasks. We depict a three-alternative categoriza-
tion problem for illustrative purposes. Colors correspond to the three categories. A) Flow chart
of the generative model and inference process. The true likelihoods and posterior are unknown
to the agent. B-C) Example true likelihoods, the corresponding true posterior vector, and the
agent’s noisy likelihood samples that have been drawn. D) Posterior distributions over the true
likelihood of each category. E) The posterior distribution over the posterior vector. Each point
corresponds to a hypothesized posterior vector. The intensity of the point represents the degree
of belief. The shaded area weighted by the posterior over posterior vector is the confidence if
the agent were to choose category blue for categorization. F) Flowchart of the active sampling,
termination, and decision parts of AIAS.
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posteriors over the likelihoods 𝑝 (𝐿1 |l1), 𝑝 (𝐿2 |l2), 𝑝 (𝐿3 |l3) (Fig. 2.2D), using 𝑝 (𝐿𝑖 |l𝑖) ∝ 𝑝 (𝐿𝑖)𝑝 (l𝑖 |𝐿𝑖),

where l𝑖 ≜ (𝑙1𝑖 , 𝑙2𝑖 , · · · ) is the vector of all likelihood samples of category 𝑖 . They then again ap-

ply Bayes’ rule to compute their belief about the true posterior vector, i.e. the posterior over the

posterior vector 𝑝 (P|l) (Fig. 2.2E), where l ≜ {l1, l2, l3} is the set of all likelihood samples of all cat-

egories. For computational tractability, in this paper we assume a factorized empirical log-normal

distribution for the prior over each likelihood, 𝑝 (log𝐿𝑖) = N(log𝐿𝑖 ; 𝜇𝐿, 𝜎2
𝐿
), log-normal noise on

the likelihood samples 𝑝 (log 𝑙𝑘𝑖 |𝐿𝑖) = N(log 𝑙𝑘𝑖 ; log𝐿𝑖, 𝜎2), and a uniform prior over categories

(see Methods section). In the Discussion, we consider extensions of these baseline assumptions.

Given the posterior over the posterior vector, 𝑝 (P|l), we further define the agent’s confidence

𝑐𝑖 as the subjective belief that the chosen category 𝑖 has the highest true posterior probability

when making a decision for categorization, which we name “comparative confidence”. For exam-

ple, in Fig. 2.2E, if the agent chooses the blue category, the shaded area weighted by 𝑝 (P|l) will

be their confidence. We will revisit the intuition of this concept in the model fitting section.

Active Sampling, Termination, and Decision. Considering that neural computations are

costly in terms of time and metabolic resources (S. B. Laughlin et al., 1998; Lennie, 2003), drawing

likelihood samples equally from all categories is a wasteful strategy. Instead, the agent should

actively prioritize sampling frommore likely categories. In a similar vein, the agent cannot sample

indefinitely, but must decide when to terminate sampling and make a categorization decision to

receive a reward. The choice of which category to sample from (active sampling), when to stop

(termination), and which category to select at the end (decision) can be formalized as a sequential

decision making problem (Garnett, 2023; Sutton & Barto, 2018). Optimally solving this problem

requires considering all future steps and outcomes, which is computationally intractable in the

general case (Sutton & Barto, 2018). In this paper, we consider amyopic policy that contemplates

only one step ahead when deciding which category to sample from and when to stop sampling.

The active sampling, termination, and decision parts of AIAS are shown diagrammatically

in Fig. 2.2F. We assume the agent starts with no or vague information about the categories, so
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they first draw a likelihood sample for each category. Then, after updating the belief given the

likelihood samples obtained so far, the agent considers each category as a candidate for drawing

a likelihood sample for the next iteration. The goal is to estimate the expected utility for refining

the likelihood of category 𝑗 , where the utility is somemetric related to the information gain about

which category is most probable when it comes to making a decision, discussed next.

To perform this estimation, separately for each category 𝑗 , the agent simulates a new, ‘phan-

tasized’ likelihood sample based on current beliefs (Thompson, 1933). The phantasized likelihood

sample leads to a change of the corresponding posterior over the likelihood, a change of the pos-

terior over the posterior vector, and thus a change of the aforementioned confidence 𝑐𝑖 for all

𝑁 categories. We define the utility of such sampling as the absolute change of the largest con-

fidence in all 𝑁 categories, 𝑢 𝑗 = |Δ (max(𝑐1, ..., 𝑐𝑁 )) |. After getting the 𝑢 𝑗 , the agent discards

the simulated likelihood sample. After one simulation per category, if the maximum of all utili-

ties 𝑢 𝑗 ( 𝑗 = 1, 2, ..., 𝑁 ) is larger than a predetermined termination threshold 𝜖 , the agent chooses

the category 𝑗 with the largest 𝑢 𝑗 to draw an actual likelihood sample. The agent then updates

their posterior over the posterior vector and repeats the whole simulation process. Conversely, if

the largest utility is smaller than the threshold 𝜖 , the agent stops sampling as further sampling

would likely yield little information gain, and chooses the category 𝑖 with the highest confidence

𝑐𝑖 .

The intuition behind this strategy is that categories with potentially high true posteriors,

which are important for the categorization, should be sampled more. This is realized in our

framework in that categories with high true posteriors will cause a larger absolute change of

maximum confidence across all categories, and thus are indeed sampled more frequently. The

intuition behind the termination rule is that the agent should stop sampling if they find that

sampling more is unlikely to substantially affect their largest confidence value, which is how the

final category decision is made.
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2.2.2 Multi-alternative Categorization and Decision Confidence

In psychophysical tasks, measures of decision confidence have emerged as crucial behavioral

metrics to quantitatively test hypotheses about the underlying computational and metacognitive

processes (Fleming, 2024; Kiani & Shadlen, 2009; Yeung & Summerfield, 2012). For this reason,

we aim to experimentally validate the AIAS framework on rich datasets that combine both de-

cision and confidence reports. We start by considering data from a recent study (H.-H. Li & Ma,

2020) that thoroughly tested different leading hypotheses about how perceptual confidence is re-

ported. In this experiment (Fig. 2.3A), participants viewed spatial configurations of three colored

dot clouds, with a black target dot randomly generated from one of the three clouds. Participants

were asked to identify which color cloud the target dot came from and then reported their con-

fidence level using a four-point scale from 1 (very unconfident) to 4 (very confident), while their

response time was recorded. The experiment featured four different color cloud configurations

(Fig. 2.3E). The two most prominent models in the paper were the Max model (Fig. 2.3B&D, left

panel), the leading hypothesis that confidence represents the highest posterior of all categories

(Kepecs & Mainen, 2012), and the Difference Model (Fig. 2.3B&D, middle panel), an alternative

hypothesis proposed by the authors that confidence represents the difference between the two

highest posteriors of all categories. Surprisingly, the authors found that the Difference model

provided a better account of confidence by outperforming the Max model in a quantitative model

comparison (H.-H. Li & Ma, 2020).

Despite giving a better fit to human confidence, the Difference model has two drawbacks.

First, it only gives a quantitative prediction of confidence, without providing any rationale for

why it should be the difference of the highest two posterior probability. Second, it is only a

descriptive model for choices and confidence that does not specify any underlying process; as

a result, the Difference model does not yield any prediction of response time in inference tasks.

These issues are addressed in the AIAS-based model.
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Figure 2.3: The model fitting results and predictions of AIAS-based model in H.-H. Li and Ma
(2020)’s color cloud experiment. (Continued on the following page.)
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Figure 2.3: A) Experimental paradigm. Participants viewed spatial configurations of three colored
dot clouds, with a black target dot randomly generated from one of the three color clouds. Par-
ticipants were asked to identify which color cloud the target dot came from and then report their
confidence level using a four-point scale from 1-"very unconfident" to 4-"very confident", while
their response time was recorded. B) Hypotheses of confidence mechanisms in the Max model
(left panel, the highest posterior), the Difference model (middle panel, the difference between the
two highest posteriors), and AIAS-based model (right panel, the subjective belief that the choice
selected has the highest true posterior, a.k.a. comparative confidence). C) We use ternary plots
to represent posterior distributions. Each point in the plot correspond to one posterior vector,
whose individual elements are proportional to the distance from the opposite edges. For example,
a point at the center represents the uniform posterior distribution; at the corners, the posterior
probability of one category is one while the other two are zero. D) Predictions of confidence in
the Max model (left panel), the Difference model (middle panel), and AIAS-based model (right
panel). E) Four different spatial configurations of the three color clouds in the experiment. F) Hu-
man choice data (lighter color) and AIAS model fits (darker color). In F-H, error bars and shaded
areas represent mean ±1 s.e.m across participants. G) Human confidence report (solid error bar)
and AIASmodel fits (shaded error bar). H) Human response time (solid error bar) and AIASmodel
predictions from fitted choice and confidence data (shaded error bar). I) Model comparison (AIC
difference) of AIAS vs. Difference, Max, AIRS, AISS, AISS∗, and Race models; lower is better.
Error bars represent bootstrapped 95% confidence interval across participants.

In AIAS, we have defined the confidence for category 𝑗 in an intrinsically comparative fash-

ion, by defining 𝑐 𝑗 as the subjective probability that 𝑗 is the best possible choice for the current

beliefs (i.e., the category with largest posterior probability, with the available information). Note

that this definition exploits ‘second-order’ uncertainty over the posterior, which is a distinctive

property of our framework. A standard ideal Bayesian observer model would have no uncer-

tainty about which choice is best with the current information: it is always the category with

maximum posterior probability, which is known exactly. To compare the AIAS-based confidence

predictions to data, we then simply assume that the reported confidence is the confidence 𝑐 𝑗 for

the selected choice 𝑗 (Fig. 2.3B&D, right panel).

We fitted AIAS to the color choice and confidence data on an individual basis for all eight

participants. The model fitting results and predictions are shown in Fig. 2.3F-H. AIAS captures

well both color choice (Fig. 2.3F) and confidence reports (Fig. 2.3G). We then used the number of

AIAS iterations required to reach termination to predict response time in each trial. Since AIAS
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iterations are expressed in abstract units, and participants’ response time data are also affected by

non-decision time, we conducted a linear regression mapping the number of iterations to human

response times on an individual basis. Remarkably, the AIASmodel fitted on choice and confidence

data only (no response times) provides an accurate prediction for the shape of human response

times (Fig. 2.3H).

We further conducted a quantitative model comparison to test AIAS against six main alterna-

tive models: 1) the Difference model; 2) the Max model; 3) approximate inference with random

sampling (AIRS): A variant of AIASwhich, instead of doing active sampling, randomly selects one

category to draw a likelihood sample at each iteration; 4) approximate inference with same sam-

pling for all categories (AISS): A variant of AIAS which instead of sampling only one category at

each iteration, samples all categories at the same time; 5) approximate inference with same sam-

pling for all categories, but only one time (AISS∗): AISS∗ samples all categories once and makes

the decision, with no iterative process involved; 6) the Race model (Ratcliff, 1978; Ratcliff et al.,

2016): The Race model is widely used to explain the process of multi-alternative decision-making.

The model assumes that evidence is accumulated for each alternative until a decision threshold is

reached. Here, we used the true posteriors as the drift rate (the accumulation speed) and allowed

for mutual inhibition between different categories. We defined as the confidence the reciprocal

of the number of iterations for the Race model as a common practice. The model comparison

results are shown in Fig. 2.3I. AIAS outperforms all six alternative models (see Methods for the

details of the alternative models).

Finally, we explored the hypothesis that AIAS may be the underlying process at the heart of

the empirical finding that the Difference model outperforms the Max model, as observed in H.-H.

Li and Ma (2020). To test this hypothesis, we fitted the Difference model and the Max model to

synthetic data generated by AIAS. If our hypothesis is correct, we should also observe that the

Difference model fits the AIAS-generated data better than theMaxmodel. The model comparison

confirms our hypothesis in that the Difference model yields a better fit with a 95% confidence
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interval of ΔAIC = [27.2, 129.4]. Overall, these findings show that AIAS is both qualitatively and

quantitatively capturing key features of the human decision process.

2.2.3 Inference with Varying Perceptual Reliability

For a further investigation of our framework, we considered another rich dataset comprising of

choice and confidence data as well as multiple perceptual reliability conditions (varying visual

contrast levels) (Adler & Ma, 2018). In the experiment, participants were asked to perform a bi-

nary categorization task based on the orientation of a presented Gabor patch and then report their

confidence level on a four-point scale from 1-“low confidence” to 4-“high confidence” (Fig. 2.4A,

left panel). Their response time was recorded. The visual contrast of the patch varied across trials

(Fig. 2.4A, right panel). Participants performed one of two different tasks, which differed in the

distribution of orientation associated with each category (Fig. 2.4B). We fitted AIAS to the cate-

gory choice and confidence data separately on an individual basis for all eleven participants. AIAS

obtained a better quantitative fit than an extended Bayesian observer model including decision

noise (see details in the Methods section), ΔAIC = [278.5, 1138.7], yielding a good qualitative fit

on choice (Fig. 2.4C) and confidence (Fig. 2.4D) for the different levels of visual contrast. We then

used the number of AIAS iterations before termination to predict response time in each trial, via

a linear regression mapping the number of iterations to human response times on an individual

basis. The AIAS model fitted on choice and confidence data (no response times) provides a rea-

sonable prediction for the shape of human response times, which is somewhat lacking a strong

structure in this task (Fig. 2.4E).

2.2.4 Hick’s Law

We additionally investigated whether AIAS reproduces a classical psychophysical results for re-

sponse times. Hick’s law states that in a multiple-alternative choice task, the mean response
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Figure 2.4: Themodel fitting results and predictions of AIAS-basedmodel in Adler andMa (2018)’s
experiment. A) Experiment paradigm. Left: After fixation, participants were briefly shown a
Gabor stimulus. They were required to report the category based on stimulus orientation as well
as their confidence level using a four-point scale from 1-“low confidence” to 4-“high confidence”.
Right: The visual contrast of the Gabor patch varied across trials. B) Probability distribution of
the orientation of the Gabor stimulus for the two categories in the two distinct tasks (left: task
1; right: task 2). C) Human choice (error bars) and AIAS model fits (shaded error bars) in the
two different tasks (left: task 1; right: task 2) for different visual contrasts (blue: low; red: high).
D) Human confidence (error bars) and AIAS model predictions (shaded error bars) in the two
different tasks (left: task 1; right: task 2) for different visual contrasts (blue: low; red: high). E)
Human response time (error bars) and AIAS model predictions from fitted choice and confidence
data (shaded error bars) in the two different tasks (left: task 1; right: task 2) for different visual
contrasts (blue: low; red: high). Error bars and shaded areas represent mean ±1 s.e.m across
participants.
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time increases logarithmically with the number of alternatives (Hick, 1952). In the previous two

sections, we have acquired empirical estimates of human participants’ parameters and associ-

ated linear mappings from the number of iterations to response time. Thus, we can simulate how

response time changes with the number of categories𝑁 in AIAS for a population of synthetic par-

ticipants whose model parameters match the ones estimated from the previous two experiments

(nineteen synthetic participants in total). For this simulation, we assume that the true likelihoods

of different categories are independent in the generative model. That is, our simulation does not

commit to a specific task structure, in which the true likelihoods might be correlated.

Simulations of the response times of two example synthetic participants (i.e., parameter sets)

are shown in Fig. 2.5A, along with the logarithmic fit and the linear fit of these simulated response

times. For all nineteen parameter sets, estimated from all participants of the previous experiment,

see Fig. 2.S1. The logarithmic fit qualitatively better captures the trend than the linear fit. To

quantitatively validate this result, we computed the 𝑅2 goodness-of-fit score of the logarithmic

fit and the linear fit for all nineteen participants (Fig. 2.5B). The logarithmic fit gives a larger 𝑅2

for all participants, meaning that the logarithmic fit better accounts for how the mean response

time changes with the number of categories.

2.3 Discussion

In this paper, we developed AIAS, an approximate inference framework with active sampling of

likelihoods, to understand how the human brain reasons about hidden states of the world when

exact likelihoods are not known. Although it is well-documented that human reasoning appears

Bayesian across multiple settings (Griffiths & Tenenbaum, 2006; Körding & Wolpert, 2004; Ma et

al., 2023; Xu & Tenenbaum, 2007), many studies have not fully explored the consequences of the

intractable and expensive nature of Bayesian inference as a computational process. To address

this gap, in AIAS we postulated an agent actively drawing samples of the likelihoods to refine
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Figure 2.5: AIAS replicates Hick’s law. A) The mean response time increases approximately log-
arithmically with the number of categories. The simulations generated from two example par-
ticipants’ parameter sets are shown on the left (participant 5 from H.-H. Li and Ma (2020)’s ex-
periment) and right (participant 7 from Adler and Ma (2018)’s experiment). The black dot shows
the mean response time simulated by AIAS. The blue line shows the logarithmic fit of AIAS’s
response time to the number of categories, and the red line shows the linear fit. B) The 𝑅2 of log-
arithmic and linear fits were plotted against each other. Each plus sign represents the simulation
generated from a participant’s estimated parameter set (nineteen in total). The grey dashed line
represents 𝑦 = 𝑥 . The area in the upper left triangle means that the logarithmic model better
accounts for the simulated-data.
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beliefs about the posterior, where each noisy sample represents a ‘piece’ of computation. We

studied the implications of our model in the context of perceptual categorization and found that

AIAS accounts for several empirical findings.

First, AIAS explained the somewhat puzzling recent finding that decision confidence follows

the difference between the two highest posteriors, rather than the highest posterior itself (H.-H.

Li &Ma, 2020). Second, we showed that AIAS could explain how categorization behavior changes

with variations in visual contrast (Adler & Ma, 2018). In these studies, AIAS also predicted the

shape of response times from the fitted parameter set based on choice and confidence responses

alone. Third, we found that the mean response times predicted by AIAS increase approximately

logarithmically with the number of categories 𝑁 , consistent with Hick’s law (Hick, 1952). Our

results provide evidence for our framework as a useful process model for how how inference

may be conducted in humans, particularly in the context of intractable and expensive Bayesian

computations.

The observation that textbook Bayesian inference is intractable and expensive has been ex-

plored at length in the cognitive science and neuroscience literature, postulating that the brain

must implement some form of approximate inference (Beck et al., 2012; Lange et al., 2021). Pop-

ular approximate inference techniques used in statistics and machine learning and co-opted to

model brain computations include Markov Chain Monte Carlo (Metropolis et al., 1953) and vari-

ational inference (Jordan et al., 1999). However, almost all of these accounts do not question

the computability of the likelihoods, which are assumed to be readily available. AIAS differs

from common approaches to approximate inference in the brain in two key aspects. First, we

assume that the likelihood itself is not available and needs to be computed (inferred, as a matter

of fact). Second, unlike traditional approximate inference methods, and closer to more recent

approaches in probabilistic and sample-efficient machine learning such as Bayesian optimization

(Garnett, 2023; Hennig et al., 2015), we model the inference process as a sequential decision mak-

ing process. That is, the brain actively decides at each step which costly computations to perform
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(modelled as noisy samples), and when to stop.

Thus, at the heart of AIAS lies the problem of active sampling and termination. To better

understand howAIAS functions, we compare it to other active samplingmodels in the field. These

approaches generally fall into two categories: those based on the principle of resource rationality

and those employing a heuristic utility function. In the resource-rational approach (Griffiths et

al., 2015), researchers assume that the agent optimizes performance in a reinforcement learning

manner – they get rewarded for being correct, and the sampling cost is deducted. By assuming

this structure, the problem of active sampling and termination can be solved by using Bellman

equation and dynamic programming (Sutton & Barto, 2018), but are intractable in the general

cases. Jang et al. (2021) approximated it with dynamic programming method by assuming the

active sampling process must stop after a preset horizon, while Callaway et al. (2021) used feature

engineering to approximate the utility of sampling at each step. For heuristics like Z.-W. Li andMa

(2021) and Song et al. (2019), they both assumed the probability that an agent will sample an item

is proportional to a weighted average of its current value and uncertainty level. In some aspects,

AIAS aligns more closely with the heuristics approach, since it does not assume that the agent

explicitly tackles the problem of reward-maximization. However, AIAS also shares similarities

to the resource-rational approach, since it does not explicit encourage exploration like using

uncertainty-boosted utility; instead, this happens naturally within the confidence-based active

sampling process. Additionally, unlike these models, AIAS explicitly defines a new concept of

‘comparative confidence’ and significantly advances the understanding of confidence in decision-

making. Lastly, AIAS emphasizes categorization. While the value-based decision-making models

mentioned above could be adapted for categorization, this would require substantial effort.

The active sampling component within AIAS helps agents make accurate categorization de-

cisions as quickly as possible. Similarly, in the field of perception, active sensing allows humans

to interact efficiently with their environment by guiding exploration and gathering information

about the physical world (Yang, Lengyel, & Wolpert, 2016; Yang, Wolpert, & Lengyel, 2016). Both
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active sampling and sensing processes function similarly by reducing reaction time and improv-

ing task performance. However, they differ conceptually. Active sensing continuously gathers

new perceptual evidence from the environment, such as texture in a different area, while AIAS

refines the inference process within the agent itself by allocating computational resources to

sample from the likelihoods. The variability in active sensing arises from the uneven distribu-

tion of perceptual information in the search field, whereas in AIAS, it stems from the imperfect

representation of the likelihoods in the brain.

Within AIAS, we assumed a very specific structure for how the framework functions. It is

worthwhile to list some of the assumptions that could potentially be loosened. First, we assume

a log-normal structure for both the prior of the likelihoods and the likelihood samples. This

assumption is made purely for computational tractability. Still, the crucial aspect here is that the

brain maintains a distribution rather than a point estimate of the likelihoods. Second, we assume

that the agent samples from each category once at the beginning. This assumption was adopted

to save time when fitting AIAS by reducing iterative processes. It is likely that the brain initiates

the AIAS process with zero samples, or only after gathering more than one sample for each

category. Third, we assume that to decide which category to sample from and when to stop, the

agent simulates a phantasized likelihood sample and bases its actions on the simulated outcomes.

This process is known as Thompson sampling, a heuristic decision rule that approximates the

intractable marginalization over beliefs by choosing the action that maximizes expected utility

given a single sample from the current belief distribution (Thompson, 1933). Alternative sampling

methods, such as the upper confidence boundsmethod, a commonly used acquisition algorithm in

reinforcement learning and Bayesian optimization, could also be employed (Auer, 2002; Garnett,

2023).

A somewhat paradoxical aspect of AIAS is that we modelled the Bayesian inference pro-

cess. . .with Bayesian inference, in that we assumed that the agent builds a posterior over the

likelihoods (see Fig. 2.1). This second-order posterior is crucial and separates AIAS from the
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majority of previous modelling attempts in that it provides uncertainty estimates used to guide

the inference process itself (i.e., active sampling). This aspect of the model should not be taken

literally (as any other part of AIAS): Bayesian inference here is a principled, abstract modelling

choice to represent that the brain keeps track of the uncertainty of computations and of current

estimates. The framework is agnostic with respect to how exactly this representation is kept in

the brain, and is compatible with heuristic representations of second-order uncertainty. Impor-

tantly, second-order uncertainty (uncertainty about the posterior) provides an interesting new

interpretation for confidence which we showed to explain empirical findings of human confi-

dence reports (H.-H. Li & Ma, 2020).

Additionally, we would like to connect our study to another prominent area in Bayesian in-

ference: approximate Bayesian computation (ABC), or more broadly, simulation-based inference

(Cranmer et al., 2020; Marjoram et al., 2003; Peters et al., 2012; Sisson et al., 2007, 2018). A well-

known example in this field is rejection sampling. Researchers in ABC face the challenge of

deriving the posterior distribution from existing data when the likelihood function is computa-

tionally intractable. This parallels our hypothesis in AIAS, in which the true likelihood cannot be

exactly known. In ABC, to estimate the posterior distribution without relying on a tractable like-

lihood function, algorithms employ an iterative process. This process involves simulating data

from an assumed underlying process and gradually refining the posterior estimate. This iterative

refinement is similar to the process in AIAS, in which noisy likelihood samples are progressively

drawn to approximate the posterior with increasing accuracy. Moreover, in ABC, active learning

techniques can be employed to expedite the simulation process, analogous to the active sampling

mechanism in AIAS, which accelerates the refinement of the posterior belief. However, there

are essential distinctions between ABC and AIAS. First, AIAS assumes a specific structure for the

likelihood sample (a log-normal distribution), which, although an arbitrary waywe choose to rep-

resent imprecise likelihood estimates, contrasts with the fundamental assumption of ABC that

the likelihood function is computationally intractable. Second, in AIAS, all likelihood samples
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contribute to improving the representation of the true likelihood and true posterior. In contrast,

in ABC, simulated data that poorly match the existing data are typically discarded.

AIAS provides a framework for understanding how approximate inference occurs in the hu-

man brain. Though we found supporting evidence through model fitting and model predictions,

the data we used – choice, confidence and response times – all reflect the outcomes of a hidden in-

ference process. Is it possible to more directly examine the active sampling process at work? Eye

movements might offer insights into the agent’s thought processes, potentially indicating which

category the agent is actively sampling from. For example, fixation times have been reported to

correlate with the final choice in multiple-alternative value-based decision-making (Krajbich &

Rangel, 2011), and researchers in the field of value-based decision-making used eye movement

data to test their models (Callaway et al., 2021; Jang et al., 2021). A similar dataset in categoriza-

tion can thus help determine whether eye movements correlates with AIAS’s sampling process.

However, researchers should exercise caution in experimental design, as eye movements can also

serve the purpose of active sensing, as mentioned above.

An interesting future direction of research would be to investigate the neural basis of AIAS

in the brain. Sequential sampling mechanisms have been well-established in neural systems for

processing visual inputs in the visual cortex (Gold & Shadlen, 2001) and for memory retrieval

in the hippocampus (Shadlen & Shohamy, 2016). Our theoretical framework proposes a possible

third source of sequential sampling, which may have distinct neural correlates. One potential

location for this mechanism is the medial frontal cortex, as has been identified for information

sampling in economic decision-making tasks (Kaanders et al., 2021). Future imaging studies are

needed to address this question.
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2.4 Methods

In this section, we first cover in detail the mathematical framework of AIAS. We then provide

task and model details for the two tasks presented in the main paper, the multi-alternative cate-

gorization and decision confidence task and the variable-reliability task. Finally, we outline the

model fitting procedures, including model comparison and data visualization techniques.

2.4.1 Mathematical Description of AIAS

Generative model. We consider an 𝑁 -alternative categorization task under uncertainty. We

assume the agent receives a potentially noisy observation 𝑥 . The true likelihoods 𝐿𝑖 = 𝑝 (𝑥 |𝐶 = 𝑖)

and the true posteriors 𝑃𝑖 = 𝑝 (𝐶 = 𝑖 |𝑥), 𝑖 = 1, 2, ..., 𝑁 are unknown to the agent. We denote the

true posterior vector as P ≜ (𝑃1, 𝑃2, · · · , 𝑃𝑁 ). In AIAS, we assume that the agent estimates the

true likelihood values (and hence the true posterior values) by iteratively drawing noisy sam-

ples of the likelihoods. At each time step, the agent can draw a noisy likelihood sample 𝑙𝑘𝑖 for

a chosen category 𝑖 , where 𝑘 is the position in the sequence of likelihood samples for that cat-

egory. Specifically, it is from a log-normal distribution centered on the true likelihood value,

𝑝 (log 𝑙𝑘𝑖 |𝐿𝑖) = N(log 𝑙𝑘𝑖 ; log𝐿𝑖, 𝜎2). We denote the vector of all likelihood samples of category 𝑖 as

l𝑖 ≜ (𝑙1𝑖 , 𝑙2𝑖 , · · · ).

Inference. Given a set of likelihood samples {l1, l2, · · · , l𝑁 } and a prior over likelihoods 𝑝 (𝐿𝑖),

the agent is able to compute their belief about the true likelihoods, i.e. the posteriors over the

likelihoods using 𝑝 (𝐿𝑖 |l𝑖) ∝ 𝑝 (𝐿𝑖)𝑝 (l𝑖 |𝐿𝑖). Specifically, we assume an empirical log-normal dis-

tribution for the prior over each likelihood 𝑝 (log𝐿𝑖) = N(log𝐿𝑖 ; 𝜇𝐿, 𝜎2
𝐿
) and the agent’s belief

(likelihood in their perspective) of getting each individual likelihood sample is the same as the

generative model, i.e. 𝑝 (log 𝑙𝑘𝑖 |𝐿𝑖) = N(log 𝑙𝑘𝑖 ; log𝐿𝑖, 𝜎2). Combining the prior over the likelihood
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and the likelihood of the likelihood, this gives us
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where 𝑛𝑖 is the number of the drawn likelihood samples for category 𝑖 . Now that the agent has

their belief about the true likelihoods, they then apply Bayes’ rule again to calculate their belief

about the true posteriors, i.e. the posteriors over the posteriors 𝑃𝑖 =
𝑝 (𝐶=𝑖)𝐿𝑖

Σ𝑁
𝑗=1𝑝 (𝐶= 𝑗)𝐿 𝑗

. We assume an

equal prior over all categories 𝑝 (𝐶 = 𝑖) = 1
𝑁
, and this gives us 𝑃𝑖 = 𝐿𝑖

Σ𝑁
𝑗=1𝐿 𝑗

. We further denote the

observer’s belief about the true posterior vector as 𝑝 (P|l), where l ≜ {l1, l2, · · · , l𝑁 } is the set of

all likelihood samples of all categories.

Given the posterior over the posterior vector, 𝑝 (P|l), we further define the agent’s confidence

𝑐𝑖 as the subjective belief that the chosen category 𝑖 has the highest true posterior probability

when making a decision for categorization, i.e. 𝑐𝑖 = 𝑝 (𝑃𝑖 = max(𝑃1, 𝑃2, · · · , 𝑃𝑁 ) |l) which we

name “comparative confidence”. In the 𝑁 = 2 case, the 𝑐𝑖 can be analytically calculated. In the

more general cases, to derive 𝑐𝑖 , an 𝑁 − 1 dimensional integration is needed. In the model fitting,

we conducted numerical integration (Riemann summation) to get this value.

Active Sampling, Termination, and Decision. Previously, we assumed that the agent can

draw a noisy likelihood sample 𝑙𝑘𝑖 for a chosen category 𝑖 at each time step. Now we address

the problems of the choice of which category to sample from (active sampling), when to stop

(termination), and which category to select at the end (decision).

We assume the agent starts with no or vague information about the categories, so they first

draw a likelihood sample for each category 𝑖 . Then, after updating the belief given the likelihood

samples obtained so far, the agent considers each category as a candidate for drawing a likelihood

sample for the next iteration. The goal is to estimate the expected utility 𝑢 𝑗 for refining the like-

lihood of category 𝑗 ( 𝑗 = 1, 2, ..., 𝑁 ), where the utility is some metrics related to the information

gain about which category is most probable when it comes to making a decision. To perform this
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estimation, separately for each category 𝑗 , the agent simulates a new, ‘phantasized’ likelihood

sample 𝑙 𝑗 based on current beliefs,

𝑝 (log 𝑙 𝑗 |lj)

=

∫
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The phantasized likelihood sample 𝑙 𝑗 leads to a change of the corresponding posterior over the

likelihood 𝐿 𝑗 , a change of the posterior over the posterior vector P, and thus a change of the

aforementioned confidence 𝑐𝑖 for all 𝑁 categories. We define the utility of such sampling as the

absolute change of the largest confidence in all 𝑁 categories, 𝑢 𝑗 = |Δ (max(𝑐1, ..., 𝑐𝑁 )) |. After

getting the 𝑢 𝑗 , the agent discards the simulated likelihood sample 𝑙 𝑗 . After one simulation per

category, if the maximum of all utilities𝑢 𝑗 ( 𝑗 = 1, 2, ..., 𝑁 ) is larger than a predetermined termina-

tion threshold 𝜖 , the agent chooses the category 𝑗 with the largest 𝑢 𝑗 to draw an actual likelihood

sample. The agent then updates their posterior over the posterior vector and repeats the whole

simulation process. Conversely, if the largest utility is below the threshold 𝜖 , the agent stops

sampling as further sampling would likely yield little information gain, and chooses the category

𝑖 with the highest confidence 𝑐𝑖 .

2.4.2 Details of the Multi-alternative Categorization and Decision

Confidence Task and Models

We describe here details of AIAS and other models used for the multi-alternative categorization

and decision confidence (‘color clouds’) task (H.-H. Li & Ma, 2020). Model details are summarized

in Table 2.1.
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True likelihoods and posteriors. In the experiment, there were three color clouds in dif-

ferent colors. Each cloud consisted of 𝑀 = 375 dots whose horizontal location was drawn inde-

pendently from a normal distributionN(𝜇𝑖, 𝜎2
𝑠 ), where the mean 𝜇𝑖 for 𝑖 = 1, 2, 3 depended on the

cloud configuration, and the variance of the clouds 𝜎2
𝑠 was the same for all clouds. For all dots,

their vertical location was drawn independently from a normal distribution N(0, 𝜎2
𝑠 ). The black

(target) dot was generated first by randomly choosing one of the three clouds with equal proba-

bility and then by randomly choosing a dot inside. Since the vertical location distributions of the

black dot of three clouds are the same, we denote the horizontal location of the black dot as 𝑠 .

Therefore, the true likelihoods are calculated as 𝐿𝑖 = N(𝑠; 𝜇𝑖, 𝜎2
𝑠 ), 𝑖 = 1, 2, 3. As per the generative

model, we assume an equal prior across all categories. Then we apply Bayes’ rule, and the true

posteriors are calculated as 𝑃𝑖 = 𝐿𝑖∑3
𝑖=1 𝐿𝑖

. We ignored perceptual noise in our analyses, since the

original authors reported that including perceptual noise in the observer models improved model

fitting performance only marginally in the Max and Difference models (H.-H. Li & Ma, 2020).

AIAS.Model details are described in the section AIAS-based Model for Categorization Tasks.

In order to fit the model to discrete confidence data in the 1-4 confidence scale used in the exper-

iment, we discretize the AIAS-generated continuous confidence 𝑐 into discrete 𝑐𝑑 from 1 to 4 by

using three boundary parameters 𝑏1, 𝑏2, 𝑏3, such that 𝑐𝑑 = 𝑖 if 𝑏𝑖−1 < 𝑐 ≤ 𝑏𝑖 (𝑏0 = −∞, 𝑏4 = ∞).

For the purpose of capturing outliers or participants’ outright mistakes (e.g., a misclick), we also

introduced a lapse rate 0 ⩽ 𝜆 ⩽ 1, i.e. a probability 𝜆 that in each trial the category response and

the confidence response are both randomly chosen from a discrete uniform distribution (Prins,

2012). Altogether, there are six free parameters in total: the noise level of likelihoods samples 𝜎 ,

the termination threshold 𝜖 , three boundaries to discretize the continuous confidence, 𝑏1, 𝑏2, 𝑏3,

and the lapse rate 𝜆.

Max and Difference models. We describe here the Max and Difference models of confi-

dence as introduced in H.-H. Li and Ma (2020). Both models assume, close in spirit to some of

our assumptions, that agents can only access noisy estimates of the posteriors over the three
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Model Description Parameters (Meaning) #
AIAS Approximate Infer-

ence with Active
Sampling

𝜎 (Noise level of likelihood sam-
ples), 𝜖 (Termination thresh-
old), 𝑏1, 𝑏2, 𝑏3 (Boundaries to
discretize confidence), 𝜆 (Lapse
rate)

6

Max Confidence based
on highest posterior

𝛼 (Dirichlet noise level),
𝑏1, 𝑏2, 𝑏3 (Boundaries to dis-
cretize confidence), 𝜆 (Lapse
rate)

5

Difference Confidence based
on difference of two
highest posteriors

Same as Max 5

AIRS Approximate Infer-
ence with Random
Sampling

Same as AIAS 6

AISS Approximate In-
ference with Same
Sampling

Same as AIAS 6

AISS∗ Approximate In-
ference with Same
Sampling (Single
iteration)

Same as AIAS,without 𝜖 (Termi-
nation threshold)

5

Race Evidence accumula-
tion with mutual in-
hibition

𝑚 (Drifting scalar), 𝑛 (Mutual
inhibition scalar), 𝜎𝑑 (Drifting
noise level), 𝑏1, 𝑏2, 𝑏3 (Bound-
aries to discretize confidence), 𝜆
(Lapse rate)

7

Table 2.1: Multi-alternative categorization and decision confidence task models. Names,
descriptions, parameters and total free parameter count (#) for themodels used in the ‘color cloud’
task.

categories (dot clouds). Specifically, posteriors are corrupted by Dirichlet-noise:

𝑝 (Q |P;𝛼 ) = 1
𝐵(𝛼P)

3∏
𝑖=1

𝑞
𝛼𝑃𝑖−1
𝑖

,

𝐵(𝛼P) =

3∏
𝑖=1

Γ(𝛼𝑃𝑖)

Γ

(
𝛼

3∑︁
𝑖=1

𝑃𝑖

) ,
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where the concentration parameter 𝛼 denotes the Dirichlet noise level, Γ represents the gamma

function, P is a vector consisting of the three true posteriors (𝑃1, 𝑃2, 𝑃3), andQ is a vector consist-

ing of three noise-perturbed posterior probabilities (𝑄1, 𝑄2, 𝑄3). Having observed the corrupted

posterior Q, the agent picks the category 𝑖 whose posterior probability 𝑄𝑖 is the largest. In the

Max model, the agent uses that 𝑄𝑖 to yield a confidence value. In the Difference model, the

confidence value is defined as Δ𝑄 , the difference between the two highest𝑄𝑖 . In both models, the

confidence value is then discretized by using boundary parameters (see AIAS above). A lapse rate

𝜆 is also included. Altogether, both models include five free parameters in total: the noise level

of the Dirichlet distribution 𝛼 , three boundaries to discretize the continuous confidence 𝑏1, 𝑏2, 𝑏3,

and the lapse rate 𝜆. More details can be found in the original paper (H.-H. Li & Ma, 2020).

AIAS variants. We describe here three variants of the base AIAS models which differ from

AIAS in some key aspects.

• AIRS. Approximate inference with random sampling (AIRS) differs from AIAS in two as-

pects. First, a random category is selected to draw a noisy likelihood sample from at

each iteration. Second, when deciding when to stop, the agent will compare the absolute

change of the largest confidence in all three categories before and after another sample

|Δ(max(𝑐1, 𝑐2, 𝑐3) | to the threshold 𝜖 ; if the absolute change is smaller, the agent stops sam-

pling.

• AISS. In approximate inference with same sampling (AISS), first the agent draws a likelihood

sample from all three categories at each iteration. Second, when deciding when to stop,

the agent will simulate the consequences of drawing a likelihood sample from all three

categories and compare the absolute change of the largest confidence in all three categories

before and after the simulation |Δ(max(𝑐1, 𝑐2, 𝑐3) | to the threshold 𝜖 ; if the absolute change

is smaller, the agent stops sampling.

• AISS∗. In approximate inference with same sampling, only once (AISS∗) there is no iterative
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process. The agent draws a likelihood sample from all three categories and immediately

stops and decides which category to select.

All model variants share the same parameter set of AIAS, with the exception of AISS∗ where the

termination threshold 𝜖 is not present.

Race model. The true posteriors are used as the drift rate, and mutual inhibition between

different categories is allowed. The accumulation at time 𝑡 for category 𝑖 is updated as

𝑥𝑡𝑖 = 𝑥𝑡−1𝑖 +𝑚𝑃𝑖 − 𝑛
∑︁
𝑗≠𝑖

𝑥𝑡−1𝑗 + 𝜂, 𝜂
i.i.d.∼ N(0, 𝜎2

𝑑
),

where 𝑚 is the drifting scalar, 𝑃𝑖 is the true posterior for category 𝑖 , 𝑛 is the mutual inhibition

scalar, and 𝜂 is a zero-centered normal noise with a variance of 𝜎2
𝑑
. The accumulation is set to 0

when it gets below 0 and the bound was set as a constant. For the Race model, we defined the

confidence value as the reciprocal of the number of iterations. The confidence is discretized by

using the boundary parameters. As per the other models, we also included a lapse rate. Alto-

gether, there are seven free parameters in total: the drifting scalar𝑚, the mutual inhibition scalar

𝑛, the drifting random noise level 𝜎𝑑 , three boundaries to discretize the continuous confidence

𝑏1, 𝑏2, 𝑏3, and the lapse rate 𝜆.

2.4.3 Details of the Variable-reliability Task and Models

We describe here the tasks from Adler and Ma (2018) and the models used. Model details are

summarized in Table 2.2.

True likelihoods and posteriors. For each task (1 and 2), the experiment used two cat-

egories of orientations, N(𝜇1, 𝜎2
1 ) and N(𝜇2, 𝜎2

2 ). On each trial, an orientation 𝑠 was randomly

drawn from one of the two categories. Like Adler andMa (2018), we assume that people measured

a noisy version of the true orientation 𝑥 ∼ N(𝑠, 𝜎2
𝑝). For the variance of the sensory noise, we also

assume𝜎2
𝑝 = 𝛾+𝛼𝑐−𝛽 , where 𝑐 is the visual contrast of theGabor and𝛼 , 𝛽 , and𝛾 are free parameters
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(Adler & Ma, 2018). Therefore, the true likelihoods are calculated as 𝐿𝑖 = N(𝑠; 𝜇𝑖, 𝜎2
𝑖 +𝜎2

𝑝), 𝑖 = 1, 2.

Equal prior is assumed across the two categories. Then Bayes’ rule is applied, and the true pos-

teriors are calculated as 𝑃𝑖 = 𝐿𝑖
𝐿1+𝐿2 .

Model Description Parameters (Meaning) #
AIAS Approximate Infer-

ence with Active
Sampling

𝜎 (Noise level of likelihood sam-
ples), 𝜖 (Termination threshold),
𝛾, 𝛼, 𝛽 (Visual contrast param-
eters), 𝑏1, 𝑏2, 𝑏3 (Boundaries to
discretize confidence), 𝜆 (Lapse
rate)

9

Extended
Bayesian
observer

Bayesian observer
model with decision
noise

𝜎𝑓 (Decision noise magnitude),
𝛾, 𝛼, 𝛽 (Visual contrast param-
eters), 𝑏1, 𝑏2, 𝑏3 (Boundaries to
discretize confidence), 𝜆 (Lapse
rate)

8

Table 2.2: Variable-reliability task models. Names, descriptions, parameters and total free
parameter count (#) for the models used in the variable-reliability task.

AIAS. AIAS here is the same model as the previous section, except there are three additional

visual contrast parameters. For this dataset, the model has nine free parameters in total: the noise

level of likelihoods samples 𝜎 , the termination threshold 𝜖 , three visual contrast parameters 𝛾 , 𝛼 ,

and 𝛽 , three boundaries to discretize the continuous confidence 𝑏1, 𝑏2, 𝑏3, and the lapse rate 𝜆.

Extended Bayesian observer model. Adler and Ma (2018) consider in their analysis a vari-

ety of Bayesian and hybrid observer models with Bayesian components. Here we consider from

their paper an extended Bayesian observer model, chosen to be of comparable complexity to

AIAS (Adler & Ma, 2018). Besides standard Bayesian observer model assumptions, this model

includes decision noise in that the decision variable 𝑑 , i.e. the true log posterior odds, is corrupted

by normal noise,

𝑑 = log
𝑃1

𝑃2
+ 𝜂, 𝜂

i.i.d.∼ N(0, 𝜎2
𝑓
),

where 𝜎𝑓 is the decision noise magnitude. Note that for 𝜎𝑓 → 0, this model recovers a standard

Bayesian observer. If 𝑑 > 0, the agent chooses category 1; otherwise, the agent chooses category
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2. The confidence is predicted by the absolute value of 𝑑 and discretized using the boundary

parameters 𝑏1, 𝑏2, 𝑏3 as in AIAS: 𝑐𝑑 = 𝑖 if 𝑏𝑖−1 < |𝑑 | ≤ 𝑏𝑖 (with 𝑏0 = 0 and 𝑏4 = ∞). Altogether,

the model has eight free parameters: the inference noise 𝜎𝑓 , three visual contrast parameters 𝛾 ,

𝛼 , and 𝛽 , three boundaries to discretize the continuous confidence 𝑏1, 𝑏2, 𝑏3, and the lapse rate 𝜆.

2.4.4 Model Fitting Details and Model Comparison

Model Fitting. Wefit eachmodel to individual-participant data bymaximizing the log likelihood

of 𝜽 , log𝐿 (𝜽 ) = log𝑝 (data |𝜽 ). All the consideredmodels assume that the trials are conditionally

independent. We denote the experimental condition, category response, and confidence report

on the i-th trial by 𝑣𝑖 , 𝐶𝑖 , and 𝑐𝑑𝑖 . Then, the log likelihood becomes

log𝐿 (𝜽 ) = log
∏
𝑖

𝑝

(
𝐶𝑖, 𝑐𝑑𝑖 |𝑣𝑖, 𝜽

)
=

∑︁
𝑖

log𝑝
(
𝐶𝑖, 𝑐𝑑𝑖 |𝑣𝑖, 𝜽

)
where log𝑝

(
𝐶𝑖, 𝑐𝑑𝑖 |𝑣𝑖, 𝜽

)
is the log likelihood of each individual trial, described below. We opti-

mized the parameters for each individual using Bayesian Adaptive Direct Search (BADS; Acerbi

and Ma (2017)).

Per-trial log likelihoods. To fit the models we need to compute the per-trial log-likelihood

log𝑝
(
𝐶𝑖, 𝑐𝑑𝑖 |𝑣𝑖, 𝜽

)
. For most models in this paper, and particularly AIAS and its variants, this

quantity is unavailable in closed form, but we are able to generate model responses (choice

and confidence) by simulating from the model. Therefore, we estimated the log likelihood for

a given trial and parameter vector 𝜽 using a stochastic estimation method called Inverse Bino-

mial Sampling (IBS), which only needs the ability to simulate from the model (van Opheusden et

al., 2020). Crucially, IBS yields unbiased estimates of the log-probability with known variance. We

used IBS to obtain an unbiased estimate of the joint log probability of category and confidence,

log𝑝 (𝐶, 𝑐𝑑 |𝜽 ) for each trial.

Model Comparison. We used AIC (Akaike, 1974) for model comparison, which is calculated
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as AIC = − log𝐿★ + 2𝑘 , where 𝐿★ is the maximum value of a model’s likelihood function and

𝑘 is the number of fitted parameters. To report AIC, we computed the AIC for each participant

and summed them up. The confidence interval of the group-summed AIS was estimated by non-

parametric bootstrapping.

2.4.5 Datasets and Data Visualisation

We fitted two datasets in our analysis (Adler &Ma, 2018; H.-H. Li & Ma, 2020) (available at: https:

//github.com/WeiJiMaLab/confidence-multiple-alternatives and https://github.com/WeiJiMaLab/

confidence). Since fitting AIAS is computationally expensive, we only fitted one experiment from

each dataset. We briefly describe each dataset below.

We analysed data from experiment 3 in (H.-H. Li & Ma, 2020) in the section Multi-alternative

Categorization and Decision Confidence, which consisted of 11 participants. As black dot loca-

tions were drawn from a continuous distribution, to plot the data we grouped nearby locations

using a 0.6-unit moving-window. Data and model fitting results are shown in Fig. 2.3F-H.

We analysed data from experiment 2 in (Adler & Ma, 2018) in the section Inference with

Varying Perceptual Reliability, which consisted of 8 participants. As Gabor’s orientation were

drawn from a continuous distribution, to plot the data we grouped nearby locations using a 3-

degree moving-window. Data and model fitting results are shown in Fig. 2.4C.
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2.5 Supplementary Figures

Figure 2.S1: AIAS replicates Hick’s law. A) The mean response time increases approximately
logarithmically with the number of categories. The simulations generated from participants’
estimated parameters are shown on the top (eleven participants from H.-H. Li and Ma (2020)’s
experiment) and bottom (eight participants Adler and Ma (2018)’s experiment). The black dot
shows the mean response time simulated by AIAS. The blue line shows the logarithmic fit of
AIAS’s response time to the number of categories, and the red line shows the linear fit. While it
can be hard to discern for some panels, the logarithmic fit generally provides a better match than
the linear fit (see Fig. 2.5B in the main text).
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3 | Cognitive Mechanisms of

Collaboration: an Introduction

Collaboration is a cornerstone of human society, serving as the foundation for the advancement

and well-being of communities at all levels. By working together, individuals and groups can pool

their diverse skills, knowledge, and resources to tackle complex challenges that no single person

or organization could address alone. In this dissertation, we define collaboration as behaviors

in which two or more agents coordinate their actions, resulting in outcomes that benefit every

individual involved, similar to previous studies in the field (e.g. Duguid & Melis, 2020). Daily

examples include team sports like soccer, where eleven players on the field take different roles to

get the ball into the opponent’s goal, and working in industries, such as front-end and back-end

software engineers collaborating to push an update to their app. Lifelong decisions like marriage

also exemplify collaboration, as two people manage a household together.

Collaboration fosters innovation and better problem-solving by bringing together diverse per-

spectives and ideas, leading to creative and effective decision-making in fields such as healthcare

(Morley & Cashell, 2017), education (Johnson & Johnson, 2002), technology (Hargadon & Sut-

ton, 1997), and more. It also promotes unity and trust within communities, as working towards

common goals requires mutual understanding and cooperation among different groups (Plötner

et al., 2015; Tomasello & Vaish, 2013). Furthermore, collaboration drives economic growth and

the advancement of human civilization by enabling more efficient resource allocation and facili-
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tating the sharing of information (Balland et al., 2020; Hidalgo et al., 2007). In a globalized world

facing intercontinental issues like climate change and pandemics, the ability to collaborate across

borders is becoming even more crucial (Andersen et al., 2012). Ultimately, understanding collab-

oration and leveraging its best practices are vital for enhancing the quality of life for all members

of human society.

Understanding collaboration in humans begins with studying its developmental process in

early childhood, which reveals the building blocks of collaborative behavior. Infants as young

as 12 months can point to provide information to others, demonstrating the ability to share in-

formation (Liszkowski et al., 2006). By 14 months, children start to grasp the concept of "we,"

indicating the very early development of shared intentionality (Moll et al., 2008). In their second

year, children exhibit significant advancements in their collaborative abilities. They comprehend

language conveying cooperative logic of requests (Grosse et al., 2010), recognize their partner as

an intentional cooperative agent (Warneken et al., 2012), and successfully participate in coopera-

tive problem-solving (Warneken et al., 2006). During the third year, children’s collaboration skills

become more sophisticated. They develop a better recognition of commitments of their own and

their partners’ in collaborative tasks (Gräfenhain et al., 2009) and show a more developed under-

standing of shared intentionality (Gräfenhain et al., 2013). They also show a preference for equal

sharing after collaboration (Hamann et al., 2011; Warneken et al., 2011) and plan the division of

labor, showcasing early organizational skills (Warneken et al., 2014). By the age of five, children

can explicitly coordinate different roles in a shopping task, demonstrating an advanced level of

role differentiation and cooperative planning (Baer & Odic, 2022; Gauvain & Rogoff, 1989). These

developmental milestones highlight the natural progression of collaborative abilities and provide

valuable insights into the foundational elements of collaboration (Tomasello & Hamann, 2012).

Another way to understand collaboration in humans is through comparative psychology,

which involves studying collaboration in other species and comparing it to that in humans. Col-

laborative behaviors are prevalent in the animal kingdom and are observed both in the wild and
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under experimental conditions. The most typical collaborative behavior in the wild is group for-

aging or group hunting, found in wild dogs (Estes & Goddard, 1967), baboons (Maples, 1969),

chimpanzees (Boesch & Boesch, 1989), and many more. These studies qualitatively demonstrate

that animals can collaborate, but without experimental controls, it is challenging to investigate

the characteristics of their collaboration in depth.

Most laboratory studies of animal collaboration focus on chimpanzees, who exhibit high-level

collaborative skills. They recruit collaborators onlywhen necessary and can recognize and recruit

the best collaborators, showcasing their ability to deliberate on the benefits of collaboration and

mentalize their potential collaborators (Melis et al., 2006). They excel in complex cognitive collab-

orative games like the stag-hunt game (Bullinger, Wyman, et al., 2011), which typically requires

advanced reasoning ability (Yoshida et al., 2008). Chimpanzees can also pick and transfer the right

tool to their partner when different roles are required in a task, demonstrating more advanced

skills than simple division of labor (Melis & Tomasello, 2013). Furthermore, they can commu-

nicate to coordinate with each other during collaboration (Melis & Tomasello, 2019). Overall,

chimpanzees in laboratory settings demonstrate advanced collaborative abilities from multiple

perspectives.

However, research still shows a significant gap between their collaborative behaviors and

those of humans. For example, when a collaborator stops performing, 2-year-old human infants,

unlike chimpanzees, attempt to communicate to reengage their collaborator (Warneken et al.,

2006). When given choices to work alone or collaborate, chimpanzees prefer individual strategies

(Bullinger, Melis, & Tomasello, 2011; Rekers et al., 2011). They also show a preference for less

cognitively complex collaborative strategies (Bullinger, Wyman, et al., 2011). Unlike humans,

collaboration does not lead chimpanzees to equally share rewards, and they do not adapt to their

partner or converge on solutions as quickly as humans do (Duguid et al., 2020). These distinctions

highlight the unique and advanced nature of human collaboration, setting it apart from even our

close animal relatives.
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We now turn to research on collaboration in human adults, as they are capable of more com-

plex collaborative tasks with a greater potential to uncover the mechanisms of collaboration. A

traditional line of research in this area is the cooperative games like public goods games (Camerer,

2011; Ostrom et al., 1994). A famous example is the prisoner’s dilemma, where two agents decide

whether to betray each other or keep a secret. Similar matrix payoff games include the Battle of

the Sexes (Camerer, 2011), where participants decide whether to converge on movie A favored

by player A or movie B favored by player B. If they cannot reach an agreement, neither receives

a reward. The stag-hunt game involves both players deciding whether to hunt together for a

stag, which requires more effort but offers a greater reward, or to catch a rabbit with less effort

and reward, but independent of the partner’s decision (Camerer, 2011). The weakest-link game

determines the reward based on the minimum number chosen by all participants, with no extra

return for efforts exceeding this minimum (Van Huyck et al., 1990).

These studies pioneered the quantitative investigation of humans’ coordination processes in

the context of possible competition, stemming from the field of game theory. While coordinat-

ing actions are a core component of collaboration and these games mimic aspects of real-life

collaboration (i.e., each individual might have their own interests), they also pose obstacles for

researchers aiming to investigate the mechanisms of collaboration. The intention to compete

might overshadow the collaborative process. Additionally, these games typically involve turn-

based actions, whereas real-life collaboration often occurs in real time. Consequently, although

some research has examined how decisions evolve in the repeated version of these games (Brown-

ing & Colman, 2004; Helbing et al., 2005), these experiments do not fully capture the temporal

dynamics of real-world collaboration.

Partially addressing these limitations, some studies employed the paradigm of real-world

group discussions. For example, jury deliberations to determine the guilt of several crime suspects

(Stewart & Stasser, 1995) or student council meetings to decide on the election of a chairperson

(Stasser & Stewart, 1992). These scenarios arguably offer the most vivid representations of real-
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world collaboration: each participant contributes to the discussion of a common goal, ultimately

reaching a consensus. However, it is challenging to quantify communication patterns in free dis-

cussion settings. As a result, these studies can only qualitatively contribute to our understanding

of collaboration, for example, how information sharing can be promoted, similar to developmen-

tal psychology studies in infants with their own limitations.

More recently, researchers have adoptedmore sophisticated research paradigms to investigate

collaboration. For example, in collaborative search tasks, two players search together on a screen

to determine if a stimulus is present (Andrade-Lotero & Goldstone, 2021; Brennan et al., 2008).

This setup examines whether participants can divide the labor by coordinating specific areas

to each player, thus addressing the problem more efficiently. However, in most of these cases,

collaboration is beneficial but not strictly necessary, and participants often show varying degrees

of labor division. Therefore, it would be ideal to create a game where collaboration is essential,

such that the team cannot succeed without it.

In the field of artificial intelligence (AI), recent years have seen a surge of interest in col-

laboration, whether between humans and computers or AI, or between two computer agents.

A notable benchmark in this area is the OpenAI paper on Dota 2 (Berner et al., 2019), where a

computer-trained AI team of five outperformed the then best human teams in the world, OG.

Similarly, in other collaborative games like Hanabi, researchers have developed AI agents that

achieve above-human-level performance and are comfortable for human players to interact with

(Bard et al., 2020). More examples can be found under terms such as AI alignment (Ji et al., 2023),

multi-agent learning (Du et al., 2023), and human-robot interaction (Sheridan, 2016).

The emergence of collaboration studies in AI provides valuable insights into understanding

collaboration in humans. Conversely, studying human collaboration also offers knowledge for

AI researchers to develop better agents that can collaborate with each other or with humans

(Carroll et al., 2019). For example, humans are adept at collaborating with unfamiliar partners, a

challenge that AI has faced (Duguid et al., 2020; Mehta et al., 1994). By borrowing insights from
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human studies, researchers have created AI agents capable of zero-shot learning for collaboration

with novel agents (Hu et al., 2020; Strouse et al., 2021). These advancements in AI collaboration

have also been crucial to the development of recent popular generative AI technologies (Ji et al.,

2023).

Coordinating roles is an important part of collaboration, particularly when distinct functional

roles are needed, the result of which is usually termed as role specialization or role differentia-

tion. The benefits of role specialization are evident across various domains, from animals to

AI-controlled agents. For example, a honey bee colony comprises several dozen female workers,

several male productive drones, and only one egg-laying queen (Oster & Wilson, 1978; Page &

Mitchell, 1990). Mammals like lions and bottlenose dolphins assign different roles during group

hunting, such as ’flankers’ circling the prey and ’drivers’ herding the prey (Gazda et al., 2005;

Stander, 1992). For AI agents, role coordination is crucial for effective interaction with human

teams (M. Li et al., 2021). Multi-agent coordination algorithms incorporate either implicit (Wang

et al., 2020) or explicit (Raileanu et al., 2018) role planning to improve their performance. In hu-

mans, the ability to coordinate roles in collaboration emerges as early as three years old, as has

been shown in a study that children can choose complementary tools with respect to their part-

ner (Warneken et al., 2014). However, more advanced role coordination, such as assigning more

challenging tasks to the more skilled individuals, typically does not appear until later ages (Baer

& Odic, 2022; Magid et al., 2018), indicating a gradual development of role coordination skills.

In the rest of this dissertation, we will explore human collaboration in a novel real-time

continuous-space task. This task, called Zombie Escape, is a two-player game designed to re-

quire participants to coordinate different roles. A key focus of our exploration is understanding

how humans coordinate roles and uncovering the temporal dynamics of this process. In Chap-

ter 4, we will introduce the task and describe the dataset collected from an online experiment

platform. We will then present statistical and linear regression results to the game. In Chapter 5,

we develop a Bayesian linear extrapolation process model and fit the model to account for the
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temporal process of role coordination in the game.
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4 | Human Role Coordination in a

Real-time Collaborative Game

Abstract

Collaboration enables humans to achieve feats together that no individual could achieve alone. To

maximize utility through collaboration, agents must not only plan and react to the environment

but also coordinate their roles dynamically in real-time. However, most previous studies have re-

lied on grid-world, turn-based paradigms to study collaboration, which are less naturalistic than

real-world collaboration and insufficient to probe role coordination in real time. In this study, we

introduce Zombie Escape, a new two-player game paradigm where both time and space are con-

tinuous, designed to study human collaboration and the temporal process of role coordination.

We found that players quickly adapted to the environment and efficiently coordinated their roles

in response to changing conditions. The difficulty level was balanced—challenging enough to en-

gage participants without discouraging effort or making the game monotonous. We observed a

default pattern of role coordination among participants, and when the default role differentiation

conflicted with the required role differentiation, dyads were less likely to adopt the correct roles.

Moreover, we discovered that while deciding whether to maintain or switch their coordinated

roles, players tracked past performance and adjusted future role coordination accordingly, show-

ing a pattern of win-stay-lose-shift. These results demonstrate that individuals can successfully
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collaborate in a real-time tasks and dynamically coordinate their roles in changing environments.

Keywords: collaboration; role coordination; role differentiation; real-time; continuous-space
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4.1 Introduction

In the 2013-2014 Premier League match between Arsenal and Norwich, four attackers from Arse-

nal outmaneuvered Norwich’s eight-man defense by passing six times in five seconds, including

two back-heels, resulting in a goal by Jack Wilshere. What makes this difficult? Of course, the

motor-perceptual coordination refined by years of practice is necessary. The presence of oppo-

nents also narrows the space the attackers can exploit. Additionally, the attackers need to plan

in real time. Within a brief window like five seconds, there is no way to follow an alternating

plan-move routine. Unsurprisingly, the core of this process is collaboration. Furthermore, role

coordination occurs in real time as they need to decide who will assist and who will take the shot.

Real-time collaboration, including the ability to coordinate roles such as locating items and

managing a shopping list, can develop as early as five years old, as demonstrated in a dyadic

grocery shopping task (Gauvain & Rogoff, 1989). This skill is also evident in more perceptual

tasks. In a dyadic visual search task, researchers found that through either gaze position visual-

ization or voice communication, participants were able to assign different areas to search, thereby

making the visual search more efficient (Brennan et al., 2008). However, in these tasks, collabo-

ration is beneficial rather than necessary, thus only the efficiency, rather than the mechanism, of

collaboration is examined.

Now let’s look at the previous paradigms researchers have used to probe collaboration. Yoshida

et al. (2008) used a stag-hunter or rabbit-catcher grid-world turn-based game, where two players

either collaborate to catch a high-reward stag together (both get a high reward) or a relatively

low-reward rabbit (the catcher gets a higher reward than the other). In this game, collaboration is

necessary to hunt the stag. Researchers have also used grid-world turn-based navigation games

to probe collaboration, where two players control their agents in a narrow grid world with col-

lision, making collaboration necessary for both agents to navigate (Kleiman-Weiner et al., 2016).

Adapted from the famous collaborative video game Overcooked, researchers have used a grid-

49



world turn-based cooking game to investigate collaboration when problems are comprised of

sub-goals (Wu et al., 2021). All these games are constrained to grid-world and turn-based set-

tings. However, in the real world, such as the example of soccer mentioned before, naturalistic

collaboration involves continuous space and continuous time. Additionally, some of these games

have competitive components, which might hinder the investigation of collaboration itself.

We therefore designed the experiment task such that: 1) it occurs in continuous space and

in real time to better mimic collaboration happening in the real world, as opposed to grid-world

and turn-based games, 2) it is non-competitive so that nothing hinders our investigation of col-

laboration, 3) both participants share the same reward at all times to maximize their potential for

collaboration, and 4) collaboration is necessary rather than merely beneficial.

In the task, participants played as a “red survivor" and a “blue survivor," tasked with reach-

ing the cure to save the world. Either survivor reaching the cure is a success for both of them.

However, to get to the cure, they need to outmaneuver a faster zombie. If they are caught by the

zombie, they are dead for the current trial and cannot move. If both of them are dead, the trial

fails. One caveat is that to succeed, one of the players has to sacrifice themselves by being caught

by the zombie first to let their partner reach the cure. Under this design, participants’ role coor-

dination can be characterized by whether they are performing as the baiter (the one attracting

the zombie) or the dasher (the one reaching the cure). To proceed to the next environment, par-

ticipants need to win three times before failing ten times in total. We evaluated the dynamics of

collaboration, with an emphasis on role coordination, across multiple environments to systemat-

ically investigate collaboration in different settings. We predicted that participants would be able

to adapt to different environments to successfully collaborate with each other. We also predicted

that within one environment, they would learn from their previous history of role coordination to

dynamically adjust to the best coordinated roles to conquer the current environment. We tested

these predictions through statistical analysis.

Overall, we found that participants succeeded in collaboratingwith each other across different
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environments. They quickly learnt to collaborate with each other and cruised through the task

with some efforts. We found that they tended to have a default pattern of role coordination when

completing the task, that is, to have the closer player to the zombie as the baiter. When the

required role differentiation conflicted with this, they were less likely to coordinate their roles

correctly. They also dynamically adapted their role coordination within a single environment as

the trial progressed, showing a interesting pattern of win-stay-lose-sift.

4.2 Methods

4.2.1 Participant

Participants were recruited on Prolific (https://www.prolific.co) to take part in a psychology ex-

periment. Participants were informed that the task would require them to play a collaborative

video game with another online player. After passing several comprehension checks of the in-

structions, participants entered a waiting room to be paired with another anonymous player

online. The task began immediately after two participants were paired; if a participant did not

find a pair within five minutes, they exited the experiment and received a partial compensation

for their time (about 5 minutes for the comprehension task and 5 minutes waiting) amounting

to $3. The full experiment took about 50 minutes, and participants were paid $10 and a bonus of

$0.08 for every trial they succeeded. The maximum bonus was $5. On average, participants were

awarded a bonus of $4.3. If either participant in the dyad dropped out in the middle of the task,

there data was discarded, and they received a partial payment of $3 plus $0.35 for every condition

they completed. We recruited 111 participants. Eleven participants were unable to find another

participant to pair with. Eighteen dyads (36 participants) were unable to finish the whole experi-

ment due to internet connection issue or dropping out in the middle. After these exclusions, our

dataset consisted of 𝑁 = 32 dyads (64 participants; 20 female, 42 male, 2 other). The average age
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of participants was 38.5 years old (𝑆𝐷 = 10.4).

4.2.2 Paradigm

We name our paradigm “Zombie Escape”. The game is set in an apocalyptic scenario with zom-

bies. A demo interface seen by a player in the experiment is shown in Fig. 4.1. The two agents,

denoted by the red and blue dots, are the so-called “survivors”. The agent with the "self" text is

controlled by the player, while the other one with the "partner" text is controlled by their partner.

Their partner sees the same interface, but with the "self" and "partner" text swapped. The green

triangle represents the computer-controlled zombie. The green line on the right represents the

cure.

The mission for both players is to save the world by reaching the cure. If either player reaches

the cure, both players succeed and the trial ends immediately. They receive a bonus of $0.08 for

every trial they succeed. It does not matter who reaches the cure; the bonus depends only on the

number of trials the dyad as a whole succeeds. That is to say, both players are always paid the

same amount and there is no extra pay for individually reaching the cure. To reach the cure, they

can press "F" to move left or "J" to move right. They cannot move in the vertical direction. Both

players cannot communicate with each other during the experiment, except by controlling their

own agents.

However, there is a zombie blocking the players from reaching the cure. The zombie chases

players to stop them from reaching the cure. The zombie can move in any direction and always

chases the player closer to itself, and this is explicitly instructed and tested in the questionnaire.

If a player is caught by the zombie, they are "dead", disappear from the screen, and cannot further

control their agent until the next trial. The dyad fails if both players are caught by the zombie

before reaching the cure. The zombie is faster than the players, and to encourage collaboration

between players, the game is designed so that if both players head toward the cure starting from

the beginning of the trial, they will fail.

52



The game server is refreshed at a frequency of 15 Hz. The positions andmovements of players

and the zombie are recorded at this pace. At the beginning of each trial. there is three-second

countdown. On average, each trial lasts for about 12 seconds.

Figure 4.1: The interface of the Zombie Escape paradigm. Two players are represented as red and
blue dots, while the computer-controlled zombie is shown as a larger green triangle. The green
line on the right represents the cure. The goal for both players move left and right to reach the
cure, which is blocked by the zombie. The zombie chases the closer player and catches a player
when the green triangle touches them, causing the caught player to disappear until the next trial.
If either player reaches the cure, both players succeed. If neither player reaches the cure, both
players fail. The top left displays the progress in the current condition (environment), and the
top right shows the overall progress of the game.
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4.2.3 Experimental Design

There are 20 different conditions (environments) in the game, consisting of 2 practice conditions

and 18 formal conditions. The two practice conditions always start at the beginning, and the

order of the remaining 18 formal conditions is shuffled across different dyads. We will provide a

detailed breakdown of these 20 conditions later. An alert will appear at the beginning of a new

condition, demonstrating the speeds of both players. After every five conditions, there will be

a one-minute break. The dyad can choose to extend the break to a maximum of four minutes

before being considered idle and dropped from the experiment."

In each condition, the dyad needs to succeed three times to proceed to the next condition,

with the assumption that they have fully mastered it. If the dyad fails ten times in total, they will

also proceed to the next condition, assuming the current condition is too difficult for them. The

number of trials for a condition can vary from three trials (three successes in a row) to twelve

trials (three successes plus nine failures or two successes plus ten failures). This information,

along with the overall progress of the game (i.e. how many conditions they have finished) is

displayed at the top of the screen (Fig. 4.1).

Now we provide a detailed description of the 20 conditions. The game is displayed on a

960 × 640 pixel canvas (Fig. 4.2), with the top left corner of the screen at (0, 0). The average

horizontal starting position of both players is always at 𝑥 = 400, and the average vertical starting

position of both players is always at the middle of the screen, 𝑦 = 320. One player is always at

the bottom throughout the game, while the other is always at the top (randomly decided when

the game is created). The average speed of both players is always 𝑣 = 46.67 pixels/second. The

horizontal offset of both players Δ𝑥 , their vertical deviation Δ𝑦, vertical distance from the middle

of the screen 𝑦 = 320, and their speed difference from the average speed Δ𝑣 vary across different

conditions. The zombie always starts in the vertical middle of the screen,𝑦 = 320, and has a speed

of 1.65𝑣 = 77 pixels/second. Its horizontal position 𝑥𝑧 varies across different conditions. The cure

54



is always positioned at 𝑥 = 920.

Figure 4.2: The experimental design of the Zombie Escape paradigm. The experimental design
includes four varying variables across different conditions: 1) The horizontal offset of both play-
ers’ starting positions (Δ𝑥 ). 2) The vertical deviation of both players’ starting positions from the
middle of the screen (Δ𝑦). 3) The speed difference from the average speed (Δ𝑣). 4) The zombie’s
horizontal starting position (𝑥𝑧).

In the two practice conditions (the left panel in Fig. 4.3), both players do not have horizontal

offsets Δ𝑥 = 0, their vertical distance from the middle of the screen is Δ𝑦 = 60, and the speed

difference is Δ𝑣 = 0.3𝑣 . In the first practice condition, the speed of the bottom player is 1.3𝑣 , while

the speed of the bottom player is 0.7𝑣 . In the other practice condition, the speeds are reversed.

This helps players familiarize themselves with the speed differences in the formal conditions. The

zombie’s horizontal starting position is at 𝑥𝑧 = 800.

The eighteen formal conditions can be categorized into two mega-conditions: the slower-as-

baiter mega-condition (the middle panel in Fig. 4.3) and the closer-as-baiter mega-condition (the

right panel in Fig. 4.3). Each mega-condition consists of nine conditions and follows a three-

by-three design (three levels of horizontal offset Δ𝑥 and three levels of speed difference Δ𝑣). The

vertical deviation Δ𝑦 and the zombie’s horizontal starting position 𝑥𝑧 are fixed within each mega-
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condition. Specifically, in the slower-as-baiter mega-condition, Δ𝑦 = 30 and 𝑥𝑧 = 880. The three

levels of Δ𝑥 are [-25, 0, 25] and the three levels of Δ𝑣 are [-0.3, 0, 0.3] ×𝑣 . In the closer-as-baiter

mega-condition, Δ𝑦 = 60 and 𝑥𝑧 = 660. The three levels of Δ𝑥 are [-35, 0, 35] and the three levels

of Δ𝑣 are [-0.3, 0, 0.3] ×𝑣 .

In the slower-as-baiter mega-condition, when there is a speed difference (conditions 1, 2, 3, 7,

8, 9), the player with the slower speed must be the baiter (i.e., the one caught by the zombie) for

the dyad to succeed. Similarly, in the closer-as-baiter mega-condition, when there is a horizontal

offset (conditions 10, 12, 13, 15, 16, 18), the player whose starting position is closer to the zombie

either must be the baiter (conditions 12, 13, 15, 16) or, if they perform as the baiter, they can

succeed (conditions 10, 18). By designing these two mega-conditions and systematically varying

variables within, we created a rich set of environments that demand the dyad adapt to different

conditions by taking on different roles.

4.2.4 Illustrative Game Play

To aid understanding of our paradigm and the necessity of the role of baiter, we provide some

example game plays in Fig. 4.4, with different rows representing different trials and different

columns representing different phases of a trial. The zombie is designed to chase the closer player.

Although the zombie only indirectly cares about which player reaches the cure, without collab-

oration the dyad will fail the task because the zombie has a significant speed advantage.

In all three trials, both players head directly to the cure at the beginning (Fig.4.4 rows 1-3,

column A). In the first trial (Fig.4.4 row 1), the blue player continues to move towards the cure

even after confirming that the zombie is chasing them (Fig.4.4 row 1, column B). When the blue

player is caught by the zombie, the red player is still far from the cure (Fig.4.4 row 1, column C),

and they are eventually caught by the zombie as well (Fig.4.4 row 1, column D).

In the second trial (Fig.4.4 row 2), the game is solved as follows: when the blue player (or the

red player) realizes they are being chased (Fig.4.4 row 2, column B), they head away from the cure
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Figure 4.3: Experiment conditions and their corresponding strategies. Twenty conditions of the
experiment can be broken down into three categories: two practice conditions (left), one slower-
as-baitermega-condition (middle), and one closer-as-baitermega-condition (right). The two prac-
tice conditions differ in the speed difference (Δ𝑣). Each mega-condition follows a three-by-three
design (three levels of horizontal offset Δ𝑥 and three levels of speed difference Δ𝑣). In order
to succeed in a condition, one player must be the baiter. Possible solutions for different condi-
tions are plotted. The colors red and blue correspond to the player who must be the baiter in
that condition, while the color purple means that either player can be the baiter to succeed. The
rectangular grids represent conditions where only the slower player can be the baiter, while the
diagonal grids represent conditions where only the player starting closer to the zombie can be
the baiter.
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to delay being caught by the zombie (Fig.4.4 row 2, column C), allowing their partner to rush to

the cure without being caught (Fig. 4.4 row 2, column D).

However, if the player being chased only turns around without considering the position of

their partner (Fig.4.4 row 3, column B), it might result in the zombie shifting its target in the midst

of chasing (Fig.4.4 row 3, column C), causing the dyad to fail the task (Fig. 4.4 row 3, column D).

In summary, to succeed in the Zombie Escape, role coordination is necessary: one player

needs to be the baiter while the other is the dasher. Moreover, even after coordinating proper

roles, fine tuning their movements is crucial to solving the game.

Figure 4.4: Example game plays of the Zombie Escape paradigm. Different rows (1-3) represent
different trials, and different columns (A-D) represent different phases of a trial. The movement
direction is denoted by the black arrow. The dyad only succeeds in row 2. In row 1, both players
head to the cure from the start until the end (columns A to D), resulting in both being caught by
the zombie one by one (columns C and D). In row 2, both players initially head to the cure (column
A). When the blue player realizes they are the target of the zombie, they turn around at a specific
position by taking into account their partner’s position (column B), to bait the zombie farther
away from their partner (column C), allowing the partner to reach the cure in time (column D).
In row 3, the blue player, who is being chased, dodges away too early (column B), causing the
zombie to shift its target mid-chase (column C), resulting in failure when their partner is caught
before reaching the cure (column D).
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4.3 Results

There are three levels of performance that can be examined here. The highest level is the across-

condition level. The experiment consists of 2 practice plus 18 formal conditions (environments),

so we can ask how people adapt to a new condition. Themiddle level is the within-condition level.

At this level, we can ask how participants adapt their role coordination based on their history of

collaborating in the condition. The lowest level is the within-trial level. There, we can ask how

participants react to their partner’s and the zombie’s movements in real time. In this chapter, we

focus on the highest and middle levels. We qualitatively described participants’ behavior at both

the across-condition and the within-condition level.

Before going into the detailed analysis of participants’ behavior, we need some definitions. In

the Introduction and Method sections, we roughly defined the roles of baiter and dasher. Here,

we are providing stricter definitions. When the dyad succeeds, we define the player first caught

by the zombie as the baiter and the player reaching the cure as the dasher. When the dyad fails, a

slightly different definition is needed. At first glance, we could keep the definition that the baiter

is the player first caught by the zombie. However, it is possible that one player tries to be the

baiter but because of execution errors (such as in Fig. 4.4 row 3 column B), the other player is

caught first. Therefore, on failure trials, we instead calculate the amount of time the zombie is

chasing each player before the first player is caught. Whoever is being chased for a longer time

is designated the baiter.

We would like to quantify a dyad’s performance beyond mere success or failure in a trial. We

propose using the distance of the last-surviving player to the cure when the trial ends, which we

call the "margin". When the trial fails, we adopt this definition (Fig. 4.5A). However, when the

trial succeeds, it stops as soon as the dasher reaches the cure, leading to a zero margin. To better

quantify the success of a successful trial, we simulate the trial after the dasher reaches the cure:

we let the dasher continue moving to the right and the zombie continue chasing until the dasher
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is caught. Then we calculate the distance between the cure and the position where the dasher

is finally caught and use the negative of this distance as the margin (Fig. 4.5B). The margin we

define here provides a better description of how successful a trial is and enhances the analysis

below about collaboration and role coordination.

Figure 4.5: We define "margin" to quantify a dyad’s performance. A) In unsuccessful trials, we use
the distance of the last-surviving player to the cure when the trial ends. B) In successful trials,
we simulate the trial after the dasher reaches the cure. We let the dasher continue moving to the
right and the zombie continue chasing until the dasher is caught. Then we calculate the distance
between the cure and the position where the dasher is finally caught and use the negative of
this distance as the margin. The positions of the dashed-lined blue circle and the green triangle
indicate where the dasher and the zombie end up in the simulation.

4.3.1 Across-condition Result

In the main analysis, we include only the data collected from the formal conditions. However,

before excluding the practice data, we can explore several questions about participants’ initial

interactions with the game. For example, how many trials did it take before they achieved their

first success, i.e., for the first time, i.e. successfully finding the collaborative baiter-dasher role

differentiation? The average number is 2.0 ± 0.4 trials (Fig. 4.6A), demonstrating fast acquisition

in the beginning of the game. Ten dyads were able to succeed on their first trial, learning the

collaboration in a zero-shot way. Another interesting statistic is that nine dyads successfully tried

out both role differentiations in their first practice condition (see Fig. 4.3). We neither provided
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any incentive nor instructed them to do so. This demonstrated their exploratory nature in the

collaborative game.

Then we investigated participants overall performance in the formal conditions. The average

number of trials per condition was 7.2 ± 2.9 trials in the formal experiments out of a possible

range of 3 to 12. The average number of successes per condition was 2.2 ± 0.1 trials in the formal

experiments out of a possible range of 0 to 3. These two results suggest the Zombie Escape

paradigm has an intermediate level of difficulty. This ensures that participants were not bored

because it is too easy or too frustrated because it is too challenging.

Figure 4.6: Participants’ performance in the first practice and the formal conditions. A) Histogram
of the number of trials before the first success in participants’ first practice condition. The aver-
age number was 2.0 ± 0.4 trials, demonstrating a fast acquisition of the collaborative strategy at
the beginning of the game. B) Histogram of the number of trials per condition in the formal con-
ditions. The average number was 7.2 ± 2.9 trials out of a possible range of 3 to 12. C) Histogram
of the number of successes per condition in the formal conditions. The average number was 2.2
± 0.1 trials out of a possible range of 0 to 3.

Now we look into the proportion of success in all 18 formal conditions in Fig. 4.7. Despite

there are experimental setting difference in different mega-conditions and possible strategies in

different condition might be more than one. The general impression here is that the strategy to

let slower player to be the baiter might be harder to find. We verified this by only taking into

account the conditions that have a unique role coordination strategy (i.e. only one player can be

the baiter). We found that in conditions with the unique strategy to allow the closer player as

the baiter, participants were more likely to succeed 𝑡 (31) = 5.65, 𝑝 = 3.36 × 10−6, than those in
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which the unique strategy is to allow the slower player as the baiter (Fig. 4.8A). This suggests

that the default role differentiation in the Zombie Escape for the participants is to have the closer

player to be the baiter. We further tested out this hypothesis focusing on the conditions only

allowing the slower player to be the baiter. In these conditions, when the closer player is the

slower player, which we regarded as "congruent", the participants were more likely to use the

correct role coordination strategy, then when the closer player is the faster player, which we

regarded as "incongruent" (Fig. 4.8B), 𝑡 (31) = 7.49, 𝑝 = 1.93 × 10−8.

Figure 4.7: Participants’ proportion of success in all 18 formal conditions. Error bars represent
mean ±1 s.e.m across participants.

4.3.2 Within-condition Result

So far we have found that participants indeed were able to succeed in the game, and tried out the

game with the set of mind to coordinate different roles when facing different conditions. How

did this dynamic look like at the within-condition level? To answer this, we derived all instances

of role switch, i.e. inside a condition, the role differentiation in the current trial different from the

role differentiation in the last (previous) trial. We ran a generalized linear mixture model with the
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Figure 4.8: Participants’ behaviors with varying required role coordination. A) Participants were
more likely to succeed in conditions only allowing the closer player to be the baiter then con-
ditions only allowing the slower player to be the baiter. B) In conditions only allowing slower
player to be the baiter, participants were more likely to try the correct strategy in conditions that
are congruent, i.e. the slower player is the closer player.

condition index and the dyad ID as random variables using the logit link function to statistically

test the significance of the related variables. The list of independent variables include: whether

the last trial succeeds, the margin of the last trial, the trial count in the current condition, the trial

count in total, the number of fails of the last-trial role, the number of successes of the last-trial

role, the condition count, and the mega condition. There was a clear trend of win-stay-lose-shift

(Fig. 4.9A), i.e. the dyads were more likely to switch after a fail trial. However, the effect is

insignificant, 𝑧 = 0.54, 𝑝 = 0.59, probably due to the high collinearity with another significant

variable margin, 𝑟 = 0.73. Since the number of successes of a specific role differentiation before

the condition ends vary from 0 to 2, we also tested out if the number of successes of the role

coordination in the last trial decreases the switch probability. The answer is yes (Fig. 4.9B), 𝑧 =

−14.23, 𝑝 < 2 × 10−16. We found a non-linear inverse-U shape relationship between the switch

probability and the number of fails of the last-trial role, (Fig. 4.9C), though the linear effect is also
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significant 𝑧 = −13.85, 𝑝 < 2 × 10−16, meaning that more fails lead to less switches. To test out

if the feeling of making progress in the last-trial role could decrease the switch probability, we

plotted how the slope of the margin of the last-trial role (which meant that at least two trials of

the same role coordination were finished) influenced the switch probability (Fig. 4.9D). However,

there was not a visible trend. In the linear model we did not include the win rate of the last-

trial role coordination to avoid collinearity issue, but we found a dipping pattern (Fig. 4.9E).

The temporal progress of the current condition did have a significant influence on the switch

probability (Fig. 4.9F), 𝑧 = 12.21, 𝑝 < 2 × 10−16, though the trend is not clear on the plot. The

margin of the last trial also had an significant influence on the switch probability, meaning that

if the last trial failed harder the dyads were more likely to switch roles (Fig. 4.9G), 𝑧 = 6.60, 𝑝 =

4.2 × 10−11. Effects of the rest independent variables are not significant, 𝑝𝑠 > .05.

4.4 Discussion

In this chapter, we developed a new collaborative paradigmZombie Escapewith continuous space

and time. Participants must collaborate with each other to coordinate their roles in real time to

succeed. We analyzed the performance and the dynamics of collaboration, with a keen interest

in the role coordination. Participants quickly learnt to collaborate with each other and were able

to complete the task without either finding it too easy or failing too much. Their performance

varied across different conditions. The results suggested that there is a default role differentiation

strategy in the game, that is to have the closer player to be the baiter. When this is against the

required role coordination of a condition, participants failed more, spent more time in finding the

right role coordination, and adopted the correct role differentiation less. Within a condition, we

have found several variables dramatically increased the chance that the dyad will switch roles.

Participants showed a win-stay-lose-shift pattern, switching roles more after a fail and switching

roles more if a role differentiation fails harder in the last trial. If the dyad succeeded in a role
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Figure 4.9: Probability of switching roles as a function of different variables. We plotted seven
variables against the probability of switch roles, consisting of A) The performance (success/fail)
of the last trial. B) The number of successes of the role differentiation of the last trial. C) The
number of fails of the role differentiation of the last trial. D) The slope of the margin history
of the role differentiation of the last trial. E) The win rate of the role differentiation of the last
trial. F) The number of trials in the current condition. G) The margin of the last trial. Error bars
represent mean ±1 s.e.m across participants.
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differentiation before, it significantly decreased their chance of switching roles. As the number

of fails of the role differentiation of the last trial increased, the switch probability showed an

inverse U-shape.

The analysis in this chapter mostly focused on collaboration at the across-condition and

within-condition levels. However, the Zombie Escape paradigm provides a richer dataset be-

yond these two levels, as we also have data at the within-trial level. This makes the paradigm

very promising for investigating people’s collaboration. Future directions include analyzing, for

example, who initiates the role switch within a trial and how a player signals their intention to

switch roles (e.g., by quickly moving back and forth, which is generally not useful to the task but

serves as a form of "sign language").

Following the point of "signaling their intention," one interesting question is the role and influ-

ence of verbal communication in collaboration. In the current experiment, we did not allow any

verbal communication between participants. However, in real life, people collaborate with highly

intensive communication beyondmere behavioral interactions. Wewant to ask, for example, how

participants would take advantage of verbal communication in diverse ways. They could discuss

the overall strategy or cheer each other up during the break between conditions, discuss different

roles and possible switches within a condition between trials, or coordinate movements inside a

trial. Will they reach consensus faster, or will they be too overwhelmed by the game happening

in real time to communicate effectively? These questions about verbal communication will be

open to investigation if we allow participants to chat during the experiment.

Although we are very specific about the game design of the Zombie Escape, such as the differ-

ences in players’ starting positions, we hope these results could generalize beyond these specific

settings. Our aim is to analyze collaboration happening in real time, and with so many envi-

ronment variables freely adjustable, we wanted to create a subset of conditions to encourage

different collaborative behaviors in the paradigm. One obvious omission here is how different

zombie strategies can influence player collaboration and how people adapt to these strategies.
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In this paradigm, we only investigate situations where the zombie chases the closer player, as

stated explicitly in the instructions. Alternative zombie strategies include, for example, chasing

the player closer to the cure or the player who is expected to reach the cure given the current

moving direction and speed. Future research might be able to answer these questions by setting

up different zombie agents with drastically different chasing strategies.

In the Zombie Escape, we focused on how people collaborate in pairs. However, in real life,

collaboration often involves more than two people. While existing research has already explored

multi-person collaboration (Tang et al., 2022), it is crucial to dig deeper about role coordina-

tion in larger groups. For example, in a recent study of online multiplayer games (Vélez, 2024),

researchers investigated how different players took on different roles in a online multiplayer sur-

vival game. It will be interesting to explore how we can either build a richer set of roles in an

experimental control setting while still maintaining the naturalness of collaboration or applying

our modeling method to their datasets.
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5 | Computational Models of Role

Coordination

Abstract

Role coordination is crucial in collaboration. To better understand the role coordination dynamics

within conditions, we developed computational processmodels to test several hypotheses derived

from the experiment, treating each dyad as a unit. The main model in the chapter, Bayesian linear

extrapolation (BLE) model, assumed each dyad deliberates between possible role differentiations,

summarizing past performance through linear regression and extrapolating future success prob-

abilities. This model was compared to the classic win-stay-lose-shift (WSLS) model. The BLE

model successfully captured how switch probabilities varied with trial performance, demonstrat-

ing a superior fit to the data compared to the the WSLS model. Key findings included the BLE

model’s ability to explain inverse-U patterns in switch probabilities with respect the number of

fails of the last-trial role and its response to the quantitative performance of the last trial. Further

analysis revealed the BLE model’s strength in reasoning about the value of different coordinated

roles when with no success. Our findings contribute to a better computational explanation of

role coordination in human collaboration and have implications for building more adaptive and

human-like AI systems. Future research should consider modeling individual agents’ opinions

and decision-making processes.
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5.1 Introduction

In the last chapter, we developed a new real-time cooperative game called Zombie Escape to

investigate how people collaborate and allocate roles in a challenging task. We found that partic-

ipants were able to quickly learn to collaborate and showed interesting patterns about how they

collaborated. Among these patterns, the most thought-provoking one was how the dyad decided

the roles based on their history of performance. However, so far we have only used statistical

tests or linear regressions to check the significance of related variables, without digging into the

process of deciding roles. In this chapter, our goal is to build a computational model to explain

the within-condition role coordination dynamics as the trial progresses.

Recently, researchers in the field of artificial intelligence have made significant breakthroughs

in large-scale collaborative games. Computer agents are now able to achieve above human-level

performance in highly collaborative board games like Hanabi (Bard et al., 2020) and video games

like Dota 2 (Berner et al., 2019). One immediate thought would be to borrow frameworks from

these papers to study their counterparts in humans. However, all these models are based on

deep reinforcement learning with a heavy load of parameters. Therefore, while they might serve

as good benchmark models, they provide little insight into the process of human collaboration,

especially regarding role coordination.

To gain insight into potential models for human collaboration, we focus on studies that explic-

itly consider other agents with their own minds, especially models incorporating theory of mind

(TOM). Researchers have found Bayesian TOM,where the observer actively infers the preferences

of the agent from their movements and predicts their future actions accordingly, to be highly suc-

cessful in predicting human beliefs (e.g., Baker et al., 2017). In this model, hierarchical planning is

adopted; in the generative model direction, a high-order variable (e.g., preferences) guides a low-

level variable (e.g., movements). In the context of collaboration, since multiple agents have their

own beliefs, the concept of level K reasoning is involved. Level 0 reasoning treats all teammates
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as passive parts of the environment and acts accordingly. Level 1 reasoning treats all teammates

as level 0 reasoning agents and acts accordingly, and so on. A study showed that participants

adapted their level of reasoning when playing with computer agents of different and fixed levels

of reasoning (Yoshida et al., 2008). These promising results suggest that models with hierarchical

structure built have the potential to capture the process of human collaboration.

What do we mean by hierarchical learning here? Botvinick (2012) said “Whereas a standard

reinforcement learning agent selects among primitive actions, the hierarchical reinforcement

learning agent can also select among subroutines”. In the Zombie Escape, the exact movements

are the primitive actions while the role coordination is the subroutine. Thus, the intuition of hier-

archical learning in our paradigm is as such: the dyad tries out a potential role differentiation and

improve the performance; if they find no improvement (i.e. no hope of success with the current

coordinated roles), they will switch to another role settings.

In this chapter, we aimed to develop amodel with the specified hierarchical structure equipped

to account for the role coordination dynamics at the within-condition level. In the model we built,

Bayesian linear extrapolation (BLE) model, the agent tracks their history of performance within

a condition, extrapolates their probability of succeeding at least once based on the history, and

decides between the two role differentiation based on the extrapolation result. The BLE model

was able to account for how the probability of switching roles changes with all the variables we

came up with, and outperformed a classic strategy: win-stay-lose-shift both qualitatively and

quantitatively. We further investigated why the BLE model could explain the data and found out

that the ability of the BLE model to reason about the value of different role differentiation played

an important role when there were only fails .
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5.2 Methods

We built computational process model to test several conjectures we derived in the Zombie Es-

cape experiment chapter, In this section, we treat each dyad as a unit without specifying process

happening on the individual participant level and model their role coordination sequence hap-

pening in a condition. Before moving forward, we specify the terms needed in the Table. 5.1.

Notation Meaning
𝐴𝑡 role coordination on the 𝑡-th trial
𝐴𝑡 = 𝑎1 top player is the baiter
𝐴𝑡 = 𝑎2 bottom player is the baiter
𝐴0:𝑡 ≜ (𝐴0, 𝐴1, ..., 𝐴𝑡 ) role coordination history from the 0-th to the 𝑡-th trial
𝑛 the horizon of a condition
𝑆𝑡 ∈ {0, 1}, whether the 𝑡-th trial is successful
𝑆0:𝑡 ≜ (𝑆0, 𝑆1, ..., 𝑆𝑡 ) success/fail history from the 0-th to the 𝑡-th trial
𝑀𝑡 margin on the 𝑡-th trial
𝑀

( 𝑗)
0:𝑡 margin history from the 0-th to the 𝑡-th trial of role coordination 𝑎 𝑗

Table 5.1: Notations for modeling the within-condition role switch.

5.2.1 Bayesian Linear Extrapolation Model

To further investigate how dyads adapt their roles within a condition, we built a Bayesian linear

extrapolation (BLE) model to account for this. The intuition here is that participants in the dyad

deliberate between two possible role differentiations: either they themselves will be the baiter or

their partner will be the baiter. They summarize both role differentiations’ previous history of

results in the current condition using linear regression and extrapolate into the future to estimate

the probability of succeeding at least once in the remaining trials. They then coordinate their

roles in the next trial on the difference of the probability of success between the two possible role

differentiations.

Why dowe need Bayesian linear regression instead of a simple linear regression? It is because,

at the beginning of the trial, the model starts with either no history or very limited history of
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margins for both role differentiations. The vanilla linear regression can only work when there are

at least two data-points to fit and three data-points to estimate confidence interval. By adopting

Bayesian linear regression, the intended probability of success can be calculated with limited data

or even no data at all.

At each trial, the dyad evaluates the probability of achieving at least one success before en-

countering too many failures (i.e. fails ten times in total), assuming that the margin in the future

continues along the current trend. After estimating this probability for both role differentiations,

they will base on it to decide if to continue the current role coordination or switch. Therefore,

the utmost important part of the modeling is to calculate the probability of succeeding at least

once in the game-allowed horizon of the role coordination 𝑎 𝑗 . Mathematically, it is equivalent to

one minus the probability of all fail in the rest of the trials, i.e.

𝑝
( 𝑗)
win

≜𝑝 ( 𝑗) (at least one success in the rest of the trials)

=1 − 𝑝 ( 𝑗) (no success in the rest of the trials)

If we know the prior of linear regression parameters, it would be possible to calculate

𝑝 ( 𝑗) (no success in the rest of the trials) by

𝑝 ( 𝑗) (no success in the rest of the trials|𝑀 ( 𝑗)
0:𝑡−1)

=𝑝 (min{𝑀 ( 𝑗)
𝑡 :𝑛 } > 0|𝑀 ( 𝑗)

0:𝑡−1) 𝑖 = 𝑡, 𝑡 + 1, · · · , 𝑛

=

∭
𝑝 (min{𝑀 ( 𝑗)

𝑡 :𝑛 } > 0|𝑎, 𝑏, 𝜎2)𝑝 (𝑎, 𝑏, 𝜎2 |𝑀 ( 𝑗)
0:𝑡−1)𝑑𝑎𝑑𝑏𝑑𝜎

2

=

∭
𝑝 (min{𝑀 ( 𝑗)

𝑡 :𝑛 } > 0|𝑎, 𝑏, 𝜎2)
𝑝 (𝑎, 𝑏, 𝜎2)𝑝 (𝑀 ( 𝑗)

0:𝑡−1 |𝑎, 𝑏, 𝜎2)
𝑝 (𝑀 ( 𝑗)

0:𝑡−1)
𝑑𝑎𝑑𝑏𝑑𝜎2

=

∭ [
𝑛∏
𝑖=𝑡

𝑝 (𝑀 ( 𝑗)
𝑖

> 0|𝑎, 𝑏, 𝜎2)
]
𝑝 (𝑎)𝑝 (𝑏)𝑝 (𝜎2)

[∏𝑡−1
𝑖=0 𝑝 (𝑀

( 𝑗)
𝑖

|𝑎, 𝑏, 𝜎2)
]

𝑝 (𝑀 ( 𝑗)
0:𝑡−1)

𝑑𝑎𝑑𝑏𝑑𝜎2
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where 𝑎 is the slope, 𝑏 is the intercept, 𝜎2 is the variance term of the normal-distributed noise

in the Bayesian linear regression, and 𝑝 (𝑀 ( 𝑗)
𝑖

|𝑎, 𝑏, 𝜎2) = N(𝑀 ( 𝑗)
𝑖

;𝑎𝑖 + 𝑏, 𝜎2). We assume the

independence of the prior of slope, intercept, and the variance. For slope and intercept, we assume

the prior follows the normal distribution, while for the variance, we assume the prior follow the

inverse gamma distribution. Each individual participant has their own prior and this prior is

shared across all conditions and all role differentiations. This adds up to 6 parameters (two for

each prior).

The above triple integral is hard to calculate analytically. In order to calculate this, we sam-

ple from the priors of the slope, the intercept, and the variance. After getting the parameter set,

we first calculate the likelihood of each parameter set given the margin history 𝑝 (𝑎, 𝑏, 𝜎2 |𝑀 ( 𝑗)
0:𝑡−1).

Then for each sampled parameter set, we calculate 𝑝 ( 𝑗)
win and aggregate it weighted by the likeli-

hoods to derive an samples-based estimate of 𝑝 ( 𝑗)
win (Fig. 5.1B).

After getting 𝑝
(1)
win and 𝑝

(2)
win, i.e. the probabilities of succeeding at least once in each role

differentiation, we derive the probability that the dyad will let top player be the baiter as a logistic

function:

log
𝑝 (𝐴𝑡 = 𝑎1 |𝑀 (1)

0:𝑡−1, 𝑀
(2)
0:𝑡−1, 𝐴𝑡−1)

1 − 𝑝 (𝐴𝑡 = 𝑎1 |𝑀 (1)
0:𝑡−1, 𝑀

(2)
0:𝑡−1, 𝐴𝑡−1)

= 𝛽

(
𝑝
(1)
win − 𝑝

(2)
win + 𝐵1 + sgn(𝐴𝑡−1 = 𝑎1)𝐵stay

)
where 𝛽 is the inverse temperature term, 𝐵1 is the bias term for the top player to be the baiter,

and the last term is the bias resulting from the dyad’s unwillingness to switch roles, which is 0

if it is the first trial in a condition 𝑡 = 0, positive if the top player is the baiter in the trial 𝑡 − 1 ,

𝐴𝑡−1 = 𝑎1, and negative if the bottom player is the baiter in the trial 𝑡 − 1, 𝐴𝑡−1 = 𝑎2. The logistic

function has 3 additional free parameters, bringing the total number of the free parameters of the

BLE model to 9.
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Figure 5.1: Illustration of Bayesian linear extrapolation model. A) For the role differentiation 𝑎 𝑗 ,
the dyad tried two times but all failed, with the margin history shown as black circle. B) In order
to calculate the probability of at least succeeding once in the rest of the condition if the dyad
holds on to the current role coordination 𝑝

( 𝑗)
win, we sample linear regression parameters from the

prior and calculate the likelihood of each parameter set, illustrated by "very likely", "likely", or
"unlikely". Then for each sampled parameter set, we calculate 𝑝 ( 𝑗)

win and aggregate it weighted by
the likelihoods.
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5.2.2 Win-stay-lose-shift Model

The alternative model we consider here is the classic win-stay-lose-shift (WSLS) model that is

very intuitive (Nowak & Sigmund, 1993). When the dyad succeeds in the last trial, they are more

likely to keep the coordianted roles in the last trial. When the dyad fails, they are more likely to

switch roles in the next trial. The WSLS model only pays attention to the success/fail outcome of

trials without taking into account the exact performance (e.g. margin). Therefore, we have

𝑝 (𝐴0 = 𝑎1) = 𝑞,

𝑝 (𝐴0 = 𝑎2) = 1 − 𝑞

𝑝 (𝐴𝑡 |𝐴0:𝑡−1, 𝑆0:𝑡−1) = 𝑝 (𝐴𝑡 |𝐴𝑡−1, 𝑆𝑡−1)

= ((1 −𝑤𝑠)𝑆𝑡−1 + (1 −𝑤 𝑓 ) (1 − 𝑆𝑡−1))𝛿 (𝐴𝑖=𝐴𝑖−1) (𝑤𝑠𝑆𝑡−1 +𝑤 𝑓 (1 − 𝑆𝑡−1))𝛿 (𝐴𝑖≠𝐴𝑖−1)

where 𝑞 is the bias term, 𝑤𝑠 is the switch probability parameter when the last trial succeeds,

and 𝑤 𝑓 is the switch probability parameter when the last trial fails. In sum, there are three free

parameters in total. Therefore, the log likelihood for a condition is calculated as

log𝐿

= log𝑝 [𝐴0:𝑛 |𝑆0:𝑛]

= log[𝑝 (𝐴0)
𝑛∏
𝑡=1

𝑝 (𝐴𝑡 |𝐴𝑡−1, 𝑆𝑡−1)]

= log𝑝 (𝐴0) +
𝑛∑︁
𝑡=1

log𝑝 (𝐴𝑡 |𝐴𝑡−1, 𝑆𝑡−1)

5.2.3 Model Fitting.

We fit each model to the data of each dyad by maximizing the log likelihood of 𝜽 , log𝐿 (𝜽 ) =

log𝑝 (data |𝜽 ). We assume that the conditions are conditionally independent. Then, the log
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likelihood becomes:

log𝐿 (𝜽 )

= log𝑝 (data |𝜽 )

= log
∏
𝑘

𝑝 (data in condition 𝑘 |𝜽 )

=
∑︁
𝑘

log𝑝 (data in condition 𝑘 |𝜽 )

We optimized the parameters for each individual using a new method called Bayesian Adap-

tive Direct Search (Acerbi & Ma, 2017).

5.2.4 Model Comparison

We used AIC for model comparison, which is calculated by the equation AIC = − log𝐿∗ + 2𝑘 ,

where 𝐿∗ is the maximum value of a model’s likelihood function and k is the number of fitted

parameters. To report the AIC, we computed the AIC for each dyad and summed them up. The

confidence interval of the group-summed AIC was estimated by non-parametric bootstrapping.

5.3 Results

The modeling results are shown in Fig. 5.2 for the BLEmodel and Fig. 5.3 for theWSLSmodel. We

plotted seven matrices against the probability of switching roles as in the last result section. Both

models are also able to predict the win-stay-lose-shift trend in the data (Fig. 5.3A). The BLEmodel

successfully matches the data as how the switch probability decreases as the number of successes

of the role differentiation in the last trial increases (Fig. 5.2B). The WSLS shows a similar trend,
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but fails to match quantitatively (Fig. 5.3B). The most striking result here is that how the BLE

model follows the inverse-U pattern about how the switch probability changes with the number

of fails of the role differentiation in the last trial (Fig. 5.2C), which is completely missing in the

WSLS model (Fig. 5.3C). We will later dig deeper about why the BLE model can fit this trend. The

step-function-like pattern of how the switch probability changes with the slope of margin history

of the role differentiation of the last trial can be explained by the BLE model (Fig. 5.2D); however,

this can not be captured by the WSLS model (Fig. 5.3D). The dipping pattern of how the switch

probability changes with the win rate of the role differentiation of the last trial is predicted by the

BLE model (Fig. 5.2E). TheWSLS model shows a decreasing trend here but cannot explain the dip

(Fig. 5.3E). Both BLE and WSLS models capture how the switch probability stays flat as the trial

progresses in the current condition (Fig. 5.3F, (Fig. 5.3F). The BLE model successfully accounts for

how the switch probability monotonically increases with the margin of the last-trial (Fig. 5.2G).

However, for theWSLS model, although showing a increasing trend when the margin is negative,

the trend disappears when the margin is very positive (Fig. 5.3G). In summary, the BLE model

provides a much better fit. This is confirmed in the model comparison of AIC: ΔAIC = 54.5, 95%

confidence interval = [22.2, 91.4].

One surprisingly good model fitting result is how the BLE model can explain the inverse-U

pattern of how the switch probability changes as the number of fails of the role differentiation

of the last trial increases. Inside the BLE model, we have a bias term about sticking to the same

role differentiation in the last trial but we do not have an extra bonus if the role differentiation

in the last trial happens a lot in the current condition. One way to investigate this is to split

the switch probability in the Fig. 5.2C by if the role differentiation of the last trial has succeeded

before in the current condition (Fig. 5.4A). When the dyad has succeeded using the last-trial role,

the switch probably stays low and is not sensitive to the number of fails of the last-trial role.

However, when the dyad has not succeeded using the last-trial role, the switch probability drops

dramatically. Therefore, the inverse-U shape we observe previously is the outcome of combining
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Figure 5.2: Model fitting results of the BLE model. We plotted seven variables against the prob-
ability of switch roles, consisting of A) The performance (success/fail) of the last trial. B) The
number of successes of the role differentiation of the last trial. C) The number of fails of the role
differentiation of the last trial. D) The slope of the margin history of the role differentiation of
the last trial. E) The win rate of the role differentiation of the last trial. F) The number of trials in
the current condition. G) The margin of the last trial. The black error bars are the data, and the
grey shaded error bars are the model fitting results. Error bars and shaded areas represent mean
±1 s.e.m across participants.
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Figure 5.3: Model fitting results of the WSLS model.We plotted seven variables against the prob-
ability of switch roles, consisting of A) The performance (success/fail) of the last trial. B) The
number of successes of the role differentiation of the last trial. C) The number of fails of the role
differentiation of the last trial. D) The slope of the margin history of the role differentiation of
the last trial. E) The win rate of the role differentiation of the last trial. F) The number of trials in
the current condition. G) The margin of the last trial. The black error bars are the data, and the
grey shaded error bars are the model fitting results. Error bars and shaded areas represent mean
±1 s.e.m across participants.
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two rather distinct processes.

The flat trend is intuitive: when the dyad has succeeded before on a role differentiation, they

might be confident on that role differentiation so failing more does not change their thoughts

much. But the decreasing trend still remains as a mystery. To understand this, for these tri-

als when the last-trial role has not succeeded before, we plotted the extrapolated probability of

succeeding at least once in the rest of the condition if the dyad switch roles 𝑝switchwin or not 𝑝staywin

in Fig. 5.4B. The two extrapolated succeeding probabilities do not differ from each other when

the number of fails of the last-trial role is low, but greatly diverges as 𝑝staywin increases and 𝑝switchwin

decreases as the number of fails of the last-trial role increases. The result suggests that even

when the dyad had no success at all in a condition, they still actively deliberated on the history of

the outcomes of the trials so far and collectively adopted the role differentiation with the higher

possibility to succeed over the course of the condition.

Figure 5.4: Model fitting results of the WSLS model.We plotted seven variables against the prob-
ability of switch roles, consisting of A) How the switch probably changes with the number of the
fails of the role differentiation in the last trial, split by if the role differentiation has succeeded
before or not. The blue color is when the dyad has not succeeded using the role differentiation
of the last trial in the current condition, and the red color is when the dyad has. The black color
is the aggregated result. The error bars represent the data, while the shaded error bars represent
the model fitting result of the BLE model. B) We further investigated the model fitting result of
the BLE model of the "has not succeeded" group in the panel A. We calculated the extrapolated
probability of succeeding at least once during the rest of the horizon of the condition 𝑝

( 𝑗)
win either

if the dyad sticks to the role differentiation in the last trial or if the dyad switch roles. 𝑝staywin in-
creases while the 𝑝switchwin decreases as the number of the fails of the role differentiation in the last
trial increases. Error bars and shaded areas represent mean ±1 s.e.m across participants.
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5.4 Discussion

In this chapter, we developed a model called Bayesian linear extrapolation to account for the role

coordination dynamics in the within-condition level. In the BLE model, the agent tracks their

history of performance within a condition, extrapolates their probability of succeeding at least

once based on the history, and decides between the two ways of role differentiation based on the

extrapolation result. The BLE model was able to account for how the probability of switching

roles changes with all the variables we came up with, and outperformed a classic strategy: win-

stay-lose-shift both qualitatively and quantitatively. We further investigated why the BLE model

could explain the data and found out that the ability of the BLE model to reason about the value

of different ways of role differentiation when there were fails only played an important role.

One missing component in the current modeling is that we treated the dyad as a whole. Since

the two agents in the game are controlled by two players, it is likely that each agent has a different

opinion about which role they and their partner should take when coordinating roles. What we

actually modeled in this chapter, in one way, was the outcome of the coordination of the dyad.

In future work, we might be able to model the two agents separately, with each having their own

evaluation of how good different role differentiations are based on the history of performance,

and then deciding. It is also worth noting that players have different power in deciding role

differentiations under varying conditions. For example, one intuition is that the faster player or

the player starting closer to the zombie is more likely to decide the role differentiation. Thus, in

the future, we might take these factors into consideration by further extending our BLE model.

Research on how humans collaborate, especially the role coordination component, is impor-

tant in building AI that interacts with humans (Carroll et al., 2019). The investigation in this

chapter, studying how humans decide to switch roles, provides a better computational explana-

tion and helps with building machines that help humans.
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6 | Conclusion

In this dissertation, we explored the temporal processes of decision-making in two distinct sub-

fields of psychology: perceptual decision-making and collaborative decision-making.

In Chapter 2, we focused on perceptual decision-making. We developed a novel framework of

approximate inference through active sampling of likelihoods (AIAS) and applied it to the tasks

of perceptual categorization. AIAS accounts for several empirical findings. First, it explains the

recent puzzling finding that decision confidence follows the difference between the two highest

posteriors, rather than the highest posterior itself (H.-H. Li & Ma, 2020). AIAS not only provides

better fits but also accurately predicts response times based on the number of iterations. Second,

we demonstrated that AIAS can explain how categorization behavior changes with varying visual

contrast (Adler & Ma, 2018). Third, we found that the mean response times predicted by AIAS

grow approximately logarithmically with the number of categories 𝑁 , consistent with Hick’s law

(Hick, 1952). By developing AIAS and successfully applying it to three datasets, we uncovered

the temporal processes of perceptual decision-making by casting approximate inference as an

active-sampling process with imprecise computations.

In Chapters 4 and 5, we turned our focus to collaborative decision-making. We developed

a two-player real-time collaborative game to investigate how human players collaborate, with

a particular interest in role coordination. We found that participants quickly adapted to the

game and effectively coordinated roles across different environments. Additionally, participants

tracked their performance history and used this information for future role coordination. We
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then constructed a Bayesian linear extrapolation model to explain the temporal processes of role

coordination observed in the experiment. This model successfully accounted for the data and

outperformed a win-stay-lose-shift model, highlighting the complex temporal patterns of role

coordination in collaboration.

Overall, the work presented in this dissertation examined the temporal processes of decision-

making. Our research enhances the understanding of human decision-making by shedding light

on the underlying temporal processes.
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