
Nature Neuroscience

nature neuroscience

https://doi.org/10.1038/s41593-024-01671-xArticle

Reward prediction error neurons implement
an efficient code for reward

Heiko H. Schütt   1,2,4 , Dongjae Kim1,3,4 & Wei Ji Ma   1

We use efficient coding principles borrowed from sensory neuroscience to
derive the optimal neural population to encode a reward distribution. We
show that the responses of dopaminergic reward prediction error neurons in
mouse and macaque are similar to those of the efficient code in the following
ways: the neurons have a broad distribution of midpoints covering the reward
distribution; neurons with higher thresholds have higher gains, more convex
tuning functions and lower slopes; and their slope is higher when the reward
distribution is narrower. Furthermore, we derive learning rules that converge to
the efficient code. The learning rule for the position of the neuron on the reward
axis closely resembles distributional reinforcement learning. Thus, reward
prediction error neuron responses may be optimized to broadcast an efficient
reward signal, forming a connection between efficient coding and reinforcement
learning, two of the most successful theories in computational neuroscience.

Processing rewards is critical for much of cognition, including
decision-making, planning and learning. An important reward repre-
sentation in the brain is maintained by reward prediction error neurons
(RPENs)1. These dopaminergic neurons in the midbrain respond to
received rewards relative to an expectation based on past experience.
The existence of these neurons is the most prominent evidence in favor
of reinforcement learning (RL) in the brain2. Moreover, RPENs have
been implied in a broad range of tasks that require value-based cogni-
tion3. Thus, the encoding of reward by RPENs is a cornerstone of our
understanding of reward signals in the brain.

In a different domain of neuroscience (sensory processing), it has
been hypothesized that neuronal codes are optimized for efficiency,
that is, to convey as much information as possible with given budgets
for the number of neurons and the number of action potentials4,5. The
efficient coding hypothesis has long been used to account for the
response properties of sensory neurons6–8. Gradually, the notion of
efficient coding has also made inroads in the domain of reward. Effi-
cient coding has been invoked to explain reward-based choices9–11, and
contextual modulation of the responses of cortical reward neurons has
been interpreted as a form of efficient coding12. In a time interval esti-
mation task, an RL agent that encoded the duration of a task-irrelevant
interval with much lower resolution than that of a task-relevant interval
could account for RPEN responses and their relation to behavior13.

Here, we investigate at the neuronal level whether RPENs
implement an efficient code for reward value. We first derive the
most efficient population of sigmoidally tuned neurons to encode
rewards sampled from an arbitrary given distribution. We then apply
this general framework to two datasets, one in mice with a fixed
reward distribution14–16 and one in monkeys with a variable reward
distribution17. We find that key properties of the efficient code are
reflected in the data, suggesting that efficient coding could serve
as a unifying principle. Finally, we develop learning rules for the
efficient code.

Results
We analytically derive the optimal population of neurons to encode
rewards by extending the framework of Ganguli and Simoncelli18.
Assuming that RPENs have a sigmoidal tuning curve for reward
(Fig. 1a)19,20, we start with a large family of populations, within which
we search for the most efficient one. We construct the family based on
a base population of neurons on the unit interval. We then allow any
smooth monotone function to map from reward R to the unit interval
and define the responses of the neurons in terms of the responses of
the base population at the mapped location. Additionally, we allow
an arbitrary scaling of neuron response gains and of the density of
neurons depending on their placement. In mathematical terms, we

Received: 3 November 2022

Accepted: 29 April 2024

Published online: xx xx xxxx

 Check for updates

1Center for Neural Science and Department of Psychology, New York University, New York, NY, USA. 2Department of Behavioural and Cognitive Sciences,
Université du Luxembourg, Esch-Belval, Luxembourg. 3Department of AI-Based Convergence, Dankook University, Yongin, Republic of Korea.
4These authors contributed equally: Heiko H. Schütt, Dongjae Kim.  e-mail: heiko.schutt@uni.lu

http://www.nature.com/natureneuroscience
https://doi.org/10.1038/s41593-024-01671-x
http://orcid.org/0000-0002-2491-5710
http://orcid.org/0000-0002-9835-9083
http://crossmark.crossref.org/dialog/?doi=10.1038/s41593-024-01671-x&domain=pdf
mailto:heiko.schutt@uni.lu

Nature Neuroscience

Article https://doi.org/10.1038/s41593-024-01671-x

their midpoints to the quantiles of the distribution. If a predictable
reward is given repeatedly, the midpoints of all neurons will converge
to the given reward level, and all neurons will encode the error in reward
prediction relative to the midpoint, with the midpoint and threshold
moving closer together. For distributions of rewards, higher rewards
will still always lead to higher responses, and shifts of the whole distri-
bution to higher values will reduce the responses of all neurons.

Application 1: variable-reward task
We first compare the predictions of the efficient coding framework to
data from the ‘variable-reward task’ of Eshel et al.14,15 (Fig. 1b). In this
task, mice were given one of seven reward magnitudes in each trial
with certain probabilities while RPEN responses were recorded. The
observed RPEN reward tuning curves are shown in Fig. 1c. We derived
the efficient code for a continuous approximation of the discrete prob-
ability distribution in the form of a log-normal distribution match-
ing the mean and variance of the discrete distribution (μ = 1.29 and
σ2 = 0.71). The predictions for neural density and gain are shown in
Extended Data Fig. 3. To compare our predictions to the data, we use
the same number of neurons as in the dataset (n = 39) and adjust free
parameters of the derived efficient population to match the measured
population. We first set α to maximize the probability of the observed
midpoints (whose distribution depends only on this parameter), result-
ing in α = 0.673. We define a neuron’s threshold as the point where the
spontaneous firing rate is surpassed.

We fitted the spontaneous firing rate r* and k, a parameter control-
ling the slopes of all neurons, to the observed thresholds, resulting in
the estimates ̂r∗ = 10.08 and ̂k = 5.20. Finally, we set the constraint on
the expected spike rate, rmax, to match the average neural gain based
on sigmoid fits to the tuning curves, resulting in ̂rmax = 322.5 (see
Methods for details). A subset of the resulting efficient code is shown
in Fig. 1d. We now examine several properties of the efficient code and
compare them to the data.

use a prototypical sigmoidal response function h0 on the unit interval
to define the response of a neuron with midpoint at μ as

hμ(R) = h0[F(R) − F(μ)]g(μ), (1)

where F(R) = ∫R−∞ f(t)dt is the mapping from reward space to the unit
interval. Its derivative f(R) ≥ 0 represents the conversion between
reward space and the unit interval. g(μ) is the gain of a neuron with
midpoint at μ. Finally, we define the density function d(R) as the prob-
ability that a neuron’s midpoint is placed at reward value R.

We then optimize the three functions to find the most efficient
populations that can be generated this way to encode rewards from a
distribution with density p(R) and cumulative density P(R) (Methods).
Efficiency here refers to the maximization of a measure of information
given constraints on the expected total firing rate. This yields a family
of equally efficient populations, which we parameterized by α ∈ [0, 1]:

f(R) = p(R); d(R) ∝ p(R)
[1 − P(R)]1−α

; g(R) ∝ 1
[1 − P(R)]α

. (2)

This solution is indeed efficient (Extended Data Fig. 1) and extends
the earlier result from Ganguli and Simoncelli18, which assumed a
uniform density of neurons on the unit interval, effectively setting
d(R) = f(R) in our formulation. Their solution is a special case of our

family, with α = 1 and thus d(R) = p(R) and g(R) = 1
1−P(R)

.
The efficient code captures the two main response properties of

RPENs to given rewards: (1) the response increases as reward magni-
tude increases, and (2) the response decreases as the expected reward
increases (see Extended Data Fig. 2 for effects of the reward distribution
and α on the population). The former is readily apparent through Eq. (1).
The latter is due to the optimization of midpoints in the efficient cod-
ing framework. When a neuron’s midpoint increases, its response to all
rewards decreases. To maximize information, neurons need to move

a

Reward (µl)

Re
sp

on
se

 (H
z)

d

Reward (µl)
0 10 20

Pr
ob

ab
ili

ty

Reward (µl)

Re
sp

on
se

 (H
z) Spontaneous

rate

Threshold Midpoint

0 10 20
0

30

20

10

c

Re
sp

on
se

 (H
z)

0

30

20

10

b

5 15

Fig. 1 | Experimental design and basic results of Eshel et al. A mouse was
presented with variable rewards while RPEN responses were recorded.
a, Terminology for sigmoidal tuning curves as expected for RPENs. The threshold
is the reward value at which the spontaneous activity is reached. The midpoint is
the reward value at which half the maximal response is reached. b, Rewards were
drawn from a discrete distribution (vertical lines), which we approximate with a

moment-matched log-normal distribution for our analyses (continuous line).
c, Reward tuning curves of the 39 dopaminergic RPENs measured by
Eshel et al.15 after preprocessing of Dabney et al.16. We additionally subtracted the
minimal response across all trials for each neuron. d, Efficient code for the reward
distribution in a. For visual clarity, only 20 neurons are shown.

http://www.nature.com/natureneuroscience

Nature Neuroscience

Article https://doi.org/10.1038/s41593-024-01671-x

Prediction 1: RPEN midpoints cover the reward distribution. In
the efficient code, RPEN midpoints are placed at specific quantiles of
the distribution with a slight bias toward higher quantiles, yielding a
distribution similar to the original reward distribution. Indeed, the
midpoints of the observed neurons cover the range of the reward
distribution, with a roughly similar distributional shape (Fig. 2a). The
mean of the measured midpoints is 5.96, higher than the mean reward,
which is 5.21 (t38 = 0.848, P = 0.40). The fact that this difference is not
significant is unsurprising; as for the measured number of neurons,
even the predicted midpoints are not significantly different from the
mean reward (t38 = 0.246, P = 0.81). The thresholds of neurons behave
similar to the midpoints (Extended Data Fig. 4).

Prediction 2: RPEN gain increases with threshold. In the efficient
code, the gain is higher for neurons with higher reward thresholds
(Fig. 1). The intuition is that those neurons respond to fewer rewards
and can thus afford a higher gain with the same expected number of
spikes. This effect does not occur for unimodal tuning functions18,21.
We observe the expected increase of gain in the data (Fig. 2b). To our
knowledge, this empirical finding has not been reported before.

Prediction 3: RPEN tuning curve asymmetry flips with increasing
threshold. In the efficient code, the increase of gain with threshold has
implications for the shape of the RPEN tuning curves around threshold
(Fig. 2c). As the gain increases, the spontaneous firing rate falls lower
in the sigmoid shape. Thus, the threshold moves from the upper

concave part of the sigmoid down to the convex part. In other words,
neurons with low thresholds have concave tuning curves around their
threshold, and neurons with high thresholds have concave ones. To
quantify the degree of such ‘asymmetry’ of the neural responses, we
followed previous work16 and approximated the neural tuning curves
with two linear response functions, one above and one below the spon-
taneous firing rate r* (Fig. 2c). This allows for an asymmetric RPEN
response, with the slope above the threshold β+ being different from
the slope below the threshold β− (refs. 22,23). The ratio of slopes,
β+

β−+β+
∈ [0, 1], can then be used as an index of asymmetry, which is

close to 1 for concave tuning curves and close to 0 for convex tuning
curves. Using this index, the efficient code predicts that asymmetry is
higher for neurons with higher thresholds; the shape flips from convex
to concave. This relationship is also observed in the data (black dots in
Fig. 2d), as first reported by Dabney et al.16.

The observed relationship can also be accounted for by the theory
of distributional RL (DRL; dashed line in Fig. 2d), which attributes it
to an asymmetry of the update equations of the thresholds, such that
neurons converge to different expectiles of the reward distribution
(Fig. 2e). We will examine the relationship between efficient coding
and DRL in detail below.

Prediction 4: RPEN slope decreases with threshold. In the efficient
code, neurons with higher thresholds have a lower slope parameter
of the sigmoid fit (Fig. 2f). This occurs because the predicted tuning
functions are shallower in regions with lower reward density. In the

a

b

Reward (µl)

Re
sp

on
se

 (H
z)

Re
sp

on
se

 (H
z)

Reward (µl)

Threshold (µl)

Sl
op

e

5 100
0

1

2

0

0.5

100

0.4

100
0

Midpoint (µl)

c

fd

e

Measured neurons

5 10

1.0

0.8

0.6

0.4

0.2

0

Threshold (µl)

DRL
E�icient code

0

Pr
ob

ab
ili

ty
G

ai
n

(H
z)

Threshold (µl)
5 100

0

10

20

30

40

Reward density
E�icient code
Measured neurons

r*

θ1 = h1
–1(r*)

β–(Rt – θ)

D
eg

re
e

of
 a

sy
m

m
et

ry
β+ +

 β
–

β+

β+(Rt – θ)
θ2 = h2

–1(r*)

r*

Fig. 2 | Comparisons between the measured neurons of Eshel et al. and the
efficient code. a, The distribution of the midpoints of the measured neurons
covers the reward distribution with a slight upward shift (mean midpoint = 5.96
versus mean reward = 5.21; t38 = 0.848, P = 0.402, two-sided t-test, no multiple
comparisons); the efficient code accounts for this (mean = 5.36). b, RPEN gain,
that is, maximal response of a fitted sigmoid function, plotted against threshold.
There is a significant positive relationship (r37 = 0.637, P = 1.277 × 10−5, two-sided
test, no multiple comparisons, normality assumption not tested). The neurons of
an efficient population (blue) again match the measured population (black) quite
well. c, Efficient coding accounts for the relationship between asymmetry and
threshold. The spontaneous activity r* is reached at θ1 within the concave part of
the sigmoidal response function for a neuron with low threshold and gain and at
θ2 within the convex part of a sigmoidal response function for a neuron with high
threshold and gain. d, Degree of asymmetry of neural responses (β+

β−+β+
) plotted

against threshold. There is a strong positive relationship between these two

variables (r37 = 0.832, P = 5.55 × 10−11, two-sided test, no multiple comparisons,
normality assumption not tested). The neurons of an efficient population (blue)
closely approximate the measured population (black). The dashed line is
expected from ideal distributional temporal difference learning. e, DRL accounts
for the relationship between asymmetry and threshold. A reward value Rt shifts
the response function down proportional to β− if below the threshold (Rt < θ) and
up proportional to β+ if above the threshold (Rt ≥ θ). An equilibrium is achieved
when the two expected shifts cancel each other. f, Slope of the sigmoid fit a
plotted against threshold for the efficient code neurons. There is a significant
negative linear relationship (r37 = −0.915, P = 3.59 × 10−16, two-sided test, no
multiple comparisons, normality assumption not tested). The inset shows the
same plot for the measured neurons. There is a significant negative linear
relationship in the data (r37 = −0.550, P = 0.000290, two-sided test, no multiple
comparisons, normality assumption not tested; the shaded region displays a 95%
confidence interval for the prediction of the linear regression model).

http://www.nature.com/natureneuroscience

Nature Neuroscience

Article https://doi.org/10.1038/s41593-024-01671-x

measured neurons, we indeed find a significant negative correlation
of slope and threshold (r37 = −0.550, P < 0.001). To our knowledge,
this empirical finding has also not been reported before. Overall, the
measured neurons have shallower tuning curves than predicted by
the efficient code. A possible explanation is that we did not take into
account stochasticity in the RPEN inputs. Such stochasticity would
produce random horizontal shifts of the sigmoid tuning curve, which,
when averaged, would result in a lower slope.

Application 2: variable-distribution task
So far, we have examined RPEN responses to a fixed reward distribution.
Rothenhoefer et al.17 instead exposed two macaque monkeys to cues
associated with rewards drawn from one of two distributions (either a
‘uniform’ or a ‘normal’ distribution) with the same mean (Fig. 3a,b). The
main finding of Rothenhoefer et al. was that dopamine responses are
amplified for rare rewards, producing steeper response functions for
the ‘normal’ distribution than for the ‘uniform’ distribution (Fig. 3c,d).
This suggests that RPENs encode the frequency of rewards.

The variable distributions make this dataset an interesting addi-
tional test for the efficient coding framework. We derived an efficient
code for a moment-matched continuous approximation of each dis-
tribution (Fig. 3a,b). We fitted the parameters α, k and rmax to minimize
the mean squared error between the model and data on the response
slopes for the individual distributions. The resulting estimates were
α̂ = 0.473, ̂k = 2.00 and ̂rmax = 28.2 (Extended Data Fig. 5). As in ‘Appli-
cation 1: variable-reward task’, we find that the midpoints of the neurons
in the efficient code cover the range of the reward distribution
(Extended Data Fig. 5b,d). Moreover, the efficient coding model suc-
cessfully reproduced the main finding (Fig. 3c,d), where the majority

of neurons in the efficient code (39 of 40) exhibited steeper slopes for
the ‘normal’ distribution, in agreement with the data (31 of 40).

Learning rules for the efficient code
DRL16 proposes that RPENs update their thresholds in proportion to
the difference between the received reward and their thresholds, with
different proportionality factors for positive and negative differences
(Fig. 2e). This learning rule leads those thresholds to converge to the
expectiles of the reward distribution. This is very similar to the predic-
tion of the efficient code, which places the midpoints of neurons at
specific quantiles of the distribution. With the additional assumption
that the slope of the reward tuning curve above and below threshold
is proportional to the learning rate, DRL accounts for the observed
relationship between threshold and asymmetry. However, without
modification, it does not account for the relationship between gain and
threshold or the relationship between slope and threshold. Because
the efficient code does account for these observations, a good way
to consolidate the two theories is to extend the DRL rule such that
the gain and slope of neurons also converge to the parameters for the
efficient code.

To learn the placement of neurons on the reward axis, we can use
the asymmetric DRL rules. To converge to the quantiles of the distribu-
tion, we shift the neuron to higher reward values by a step size b and
toward lower reward values by a different step size a if a reward below
the midpoint occurs (Fig. 4a). If we set a and b such that ap = b(1 − p),
this procedure converges to the pth quantile of the distribution. In the
DRL formulation, neurons instead update their position proportional
to the difference between their location and the presented reward
and thus converge to the expectiles of the distribution. This changes

a

b

c

d

Data Model

Data Model

0.2

Pr
ob

ab
ili

ty
Pr

ob
ab

ili
ty

Re
sp

on
se

 (H
z)

0.4 0.6

Reward (ml)

0.2 0.4 0.6

Reward (ml)

0.2

–4

–2

0

2

4

Re
sp

on
se

 (H
z)

–1

–2

0

2

1

0.4 0.6

Normal
Uniform

Reward (ml)

2

2

0
0

4

4

6

6

Response slope
(uniform)

Re
sp

on
se

 s
lo

pe
(n

or
m

al
) (

H
z

m
l–1

)

2

0

4

6

Re
sp

on
se

 s
lo

pe
(n

or
m

al
) (

H
z

m
l–1

)

20 4 6

Response slope
(uniform)

0.2 0.4 0.6

Reward (ml)

0

5

–5

0

5

–5

Fig. 3 | Efficient coding accounts for response slope characteristics in the
variable-distribution task. a, ‘Normal’ distribution used in the experiment
(purple) and moment-matched continuous distribution. b, Same for the
‘uniform’ distribution. Vertical dashed lines mark the boundaries of the uniform
distribution. c, Left, example neuron from Rothenhoefer et al.17 showing steeper
tuning for the ‘normal’ distribution than for the ‘uniform’ distribution. Error
bars represent ±1 s.e.m. across trials. Right, example neuron from the efficient
code. d, Scatter plots of the response slopes of all neurons in the data (n = 40

(ref. 17); left) and in the efficient code (right). The dashed diagonal marks the
identity line. Insets show the histograms of differences, and the downward
arrows indicate the mean. The data show a significantly different response
slope with a mean difference of −0.605 (t38 = −3.26, P = 0.002, two-sided test, no
multiple comparisons, normality assumption not tested), and the model also
demonstrated a significantly different response slope with a mean difference
of −1.58 (t38 = −10.4, P = 1.13 × 10−12, two-sided test, no multiple comparisons,
normality assumption not tested).

http://www.nature.com/natureneuroscience

Nature Neuroscience

Article https://doi.org/10.1038/s41593-024-01671-x

the population only slightly but achieves similar efficiency as the
populations placed at the quantiles (Extended Data Fig. 6). It should
also be kept in mind that both the step function that we apply for the
quantiles and the linear weighting functions that yield expectiles are
idealizations.

In the efficient code, the RPEN slope should be proportional to
the local probability density of rewards. To learn the slope, we can
estimate the local probability density based on the probability that
a reward within the dynamic range of the neuron occurs, that is, in
the range where the neuron has a high slope. As the dynamic range is
inversely proportional to the slope, it should be inversely proportional
to the local reward density as well, which means that the probability
of a reward in the dynamic range should be constant. A simple learn-
ing rule to achieve this is to increase the slope and shrink the dynamic
range when a reward falls into the dynamic range and decrease the
slope and increase the dynamic range when a reward falls outside the
dynamic range. When we allow a gradual definition for falling into the
dynamic range, a natural choice is to use the derivative of the sigmoid
function; this is the kernel we chose for our simulations (Fig. 4b). Any
other kernel around the midpoint of the sigmoid whose width scales
inversely with the slope would also work.

Finally, we need to adjust the gain of the neurons to match the effi-
cient coding solution. For this purpose, we present two solutions that
work similarly well but that are based on different biological mecha-
nisms. In the first method, we learn an estimate of the expected firing
rate and set the gain based on this estimate. Effectively, this results
in the inverse of the sigmoid shape for updating the gain, with high
rewards reducing a neuron’s gain and low rewards increasing a neuron’s
gain (Fig. 4c). In the second method, we couple the fixed gain to the
quantile the specific neuron should converge to based on its learning
asymmetry (Fig. 4d).

These learning rules for midpoints, slope and gain together pro-
duce a population of neurons similar to the analytical efficient coding
solution (Fig. 4c,d,f) with similar efficiency (Fig. 4g). These populations
clearly beat the best possible solution that assumes the same tuning

function for every neuron (Fig. 4e,g). Thus, these rules successfully
extend the DRL rule to produce an efficient code.

Discussion
We have presented evidence that RPENs implement an efficient code
for reward. Starting from a normative account of the tuning of RPEN
responses, we were able to account for five empirical findings across
two tasks. Thus, efficient coding could serve as a unifying principle
underlying the response characteristics of RPENs.

Dependence on additional assumptions
Our results are robust to changing the measure of information used
for optimizing the population, the assumed distribution of neural
responses or the assumption of a sigmoid shape. Different objective
functions or different response distributions lead to different relation-
ships between the density of the reward distribution and the optimal
density and gain of neurons18. However, neural density always increases
with reward density, as it is more efficient to focus neural resources
on probable rewards. Analogously, all objectives lead to higher gains
at higher thresholds, as gain increases are ‘cheaper’ for neurons with
higher thresholds. Furthermore, changing the mathematical form of
the shape of the response function does not change the density and
gain predictions, as those were derived independently of the shape,
and only leads to slightly different predictions for the asymmetry of
the responses around the threshold. For any shape that is convex in
its lower response range and concave in its upper response range, the
qualitative argument for the dependence between threshold and asym-
metry will hold.

Limitations
Our work has limitations. To simplify our analysis, we restricted our-
selves to a task with a single reward supplied in each independent epi-
sode without any action required by the animal. In this simple case,
the reward received and the change in value of the current state are
confounded. Thus, all our analyses are agnostic to this distinction.

Single
neuron

Quantile Slope Gain
learned

Fixed
gain

Analytic

0

1.0

0.5

1.5

Quantile learning

Slope learning

Gain learning

Analytic solution

Fixed
quantile–gain
relationship

Optimal single neuron

0 10 20
Reward (µl)

G
ai

n

Quantile

a

b

c

d

e

f

g

Re
sp

on
se

 (H
z)

0

10

20

30

0 10 20

Reward (µl)

0 10 20

0 10 20

0 10 20

Reward (µl)

Reward (µl)

Reward (µl)

0 10 20
Reward (µl)

Re
sp

on
se

 (H
z)

0

10

20

30
Re

sp
on

se
 (H

z)

0

10

20

30

Re
sp

on
se

 (H
z)

0

10

20

30

Re
sp

on
se

 (H
z)

0

10

20

30

Re
sp

on
se

 (H
z)

0

10

20

30

µ

µ

∆
 (

lo
g
I f)

Fig. 4 | Combination of learning rules to learn the efficient code. Each graph
shows the steady-state distribution population of 20 neurons after learning
based on 20,000 reward presentations, with insets illustrating the learning rule.
a, Learning the position on the reward axis for the neurons to converge to the
quantiles of the distribution. This learning rule is similar to the DRL rule.
b, Additionally learning the slope of the neurons to be proportional to the local
density by increasing the slope when the reward falls within the dynamic range

and decreasing otherwise. c, First method to set the gain: iterative adjustment
to converge to a fixed average firing rate. d, Second method to set the gain: use a
fixed gain per neuron based on the quantile it will eventually converge to.
e, Efficient tuning curve for a single neuron. f, Analytically derived optimal
solution. g, Comparison of the different populations in the overall information
transfer with the same number of neurons (20) and expected firing rate (8.27 per
neuron as in the fit to the measured data).

http://www.nature.com/natureneuroscience

Nature Neuroscience

Article https://doi.org/10.1038/s41593-024-01671-x

In multistep24 and delayed-reward tasks25, RPENs take future rewards
into account with temporal discounting. The efficient coding frame-
work that we presented here would need to be modified for a temporally
discounted value code. Moreover, our theory covers only the phasic
reward prediction error response of RPENs. The ramping activity of
RPENs (for example, refs. 26,27) will require additional explanation,
most likely including an encoding of reward timing28. In fact, it has
been proposed that RPENs encode elapsed time more generally29 and
that this encoding is tuned to task properties in a manner reminiscent
of efficient coding13.

Compatibility with RL
The efficient coding hypothesis is compatible with RL. Specifically, we
extended the learning rule from DRL16 to account not only for the rela-
tionship between asymmetry and threshold but also for the three other
tuning properties predicted by the efficient code. Besides DRL, there
are two alternative explanations of the data by Eshel et al.14: the Laplace
code30 and normalized RL31. In the Laplace code, temporal difference
learning neurons with different parameters are used to encode the tim-
ing and a whole distribution of rewards in the future by representing an
analog of the Laplace transform in the neural responses. Individual neu-
rons still have a sigmoid response curve in this code, and the dependence
between asymmetry and threshold can be created similar to as in the
efficient code by cutting the curve at different response levels. In their
formulation, they subtract the expected response from each neuron
instead of changing the gain (as we predict and observe). Normalized
RL31 proposes that RPENs perform divisive normalization with different
half saturation constants. This yields sigmoid (Naka–Rushton32) neurons
with different thresholds, and the asymmetry around those thresholds
is explained again by cutting the sigmoids at different heights. Neither
of these explanations explicitly examines code efficiency or attempts
to account for the dependencies of gain or slope on threshold.

Future work
Future work could examine how learning rules that produce an efficient
code can be implemented in biologically realistic circuits (perhaps simi-
lar to refs. 33–36), empirically distinguish between candidate learning
rules and examine how RPENs can switch from one reward distribution
to another relatively quickly.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author con-
tributions and competing interests; and statements of data and code
availability are available at https://doi.org/10.1038/s41593-024-01671-x.

References
1. Schultz, W., Dayan, P. & Montague, P. R. A neural substrate of

prediction and reward. Science 275, 1593–1599 (1997).
2. Sutton, R. S. & Barto, A. G. Reinforcement Learning: An

Introduction (MathWorks, 2018).
3. Balleine, B. W., Daw, N. D. & O’Doherty, J. P. in Neuroeconomics

(eds Glimcher, P. W. et al.) 367–387 (Academic Press, 2009).
4. Attneave, F. Some informational aspects of visual perception.

Psychol. Rev. 61, 183–193 (1954).
5. Barlow, H. B. in Sensory Communication (ed Rosenblith, W. A.)

216–234 (MIT Press, 1961).
6. Laughlin, S. A simple coding procedure enhances a neuron’s

information capacity. Z. Naturforsch. C Biosci. 36, 910–912 (1981).
7. Schwartz, O. & Simoncelli, E. P. Natural signal statistics and

sensory gain control. Nat. Neurosci. 4, 819–825 (2001).
8. Wei, X.-X. & Stocker, A. A. Lawful relation between perceptual bias

and discriminability. Proc. Natl Acad. Sci. USA 114, 10244–10249
(2017).

9. Louie, K., Glimcher, P. W. & Webb, R. Adaptive neural coding: from
biological to behavioral decision-making. Curr. Opin. Behav. Sci.
5, 91–99 (2015).

10. Polanía, R., Woodford, M. & Ruff, C. C. Efficient coding of
subjective value. Nat. Neurosci. 22, 134–142 (2019).

11. Bhui, R., Lai, L. & Gershman, S. J. Resource-rational decision
making. Curr. Opin. Behav. Sci. 41, 15–21 (2021).

12. Louie, K. & Glimcher, P. W. Efficient coding and the neural
representation of value. Ann. N Y Acad. Sci. 1251, 13–32 (2012).

13. Motiwala, A., Soares, S., Atallah, B. V., Paton, J. J. & Machens, C. K.
Efficient coding of cognitive variables underlies dopamine
response and choice behavior. Nat. Neurosci. 25, 738–748 (2022).

14. Eshel, N. et al. Arithmetic and local circuitry underlying dopamine
prediction errors. Nature 525, 243–246 (2015).

15. Eshel, N., Tian, J., Bukwich, M. & Uchida, N. Dopamine neurons
share common response function for reward prediction error. Nat.
Neurosci. 19, 479–486 (2016).

16. Dabney, W. et al. A distributional code for value in
dopamine-based reinforcement learning. Nature 577, 671–675
(2020).

17. Rothenhoefer, K. M., Hong, T., Alikaya, A. & Stauffer, W. R. Rare
rewards amplify dopamine responses. Nat. Neurosci. 24, 465–469
(2021).

18. Ganguli, D. & Simoncelli, E. P. Efficient sensory encoding and
Bayesian inference with heterogeneous neural populations.
Neural Comput. 26, 2103–2134 (2014).

19. Fiorillo, C. D., Tobler, P. N. & Schultz, W. Discrete coding of reward
probability and uncertainty by dopamine neurons. Science 299,
1898–1902 (2003).

20. Cohen, J. D. & Servan-Schreiber, D. A theory of dopamine function
and its role in cognitive deficits in schizophrenia. Schizophr. Bull.
19, 85–104 (1993).

21. Wei, X.-X. & Stocker, A. A. Bayesian inference with efficient neural
population codes. In Artificial Neural Networks and Machine
Learning—ICANN 2012, Vol. 7552 (eds Hutchison, D. et al.)
523–530 (Springer, 2012).

22. Frank, M. J., Seeberger, L. C. & O’Reilly, R. C. By carrot or by stick:
cognitive reinforcement learning in Parkinsonism. Science 306,
1940–1943 (2004).

23. Mikhael, J. G. & Bogacz, R. Learning reward uncertainty in the
basal ganglia. PLoS Comput. Biol. 12, e1005062 (2016).

24. Kobayashi, S. & Schultz, W. Influence of reward delays on
responses of dopamine neurons. J. Neurosci. 28, 7837–7846
(2008).

25. Roesch, M. R., Calu, D. J. & Schoenbaum, G. Dopamine neurons
encode the better option in rats deciding between differently
delayed or sized rewards. Nat. Neurosci. 10, 1615–1624
(2007).

26. Kim, H. R. et al. A unified framework for dopamine signals across
timescales. Cell 183, 1600–1616 (2020).

27. Starkweather, C. K. & Uchida, N. Dopamine signals as temporal
difference errors: recent advances. Curr. Opin. Neurobiol. 67,
95–105 (2021).

28. Starkweather, C. K., Babayan, B. M., Uchida, N. & Gershman, S. J.
Dopamine reward prediction errors reflect hidden-state inference
across time. Nat. Neurosci. 20, 581–589 (2017).

29. Soares, S., Atallah, B. V. & Paton, J. J. Midbrain dopamine neurons
control judgment of time. Science 354, 1273–1277 (2016).

30. Tano, P., Dayan, P. & Pouget, A. A local temporal difference
code for distributional reinforcement learning. In Advances in
Neural Information Processing Systems 33 (eds Larochelle, H.
et al.) 13662–13673 (Neural Information Processing Systems
Foundation, 2020).

31. Louie, K. Asymmetric and adaptive reward coding via normalized
reinforcement learning. PLoS Comput. Biol. 18, e1010350 (2022).

http://www.nature.com/natureneuroscience
https://doi.org/10.1038/s41593-024-01671-x

Nature Neuroscience

Article https://doi.org/10.1038/s41593-024-01671-x

32. Naka, K. I. & Rushton, W. A. H. An attempt to analyse colour
reception by electrophysiology. J. Physiol. 185, 556–586
(1966).

33. Bredenberg, C., Simoncelli, E. P. & Savin, C. Learning efficient
task-dependent representations with synaptic plasticity.
In Advances in Neural Information Processing Systems 33
(eds Larochelle, H. et al.) 15714–15724 (Neural Information
Processing Systems Foundation, 2020).

34. Savin, C. & Triesch, J. Emergence of task-dependent
representations in working memory circuits. Front. Comput.
Neurosci. 8, 57 (2014).

35. Gerstner, W., Lehmann, M., Liakoni, V., Corneil, D. & Brea, J.
Eligibility traces and plasticity on behavioral time scales:
experimental support of neoHebbian three-factor learning rules.
Front. Neural Circuits 12, 53 (2018).

36. Frémaux, N. & Gerstner, W. Neuromodulated spike-timing-
dependent plasticity, and theory of three-factor learning rules.
Front. Neural Circuits 9, 85 (2016).

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with
the author(s) or other rightsholder(s); author self-archiving of the
accepted manuscript version of this article is solely governed by the
terms of such publishing agreement and applicable law.

© The Author(s), under exclusive licence to Springer Nature America,
Inc. 2024

http://www.nature.com/natureneuroscience

Nature Neuroscience

Article https://doi.org/10.1038/s41593-024-01671-x

Methods
Analysis of neural data
Variable-reward task. We used the data from the variable-reward task
by Eshel et al.14 as preprocessed by Dabney et al.16. For details of data
acquisition, please refer to Eshel et al.14. Five mice were subjected to a
variable-reward paradigm incorporating two experimental conditions:
a no-odor condition and an odor condition in which an odor was pre-
sented to cue the reward delivery. During each trial, one of seven reward
magnitudes (0.1, 0.3, 1.2, 2.5, 5, 10 and 20 μl) was randomly chosen with
probabilities of 0.066, 0.091, 0.15, 0.15, 0.31, 0.15 and 0.077, respectively.
Electrophysiological data were recorded from n = 40 ventral tegmental
area dopaminergic RPENs. From each of the mice, 3, 6, 9, 16 and 6 neurons
were selected, respectively. One neuron was excluded because it never
showed a response larger than its baseline for any reward magnitude.
We used the data as preprocessed by Dabney et al.16. As part of this pre-
processing, on each trial, a prestimulus response was subtracted from
the later responses, and an offset was added to the neural responses in
the no-odor condition to equalize the two conditions. As this procedure
yielded negative firing rates, we additionally subtracted for each neuron
the overall smallest response from all its responses.

Variable-distribution task. To further investigate the responses of
dopaminergic RPENs with different reward distributions, we analyzed
the data from the variable-distribution task presented in Rothenhoefer
et al.17. For detailed data acquisition methods, we refer to that paper.
Two macaque monkeys were subjected to a variable-reward paradigm,
where cues indicated rewards from either a uniform or a normal distri-
bution. In each trial, rewards of 0.2, 0.4 or 0.6 ml were delivered based
on a uniform distribution (1/3 chance for each amount) or a normal
distribution where rewards of 0.2 and 0.6 ml had a 2/15 probability
and a reward of 0.4 ml had an 11/15 probability. Electrophysiological
data from RPENs were collected to monitor dopamine responses. The
peristimulus response was subtracted from the later responses and
smoothed as in the variable-reward task.

Logistic fits. For each neuron separately, we fitted logistic sigmoid func-

tions σ(R) = a1

1−e−a2(x−a3)
 to the responses. We denote the gain a1, the slope

a2 and the midpoint a3 collectively by a. To estimate the parameters, we
used maximum-likelihood estimation based on Poisson noise, so that

â = argmin
a

T

∑
j=1
(rj log (σ(Rj;a)) − σ(Rj;a)) , (3)

where rj is the measured firing rate of a neuron responding to the reward
magnitude Rj on the jth trial. We proceeded to compare the fitted
parameters between the data and the efficient code.

Fitting asymmetric slopes. To enable comparisons to the asymmetry
data from Dabney et al.16, we repeated their analysis and applied the same
asymmetry calculation to the simulated neurons in our efficient code.

First, we subtracted a baseline from the smoothed peristimulus
time histograms for each neuron and trial. The baseline was the mean
firing rate over the 1,000 ms before stimulus onset. We then estimated
asymmetric slopes, β+ and β−, by separately fitting linear functions to
the responses above and below threshold. Following Dabney et al.16, we
used estimated utility space as the x axis for this step, but the results
are not sensitive to the choice of utility function.

In math terms, the slope above threshold β+ and the slope below
threshold β− for responses yj to rewards Rj are thus defined as

β+
i
= argmin

βi

T

∑
j=1
[r∗ + βi (Rj − θ) − yj]

2 , forRj ≥ θ

β−
i
= argmin

βi

T

∑
j=1
[r∗ + βi (Rj − θ) − yj]

2 , forRj ≤ θ,

where r* is the spontaneous firing rate and the sum over j runs over
the T trials.

To achieve more efficient fitting than Dabney et al.16, we derived
analytical solutions for β+ and β− for a given θ, which are

β+
i
=
∑T

j=1(R j − θ)(y j − r∗)

∑T

j=1 (R j − θ)
2 forR j ≥ θ (4)

β−
i
=
∑T

j=1(R j − θ)(y j − r∗)

∑T

j=1 (R j − θ)
2 forR j ≤ θ. (5)

Thresholds (called reversal points in Dabney et al.16) were then chosen
to minimize the overall sum of squares by sampling 20,000 thresholds
from a uniform distribution between the range of rewards and choos-
ing the best-fitting one. Dabney et al. used the same random sampling
procedure for β+ and β−.

For fitting our simulated neurons, we set the threshold θ = h−1
i
(r∗)

and yj = hi(vj) and fit the β values based on the results for 105 trials each
above and below threshold sampled from the approximated log-normal
reward distribution restricted to the range above and below threshold,
respectively.

Statistics and reproducibility
We used standard statistical tests based on normal distribution assump-
tions throughout, even though our hypothesis is much more detailed
than predicting the existence of a difference. For the tests, the data
distribution was assumed to be normal, but this was not formally tested.

All data we use here were already publicly available. Thus, no
statistical method was used by us to predetermine sample size. We
followed the original authors in excluding one neuron that never
responded above its spontaneous rate. The experiments were not ran-
domized, as there were no experimental groups to assign to randomly.
The investigators who collected the data were blind to our hypothesis
as this hypothesis was not stated when the data were recorded, but
they were not blind to any aspect of the experimental design. Data
collection and analysis were not performed blind to the conditions
of the experiments.

Derivation of the efficient code
To derive the efficient code for reward, we extended the framework
for analytical solutions proposed by Ganguli and Simoncelli18. In this
framework, a population is uniformly defined not on a specific numeri-
cal interval, as was done by Ganguli and Simoncelli (who used the
interval [0, N], with N being the number of neurons, which is entirely
equivalent), but on the unit interval [0, 1]. By using an adaptable map-
ping between the unit interval and the stimulus space and functions
that transform the population, we can define a broad class of popula-
tions among which we can find the most efficient ones analytically. We
extended this framework by allowing the distribution of neurons to be
nonuniform, which decouples the local slope and density of neurons
that are coupled in the original framework.

Definitions. We start by defining a ‘standard’ population of RPENs.
This standard population is a collection of sigmoidal tuning curves
sω, [0, 1] → [0, 1], indexed by their ‘center’ ω ∈ [0, 1]. Individual neurons
are assumed to be monotonically increasing functions whose deriva-
tives are unimodal functions with their peak near ω. Additionally, we
assume that the overall Fisher information IF(x) of this population
about the position x ∈ [0, 1] and the overall increase in firing rate are
independent of x, that is,

∫ s′ω(x)dω ≈ const (6)

http://www.nature.com/natureneuroscience

Nature Neuroscience

Article https://doi.org/10.1038/s41593-024-01671-x

IF(x) = ∫ IF(x,ω)dω ≈ const, (7)

where IF(x, ω) is the Fisher information provided by the tuning function
with center ω, and s′ω(x) is the derivative of the tuning function.

Finally, we assume that the total amount of Fisher information
provided by each neuron is approximately constant,

∫ IF(x,ω)dx ≈ const. (8)

One simple way to construct a population that fulfills these criteria
is to start with a prototypical sigmoid function s0 centered on 0 and
define the other tuning curves as sω(x) = s0(x − ω). This construction
often leads to strong edge effects at 0 and 1 because a substantial part of
the sigmoid response curves near the borders will fall outside the [0, 1]
interval. We ameliorate these effects by using a more sophisticated
population based on cumulative beta distributions below. Nonethe-
less, this simple construction illustrates the intuition behind a uniform
population of sigmoidal neurons well and was actually used by Ganguli
and Simoncelli in their implementation.

To map between the unit interval and stimulus space, we use a
strictly monotonic function F(R) = ∫R−∞ f(s)ds from the stimulus space
into the unit interval parameterized by its derivative f(s) > 0, which we
will optimize below. As F is strictly monotonic, it is also invertible, with
its inverse F−1 mapping the unit interval into stimulus space. Addition-
ally, we allow a gain function g > 0 of stimulus space, which scales the
tuning curve of neurons placed at different positions in stimulus space.

With these definitions, we can now define the tuning function hμ
of a neuron with a midpoint at stimulus level μ,

hμ(R) = g(μ)sF(μ)(F(R)), (9)

that is, we map both the positions of the neurons and the stimuli into
the unit interval, evaluate the sigmoids there and scale the result with
the gain.

Up to this point, our definitions are equivalent to those of Ganguli
and Simoncelli18, who now assume that the neurons are equally spaced
in the interval. This additional assumption makes it impossible to place
more neurons in some stimulus range without changing their shape.
This removes one of the possible adaptations of neural populations
mentioned by other authors such as, for example, Wei and Stocker37.
To allow different distributions of the neurons, we instead assume that
the μi are drawn from a distribution over reward space with density
d, which we will optimize below. The equal placement assumed by
Ganguli and Simoncelli is equivalent to the assumption d(R) = f(R), which
yields a uniform distribution over the placements in the unit interval ω.

Optimization objective. We further assume that the RPEN firing rates
are subject to independent Poisson noise, which is the simplest noise
assumption. We can then calculate the Fisher information IF(R; μ)
provided by a neuron centered on μ,

IF(R;μ) = g(μ)
s′
F(μ)(F(R))

2

sF(μ)(F(R))
f 2(R). (10)

We then optimize the expected value (over both R and μ) of the loga-
rithm of the Fisher information, IF, based on N neurons,

IN = 𝔼𝔼R𝔼𝔼μμμ [log (
1
N
∑
i

IF(R;μi))] (11)

This objective was originally proposed as a lower bound on the
mutual information between the neural responses and the stimu-
lus18,38,39, which becomes tight for small Gaussian-shaped errors on

the encoded value. However, some later publications cast doubt on
this interpretation. In particular, Wei and Stocker40 interpret this
equation as an upper bound on mutual information instead. Addi-
tionally, low firing rates and/or steep changes in firing rate can lead to
this approximation being highly inaccurate, and this realm is actually
reached for cases in which neurons are measured only for short times41.
Nonetheless, IN remains the best Fisher information-based approxima-
tion to mutual information, and we follow Ganguli and Simoncelli18 in
optimizing it. They also tried a few other functionals of Fisher informa-
tion and got qualitatively similar results. Mutual information itself is
unfortunately untractable for these derivations.

Assuming further that there is a large population of RPENs, we
can now look at this distribution in the limit of infinitely many neu-
rons. According to the strong law of large numbers, the logarithm of
the mean in Eq. (11) almost surely converges to the logarithm of the
expected Fisher information, because the Fisher information provided
by each single neuron has finite variance:

lim
N→∞

log (1
N
∑
i

IF(R;μi)) = log𝔼𝔼μ[IF(R;μ)] (12)

Because this is a constant with respect to μ, we can drop the outer
expected value, yielding

I ≡ lim
N→∞

IN = 𝔼𝔼R [log (𝔼𝔼μ [IF(R;μi)])] . (13)

To make this expression amenable to optimization, we simplify it as
follows:

𝔼𝔼R [log (𝔼𝔼μ [IF(R;μ)])] (14)

= ∫
∞

−∞
p(R) log(∫

∞

−∞
d(μ)g(μ)

s′
F(μ)(F(R))

2

sF(μ)(F(R))
f 2(R)dμ)dR (15)

≈ ∫
∞

−∞
p(R) log(d(R)g(R)f(R)∫

∞

−∞
f(μ)

s′
F(μ)(F(R))

2

sF(μ)(F(R))
dμ)dR (16)

≈ constant +∫
∞

−∞
p(R) log (d(R)g(R)f(R))dR. (17)

Here, we eliminated the inner integral through two steps, which
are only approximately correct. First, we observe for sigmoidal func-

tions that h
′
0(F(R)−F(μ))

2

h0(F(R)−F(μ))
 is a unimodal function that is centered around R,

which effectively acts as a smoothing kernel that is convolved with the
rest of the integral. If d(μ), f(μ) and g(μ) change little over the range of
this smoothing kernel, we can replace them by their values at R and pull
them out of the integral. Second, the integral over μ we are left with is
(approximately) shift invariant, that is, the same for all R and invariant
to the monotonic transformation F, if the original population is
(approximately) uniform as defined in Eqs. (7) and (8).

The final optimization problem is now to optimize this approxima-
tion of I with respect to the three functions d, g and f:

I ≈ ∫
∞

−∞
p(R) log (d(R)g(R)f(R))dR. (18)

Additionally, we enforce that the expected number of spikes 𝔼𝔼[r]
under the prior distribution is smaller or equal to a bound rmax. The
expected number of spikes is

𝔼𝔼[r] = N𝔼𝔼R [𝔼𝔼μ[hμ(R)]] (19)

http://www.nature.com/natureneuroscience

Nature Neuroscience

Article https://doi.org/10.1038/s41593-024-01671-x

= N∫
∞

−∞
p(R)∫

∞

−∞
d(μ)g(μ)sF(μ)(F(R))dμdR (20)

≈ N∫
∞

−∞
d(μ)g(μ)∫

∞

μ

p(R)dRdμ (21)

= N∫
∞

−∞
d(μ)g(μ)(1 − P(μ))dμ, (22)

where P is the cumulative density function of the reward distribution.
In Eq. (21), we approximated the sigmoid with a step function at μ. This
approximation is close if p(R) is near constant over the range where
the sigmoid hμ changes from 0 to 1. This is the case if the sigmoids are
reasonably steep.

There are two further constraints, one to make d a valid probability
density and one to limit the range of F to the unit interval:

D = ∫
∞

−∞
d(R)dR = 1, d(R) > 0 (23)

Fmax = ∫
∞

−∞
f(R)dR = 1, f(R) > 0. (24)

Solving the optimization. Now we are ready to solve this optimization
problem using Lagrange multipliers. To do so, we first compute the
following functional derivatives of our objective function:

δI

δf
(R) = p(R)

f(R) , (25)

δI

δg
(R) = p(R)

g(R) and (26)

δI

δd
(R) = p(R)

d(R) . (27)

Similarly, we compute the functional derivatives of the constraints.
First, for the expected spike rate,

δ𝔼𝔼[r]
δf

(R) = 0, (28)

δ𝔼𝔼[r]
δg

(R) = (1 − P(R))d(R) and (29)

δ𝔼𝔼[r]
δd

(R) = (1 − P(R))g(R). (30)

Second, for the integral of the density D,

δD

δf
(R) = 0, (31)

δD

δg
(R) = 0and (32)

δD

δd
(R) = 1. (33)

Finally, for the upper end of the interval reached by F, Fmax,

δFmax
δf

(R) = 1, (34)

δFmax
δg

(R) = 0and (35)

δFmax
δd

(R) = 0. (36)

With these derivatives in place, we solve the optimization problem
using Lagrange multipliers λR, λD and λF, which results in the following
three equations:

p(R)
f(R) − λF = 0, (37)

p(R)
g(R) − λRd(R)(1 − P(R)) = 0and (38)

p(R)
d(R) − λRg(R)(1 − P(R)) − λD = 0. (39)

From Eq. (37), we obtain

f(R) = 2p(R)
λF

∝ p(R). (40)

From Eq. (38), we obtain

λRd(R)g(R)(1 − P(R)) = p(R) (41)

d(R)g(R) = p(R)
λR(1 − P(R))

∝ p(R)
1 − P(R) (42)

By inserting this result into Eq. (39), we see that it is guaranteed with
λD = 0.

We conclude that under a constraint on the expected number of
spikes, the neural population that optimizes the Fisher information
bound on mutual information has the following properties:

•	 The inverse slope of the sigmoids is proportional to the prob-
ability density.

•	 The product of the probability density for neurons with a given
midpoint and the gain for neurons with this midpoint is equal to
the ratio of the reward probability density and the probability
that rewards larger than the midpoint appear.

The formulation by Ganguli and Simoncelli18 with equally spaced
neurons in the unit interval enforces the additional constraint that
d(R) ∝ f(R) and thus arrives at the special case of d(R) ∝ p(R) and
g(R) ∝ (1−P(R))−1.

Splitting density and gain. In our solution, d and g entirely compen-
sate for each other. Due to the fact that their product needs to be
proportional to a product of the two factors p(R) and 1

1−P(R)
, a natural

choice to parameterize a family of solutions is to use a parameter
α ∈ [0, 1] that trades off the distribution of the two factors to density
and gain,

d(R) ∝ p(R)
(1 − P(R))1−α

g(R) ∝ 1
(1 − P(R))α

. (43)

Effectively, α trades off the gain increase at higher thresholds against
placing more neurons at higher thresholds. We illustrate this for several
different reward distributions and values of α in Extended Data Fig. 2.

Other ways of writing p(R)
(1−P(R))

 as a product of neural density and gain

are possible, but the split we chose has two convenient properties. First,
the density p(R) appears only as a whole factor, which corresponds

http://www.nature.com/natureneuroscience

Nature Neuroscience

Article https://doi.org/10.1038/s41593-024-01671-x

to the density of the reward distribution actually observed by the
animal. This allows realistic learning rules for the neurons, as we derive
below. Second, this formula for the density yields a valid density when
α > 0 independent of the reward distribution so that the same split can
be applied to all distributions. We can derive this fact by looking at the
uniform distribution on [0, 1]. For this reward distribution, the density
of neurons becomes (1 − x)α−1, whose integral over [0, 1] is

∫
1

0
(1 − x)α−1dx = [− 1

α
(1 − x)α]

1

0
= {

1
α
, forα > 0

∞, forα ≤ 0
(44)

Thus, the valid range for α for the uniform distribution is all positive
numbers. For any other reward distribution, we can transform the
distribution of neurons for the uniform distribution with the inverse
cumulative density function P−1. This yields samples with the desired
density 1

α

p(R)
(1−P(R))1−α

, which must therefore be a valid density.

Choosing a solution. We fitted α using only the midpoints of the
measured neurons. To do so, we extracted the midpoints of the meas-
ured from logistic function fits as described above. We then estimated
α using maximum-likelihood estimation, resulting in α̂ = 0.673.

The requirements we put forth in Eqs. (6)–(8) are approximately
met by many populations of sigmoid-shaped tuning curves. Thus,
the exact shape and, in particular, the slope of the sigmoid are not
fixed by these efficient coding considerations. For all optimal popu-
lations in this paper, we use the cumulative density functions of beta
distributions because these sigmoid functions are defined on the unit
interval [0, 1] and become exactly 0 and 1 at the ends of the interval,
which yields good boundary behavior. These sigmoid functions are
not exactly shifted versions of each other (as we assumed in the deri-
vations), but functions that are shifted versions of each other lead to
relatively strong boundary effects that produce worse deviations
from the theory. To place a neuron at a specific position p ∈ [0, 1], we
set the parameters such that p is the mean of the beta distribution
(a = kp, b = k(1 − p)). Thus, we are left with one more parameter k > 0,
which controls the slope of the sigmoid functions. As the efficient
coding scheme does not determine what the overall slope should be,
we set k = 5.20 to fit the threshold distribution of measured neurons
as described below. We do not expect other shapes to behave funda-
mentally differently.

We used a fixed spontaneous firing rate r* for all RPENs. We fitted
r* and the slope parameter k to minimize the mean squared error
between the thresholds of the efficient code, θ∗

i
= h−1

i
(r∗) , and the

thresholds of measured neurons,

argmin
r∗, k

𝔼𝔼 [θi − h−1i (r∗; k)]
2
.

The resulting estimates were ̂r∗ = 7.63 and ̂k = 5.20.
Finally, the efficient code has a parameter rmax that restricts the

budget for spikes. In the efficient code, the gain of all neurons is pro-
portional to this parameter. To fit this parameter, we fit sigmoids to
both the empirical and the efficient tuning curves as described above
and added the squared error of the neuron-averaged gains to the opti-
mization objective.

Checking the solution. We performed several checks to confirm that
the derived population is indeed efficient given the reward distribu-
tion. To do so, we compared the amount of information communicated
to some other populations with the same number of neurons and the
same expected number of spikes (Extended Data Fig. 1). The optimized
populations retain more information than other populations. The
population with the optimized α = 0.673 is equally efficient as the solu-
tion of Ganguli and Simoncelli18, which corresponds to α = 1.

Other objectives. Our predictions stay qualitatively similar for
optimization objectives that transform the Fisher information in
different ways, such as the discrimax objective studied by Ganguli
and Simoncelli18. In particular, our results can be derived when-
ever the loss is an expected value over a convex function of Fisher
information, which goes to infinity at 0 and is monotonically
decreasing. Then there are diminishing returns for increasing
the Fisher information at any specific reward value, but we need
to achieve some nonzero Fisher information for finite loss. The
optimal population will then always be a trade-off between distrib-
uting the Fisher information broadly and the lower cost for higher
thresholds.

As the Fisher information itself and the expected spike rate both
depend on the density and gain only through the product of density and
gain, we will find a trade-off between density and gain for any objective
function defined in this way.

Learning rules for the efficient code
Here, we define the learning rules for the efficient code exactly and
show that they converge to the desired population.

Midpoints. We start with a learning rule that makes the midpoints con-
verge to the quantiles of the reward distribution so that their density is
proportional to p(R). This covers the α = 1 case of Eq. (2). We will then
describe how to achieve other α values by choosing the quantiles from
a specific nonuniform distribution.

To create a neuron that converges to the quantile q of the reward
distribution, we can adjust its midpoint μ in analogy to the distribu-
tional RL rule. When a reward above μ occurs, we increase μ by a con-
stant value γ+; if a reward below μ occurs, we decrease μ by a (usually)
different value γ−:

μi+ 1 = {
μi − γ− forR ≤ μi;

μi + γ+ forR > μi.
(45)

The expected change of the midpoint with this learning rule is

𝔼𝔼(μi+ 1 − μi) = P(R > μi)γ+ − P(R ≤ μi)γ− (46)

= (1 − P(R ≤ μi))γ+ − P(R ≤ μi)γ− (47)

= γ+ − P(R ≤ μi)(γ+ + γ−), (48)

which is exactly 0 if the current quantile of μ, P(R ≤ μi), satisfies

P(R ≤ μi) =
γ+

γ+ + γ−
, (49)

negative if it is larger and positive if it is smaller. If we set γ+ and γ− such

that q = γ+

γ++γ−
, the neuron with these parameter values will converge to

(or oscillate around) the desired quantile. By setting the distribution
of γ+ and γ− values across the population of neurons, we can thus enable
convergence to an arbitrary distribution of quantiles. Choosing a
uniform distribution solves the α = 1 case.

To enable convergence to a distribution with density proportional
to p(R)

(1−P(R))1−α
 for α ≠ 1, we can choose quantiles proportional to 1

(1−P(R))1−α
.

By the transformation theorem for probability densities, this will result
in a distribution with the desired density.

Slopes. The slopes need to converge to values proportional to the
local density of rewards (see Eq. (40)). As in kernel density estimation,
an estimate of the density around the midpoint of a neuron μ can be
found by evaluating a positive kernel function K with integral 1 at the
observed reward values Ri,

http://www.nature.com/natureneuroscience

Nature Neuroscience

Article https://doi.org/10.1038/s41593-024-01671-x

̂d(μ) = 1
N
∑
i

K(Ri − μ). (50)

From this equation, we could already derive a simple learning rule for
the slope of the sigmoids, namely setting them based on a running
average of these kernel evaluations. However, this would imply a fixed
kernel size for any reward distribution, which would be suboptimal
if the variance of reward distributions varied. To avoid this problem,
we can use a learning rule that adapts the kernel size simultaneously
with the slope. We set the width of the kernel h antiproportional to
the slope b of the sigmoid function. Thus, the tuning function and
the kernel are stretched and shrunk equally such that bh = constant.
We then get

constant = bh = ̂d(μ)h = 1
N

N

∑
i=1
k (Ri − μ

h
) . (51)

In other words, we need to define a learning rule such that k (Ri−μ
h
)

converges to a constant. This can be achieved for any constant
c ∈ [0, k(0)] by changing the slope and kernel width proportional to

k (Ri−μ
h
) − c. As h and b need to stay positive, we perform these updates

in log-space, that is, multiply both by exp λ (k (Ri−μ
h
) − c) for some small

learning rate λ.

Gain learning. As the first of two ways of adjusting the gain of a neuron,
we can use the expected firing rate before scaling with the gain. This
can achieve convergence to the efficient code because the factor
1 − P(μ) arises as an approximation of the expected firing rate of a
neuron in Eq. (22) before multiplication with the gain. To learn this
value, a neuron can compute a running average of the unscaled neural
responses ̄r with some learning rate λr:

̄ri+1 = (1 − λr) ̄ri + λr
ri
gi
. (52)

Plugging this into the efficient code solution yields

gi =
1
̄rαi
. (53)

With α = 1, this learning rule would yield the same expected firing rate
for all neurons. With α < 1, it yields a less extreme growth in gain.

Gain coupled to quantile. Another way of adjusting the gain is
by setting a fixed gain based on the quantile a neuron is meant to
converge to. As the quantile fixes P(μ), we can read off the
correct value from the analytical efficient coding solution, that is, set
the gain g equal to 1

(1−q)α
 for neurons that are meant to converge to the

quantile q.

Expectiles instead of quantiles
For the figures in the main text, we placed neuron midpoints at the
quantiles of the reward distribution as predicted by maximizing cod-
ing efficiency. As distributional RL predicts that neurons should con-
verge to expectiles instead, we tested the efficiency of such a code in
Extended Data Fig. 6. The efficiency of the code is slightly lower for
the expectile-based code due to a slight shift of midpoints toward
the mean of the distribution. These differences are small, and the
code does not show qualitative differences. We understand them as
essentially equivalent.

Comparing thresholds and midpoints
Because we are using two metrics for the placement of neurons, thresh-
old and midpoint, we discuss here how they compare. In our formalism,
‘density’ refers to the midpoint of a neuron with a sigmoid response

function. Threshold is the reward when a neuron fires at spontaneous
activity, this is, the point at which the neuron codes zero prediction
error in RL. Their distributions are slightly different. The relationship
between the two depends on the relationship between the gain of the
neuron (which defines the midpoint) and its spontaneous firing rate
(which defines the threshold). A neuron whose gain exceeds twice its
spontaneous firing rate has a higher midpoint than threshold, as reward
needs to be higher for the firing rate to reach half the gain than to reach
the spontaneous rate. The threshold will then lie in the lower convex
part of the response function. Correspondingly, a neuron with gain less
than twice its spontaneous rate has a higher threshold than midpoint,
and its threshold will lie in the upper concave part of the response func-
tion. In the efficient code, gain increases with threshold. As a result, the
prediction is that low thresholds are higher than their corresponding
midpoints, and high thresholds are lower than their corresponding
midpoints. In turn, this means that the threshold distribution should
be less dispersed than the midpoint distribution.

We illustrate this in the variable-magnitude task (Extended Data
Fig. 4). Empirically, the threshold distribution is indeed narrower (and
taller) than the midpoint distribution, as predicted by the efficient
code. Additionally, the spontaneous firing rate we estimated for this
task is lower than the average half gain. Correspondingly, the average
threshold (5.00 μl) is smaller than the average midpoint (5.96 μl).
However, these shifts are all relatively small, and the relationships
with other variables (Fig. 2b,d,f) hold for midpoints as they do for
thresholds.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
No new data were measured for this project. The data collected by Eshel
et al.15 that we analyze here were kindly made available by Dabney et al.16
at https://doi.org/10.17605/OSF.IO/UX5RG.

Code availability
The code to recreate our analyses42 is available at https://github.com/
dongjae-kim/efficient-coding-dist-rl.

References
37. Wei, X.-X. & Stocker, A. A. A Bayesian observer model constrained

by efficient coding can explain ‘anti-Bayesian’ percepts. Nat.
Neurosci. 18, 1509–1517 (2015).

38. Brunel, N. & Nadal, J.-P. Mutual information, Fisher information,
and population coding. Neural Comput. 10, 1731–1757 (1998).

39. Cover, T. M. & Thomas, J. A. Elements of Information Theory (Wiley,
1991).

40. Wei, X.-X. & Stocker, A. A. Mutual information, Fisher information,
and efficient coding. Neural Comput. 28, 305–326 (2016).

41. Bethge, M., Rotermund, D. & Pawelzik, K. Optimal short-term
population coding: when Fisher information fails. Neural Comput.
14, 2317–2351 (2002).

42. Schütt, H., Kim, D. & Ma, W. J. Code for efficient coding and
distributional reinforcement learning. Zenodo https://doi.org/
10.5281/zenodo.10669061

Acknowledgements
We thank H.-H. Li for valuable discussions. We received no specific
funding for this work.

Author contributions
H.H.S. derived the efficient code. H.H.S. and D.K. analyzed the
neural data. W.J.M. supervised the project. All authors wrote the
manuscript.

http://www.nature.com/natureneuroscience
https://doi.org/10.17605/OSF.IO/UX5RG
https://github.com/dongjae-kim/efficient-coding-dist-rl
https://github.com/dongjae-kim/efficient-coding-dist-rl
https://doi.org/10.5281/zenodo.10669061
https://doi.org/10.5281/zenodo.10669061

Nature Neuroscience

Article https://doi.org/10.1038/s41593-024-01671-x

Competing interests
The authors declare no competing interests.

Additional information
Extended data is available for this paper at
https://doi.org/10.1038/s41593-024-01671-x.

Supplementary information The online version contains supplementary
material available at https://doi.org/10.1038/s41593-024-01671-x.

Correspondence and requests for materials should be addressed to
Heiko H. Schütt.

Peer review information Nature Neuroscience thanks the
anonymous reviewers for their contribution to the peer review
of this work.

Reprints and permissions information is available at
www.nature.com/reprints.

http://www.nature.com/natureneuroscience
https://doi.org/10.1038/s41593-024-01671-x
https://doi.org/10.1038/s41593-024-01671-x
https://doi.org/10.1038/s41593-024-01671-x
http://www.nature.com/reprints

Nature Neuroscience

Article https://doi.org/10.1038/s41593-024-01671-x

Extended Data Fig. 1 | Comparing encoding populations for reward with
10 neurons and the same expected number of spikes. A: Compared neuronal
populations: single neuron: All neurons share the same response curve,
optimized to maximize transferred information. equal spacing: neurons tile
the space, not optimized. no gain: positions and slopes are optimized, but all
neurons have equal gain. optimal α = 1: fully optimized population as derived

previously18 with density proportional to the distribution. optimal α = 0.673:
Equally optimal distribution but with α fit to match the midpoint distribution
for the optimal code and the experimental data. B: Fisher information as a
function of reward for each of the populations. C: Expected logarithm of Fisher
information under the reward distribution relative to the single-neuron case.

http://www.nature.com/natureneuroscience

Nature Neuroscience

Article https://doi.org/10.1038/s41593-024-01671-x

Extended Data Fig. 2 | Illustration of the solution of the efficient coding problem, varying α (rows) and the reward distribution (columns). The reward
distributions are all log-normal distributions with their pdfs and parameters plotted at the top.

http://www.nature.com/natureneuroscience

Nature Neuroscience

Article https://doi.org/10.1038/s41593-024-01671-x

Extended Data Fig. 3 | Efficient code for the variable-reward task14. A: Tuning curves. For clarity, only 20 of 39 neurons are shown. B: Density of neurons as a function
of midpoint. C: Gain as a function of midpoint.

http://www.nature.com/natureneuroscience

Nature Neuroscience

Article https://doi.org/10.1038/s41593-024-01671-x

Extended Data Fig. 4 | Log-normal kernel density estimation of midpoints and threshold. A: Midpoints. B: Thresholds. Measured neurons (black) and efficient
code (cyan) are overlayed over the reward density (gray).

http://www.nature.com/natureneuroscience

Nature Neuroscience

Article https://doi.org/10.1038/s41593-024-01671-x

Extended Data Fig. 5 | Efficient code for the variable-magnitude task17. A-C: Efficient code for the uniform distribution. D-F: Efficient code for the normal
distribution. A,D: Tuning curves. For clarity, only 13 of 40 neurons are shown. B,E: Density. C,F: Gain.

http://www.nature.com/natureneuroscience

Nature Neuroscience

Article https://doi.org/10.1038/s41593-024-01671-x

Extended Data Fig. 6 | Evaluation of learning rules placing neurons’
midpoints at expectiles instead of quantiles. Plotting conventions as in
Fig. 4. Each panel shows the converged population of 20 neurons after learning
based on 20, 000 reward presentations. The inset illustrates the learning rule.
A: Learning the position on the reward axis for the neurons to converge to the
quantiles of the distribution. This learning rule is the distribution RL learning
rule. B: Additionally learning the slope of the neurons to be proportional to the

local density by increasing the slope when the reward falls within the dynamic
range and decreasing otherwise. C: First method to set the gain: iterative
adjustment to converge to a fixed average firing rate. D: Second method to set the
gain: use a fixed gain per neuron based on the quantile it will eventually converge
to. E: The efficient tuning curve for a single neuron. F: The analytically derived
optimal solution. G: Comparison of information transfer across the different
populations with the same number of neurons and expected firing rate.

http://www.nature.com/natureneuroscience

1

n
atu

re p
o

rtfo
lio

 | rep
o

rtin
g

 su
m

m
ary

A
p

ril 2
0

2
3

Corresponding author(s): Wei Ji Ma

Last updated by author(s): Feb 16, 2024

Reporting Summary
Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency

in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided

Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)

AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted

Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection All data was precollected. We used matlab and python to load and analyze these data.

Data analysis The code to recreate our analyses is available at https://github.com/dongjae-kim/efficient-coding-dist-rl

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and

reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets

- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

No new data was measured for this project. The data collected by Eshel et al. (2016) that we analyze here are kindly made available by Dabney et al. (2020) at

https://doi.org/10.17605/OSF.IO/UX5RG.

2

n
atu

re p
o

rtfo
lio

 | rep
o

rtin
g

 su
m

m
ary

A
p

ril 2
0

2
3

Research involving human participants, their data, or biological material

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation),

and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender N/A

Reporting on race, ethnicity, or

other socially relevant

groupings

N/A

Population characteristics N/A

Recruitment N/A

Ethics oversight N/A

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size 40 neurons from 5 mice. 40 neurons from 2 monkeys. All data we use here were already publicly available. Thus, no statistical method was

used by us to predetermine sample size.

Data exclusions One neuron from the mice was excluded because it had never shown a single response larger than its baseline for any reward magnitude

following the analysis decisions of the original authors

Replication We did not attempt to replicate any of the data we analyze.

Randomization The experiments were not randomized, as there were no experimental groups to assign to randomly.

Blinding The investigators were blind to our hypothesis as this hypothesis was not stated yet, when the data were recorded, but not to any aspect of

the experimental design. Data collection and analysis were not performed blind to the conditions of the experiments.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,

system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems

n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Plants

Methods

n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

3

n
atu

re p
o

rtfo
lio

 | rep
o

rtin
g

 su
m

m
ary

A
p

ril 2
0

2
3

Novel plant genotypes N/A

Seed stocks N/A

Authentication N/A

Plants

	Reward prediction error neurons implement an efficient code for reward
	Results
	Application 1: variable-reward task
	Prediction 1: RPEN midpoints cover the reward distribution
	Prediction 2: RPEN gain increases with threshold
	Prediction 3: RPEN tuning curve asymmetry flips with increasing threshold
	Prediction 4: RPEN slope decreases with threshold

	Application 2: variable-distribution task
	Learning rules for the efficient code

	Discussion
	Dependence on additional assumptions
	Limitations
	Compatibility with RL
	Future work

	Online content
	Fig. 1 Experimental design and basic results of Eshel et al.
	Fig. 2 Comparisons between the measured neurons of Eshel et al.
	Fig. 3 Efficient coding accounts for response slope characteristics in the variable-distribution task.
	Fig. 4 Combination of learning rules to learn the efficient code.
	Extended Data Fig. 1 Comparing encoding populations for reward with 10 neurons and the same expected number of spikes.
	Extended Data Fig. 2 Illustration of the solution of the efficient coding problem, varying α (rows) and the reward distribution (columns).
	Extended Data Fig. 3 Efficient code for the variable-reward task14.
	Extended Data Fig. 4 Log-normal kernel density estimation of midpoints and threshold.
	Extended Data Fig. 5 Efficient code for the variable-magnitude task17.
	Extended Data Fig. 6 Evaluation of learning rules placing neurons’ midpoints at expectiles instead of quantiles.

