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Reward prediction error neurons implement 
an efficient code for reward

Heiko H. Schütt    1,2,4  , Dongjae Kim1,3,4 & Wei Ji Ma    1

We use efficient coding principles borrowed from sensory neuroscience to 
derive the optimal neural population to encode a reward distribution. We 
show that the responses of dopaminergic reward prediction error neurons in 
mouse and macaque are similar to those of the efficient code in the following 
ways: the neurons have a broad distribution of midpoints covering the reward 
distribution; neurons with higher thresholds have higher gains, more convex 
tuning functions and lower slopes; and their slope is higher when the reward 
distribution is narrower. Furthermore, we derive learning rules that converge to 
the efficient code. The learning rule for the position of the neuron on the reward 
axis closely resembles distributional reinforcement learning. Thus, reward 
prediction error neuron responses may be optimized to broadcast an efficient 
reward signal, forming a connection between efficient coding and reinforcement 
learning, two of the most successful theories in computational neuroscience.

Processing rewards is critical for much of cognition, including 
decision-making, planning and learning. An important reward repre-
sentation in the brain is maintained by reward prediction error neurons 
(RPENs)1. These dopaminergic neurons in the midbrain respond to 
received rewards relative to an expectation based on past experience. 
The existence of these neurons is the most prominent evidence in favor 
of reinforcement learning (RL) in the brain2. Moreover, RPENs have 
been implied in a broad range of tasks that require value-based cogni-
tion3. Thus, the encoding of reward by RPENs is a cornerstone of our 
understanding of reward signals in the brain.

In a different domain of neuroscience (sensory processing), it has 
been hypothesized that neuronal codes are optimized for efficiency, 
that is, to convey as much information as possible with given budgets 
for the number of neurons and the number of action potentials4,5. The 
efficient coding hypothesis has long been used to account for the 
response properties of sensory neurons6–8. Gradually, the notion of 
efficient coding has also made inroads in the domain of reward. Effi-
cient coding has been invoked to explain reward-based choices9–11, and 
contextual modulation of the responses of cortical reward neurons has 
been interpreted as a form of efficient coding12. In a time interval esti-
mation task, an RL agent that encoded the duration of a task-irrelevant 
interval with much lower resolution than that of a task-relevant interval 
could account for RPEN responses and their relation to behavior13.

Here, we investigate at the neuronal level whether RPENs  
implement an efficient code for reward value. We first derive the  
most efficient population of sigmoidally tuned neurons to encode 
rewards sampled from an arbitrary given distribution. We then apply 
this general framework to two datasets, one in mice with a fixed 
reward distribution14–16 and one in monkeys with a variable reward 
distribution17. We find that key properties of the efficient code are 
reflected in the data, suggesting that efficient coding could serve 
as a unifying principle. Finally, we develop learning rules for the 
efficient code.

Results
We analytically derive the optimal population of neurons to encode 
rewards by extending the framework of Ganguli and Simoncelli18. 
Assuming that RPENs have a sigmoidal tuning curve for reward 
(Fig. 1a)19,20, we start with a large family of populations, within which 
we search for the most efficient one. We construct the family based on 
a base population of neurons on the unit interval. We then allow any 
smooth monotone function to map from reward R to the unit interval 
and define the responses of the neurons in terms of the responses of 
the base population at the mapped location. Additionally, we allow 
an arbitrary scaling of neuron response gains and of the density of 
neurons depending on their placement. In mathematical terms, we 
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their midpoints to the quantiles of the distribution. If a predictable 
reward is given repeatedly, the midpoints of all neurons will converge 
to the given reward level, and all neurons will encode the error in reward 
prediction relative to the midpoint, with the midpoint and threshold 
moving closer together. For distributions of rewards, higher rewards 
will still always lead to higher responses, and shifts of the whole distri-
bution to higher values will reduce the responses of all neurons.

Application 1: variable-reward task
We first compare the predictions of the efficient coding framework to 
data from the ‘variable-reward task’ of Eshel et al.14,15 (Fig. 1b). In this 
task, mice were given one of seven reward magnitudes in each trial 
with certain probabilities while RPEN responses were recorded. The 
observed RPEN reward tuning curves are shown in Fig. 1c. We derived 
the efficient code for a continuous approximation of the discrete prob-
ability distribution in the form of a log-normal distribution match-
ing the mean and variance of the discrete distribution (μ = 1.29 and 
σ2 = 0.71). The predictions for neural density and gain are shown in 
Extended Data Fig. 3. To compare our predictions to the data, we use 
the same number of neurons as in the dataset (n = 39) and adjust free 
parameters of the derived efficient population to match the measured 
population. We first set α to maximize the probability of the observed 
midpoints (whose distribution depends only on this parameter), result-
ing in α = 0.673. We define a neuron’s threshold as the point where the 
spontaneous firing rate is surpassed.

We fitted the spontaneous firing rate r* and k, a parameter control-
ling the slopes of all neurons, to the observed thresholds, resulting in 
the estimates ̂r∗ = 10.08 and ̂k = 5.20. Finally, we set the constraint on 
the expected spike rate, rmax, to match the average neural gain based 
on sigmoid fits to the tuning curves, resulting in ̂rmax = 322.5  (see 
Methods for details). A subset of the resulting efficient code is shown 
in Fig. 1d. We now examine several properties of the efficient code and 
compare them to the data.

use a prototypical sigmoidal response function h0 on the unit interval 
to define the response of a neuron with midpoint at μ as

hμ(R) = h0[F(R) − F(μ)]g(μ), (1)

where F(R) = ∫R−∞ f(t)dt  is the mapping from reward space to the unit 
interval. Its derivative f(R) ≥ 0 represents the conversion between 
reward space and the unit interval. g(μ) is the gain of a neuron with 
midpoint at μ. Finally, we define the density function d(R) as the prob-
ability that a neuron’s midpoint is placed at reward value R.

We then optimize the three functions to find the most efficient 
populations that can be generated this way to encode rewards from a 
distribution with density p(R) and cumulative density P(R) (Methods). 
Efficiency here refers to the maximization of a measure of information 
given constraints on the expected total firing rate. This yields a family 
of equally efficient populations, which we parameterized by α ∈ [0, 1]:

f(R) = p(R); d(R) ∝ p(R)
[1 − P(R)]1−α

; g(R) ∝ 1
[1 − P(R)]α

. (2)

This solution is indeed efficient (Extended Data Fig. 1) and extends 
the earlier result from Ganguli and Simoncelli18, which assumed a 
uniform density of neurons on the unit interval, effectively setting 
d(R) = f(R) in our formulation. Their solution is a special case of our 

family, with α = 1 and thus d(R) = p(R) and g(R) = 1
1−P(R)

.
The efficient code captures the two main response properties of 

RPENs to given rewards: (1) the response increases as reward magni-
tude increases, and (2) the response decreases as the expected reward 
increases (see Extended Data Fig. 2 for effects of the reward distribution 
and α on the population). The former is readily apparent through Eq. (1).  
The latter is due to the optimization of midpoints in the efficient cod-
ing framework. When a neuron’s midpoint increases, its response to all 
rewards decreases. To maximize information, neurons need to move 
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Fig. 1 | Experimental design and basic results of Eshel et al. A mouse was 
presented with variable rewards while RPEN responses were recorded.  
a, Terminology for sigmoidal tuning curves as expected for RPENs. The threshold 
is the reward value at which the spontaneous activity is reached. The midpoint is 
the reward value at which half the maximal response is reached. b, Rewards were 
drawn from a discrete distribution (vertical lines), which we approximate with a 

moment-matched log-normal distribution for our analyses (continuous line).  
c, Reward tuning curves of the 39 dopaminergic RPENs measured by  
Eshel et al.15 after preprocessing of Dabney et al.16. We additionally subtracted the 
minimal response across all trials for each neuron. d, Efficient code for the reward 
distribution in a. For visual clarity, only 20 neurons are shown.
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Prediction 1: RPEN midpoints cover the reward distribution. In 
the efficient code, RPEN midpoints are placed at specific quantiles of 
the distribution with a slight bias toward higher quantiles, yielding a 
distribution similar to the original reward distribution. Indeed, the 
midpoints of the observed neurons cover the range of the reward 
distribution, with a roughly similar distributional shape (Fig. 2a). The 
mean of the measured midpoints is 5.96, higher than the mean reward, 
which is 5.21 (t38 = 0.848, P = 0.40). The fact that this difference is not 
significant is unsurprising; as for the measured number of neurons, 
even the predicted midpoints are not significantly different from the 
mean reward (t38 = 0.246, P = 0.81). The thresholds of neurons behave 
similar to the midpoints (Extended Data Fig. 4).

Prediction 2: RPEN gain increases with threshold. In the efficient 
code, the gain is higher for neurons with higher reward thresholds 
(Fig. 1). The intuition is that those neurons respond to fewer rewards 
and can thus afford a higher gain with the same expected number of 
spikes. This effect does not occur for unimodal tuning functions18,21. 
We observe the expected increase of gain in the data (Fig. 2b). To our 
knowledge, this empirical finding has not been reported before.

Prediction 3: RPEN tuning curve asymmetry flips with increasing 
threshold. In the efficient code, the increase of gain with threshold has 
implications for the shape of the RPEN tuning curves around threshold 
(Fig. 2c). As the gain increases, the spontaneous firing rate falls lower 
in the sigmoid shape. Thus, the threshold moves from the upper 

concave part of the sigmoid down to the convex part. In other words, 
neurons with low thresholds have concave tuning curves around their 
threshold, and neurons with high thresholds have concave ones. To 
quantify the degree of such ‘asymmetry’ of the neural responses, we 
followed previous work16 and approximated the neural tuning curves 
with two linear response functions, one above and one below the spon-
taneous firing rate r* (Fig. 2c). This allows for an asymmetric RPEN 
response, with the slope above the threshold β+ being different from 
the slope below the threshold β− (refs. 22,23). The ratio of slopes, 
β+

β−+β+
∈ [0, 1], can then be used as an index of asymmetry, which is  

close to 1 for concave tuning curves and close to 0 for convex tuning 
curves. Using this index, the efficient code predicts that asymmetry is 
higher for neurons with higher thresholds; the shape flips from convex 
to concave. This relationship is also observed in the data (black dots in 
Fig. 2d), as first reported by Dabney et al.16.

The observed relationship can also be accounted for by the theory 
of distributional RL (DRL; dashed line in Fig. 2d), which attributes it 
to an asymmetry of the update equations of the thresholds, such that 
neurons converge to different expectiles of the reward distribution 
(Fig. 2e). We will examine the relationship between efficient coding 
and DRL in detail below.

Prediction 4: RPEN slope decreases with threshold. In the efficient 
code, neurons with higher thresholds have a lower slope parameter 
of the sigmoid fit (Fig. 2f). This occurs because the predicted tuning 
functions are shallower in regions with lower reward density. In the 
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Fig. 2 | Comparisons between the measured neurons of Eshel et al. and the 
efficient code. a, The distribution of the midpoints of the measured neurons 
covers the reward distribution with a slight upward shift (mean midpoint = 5.96 
versus mean reward = 5.21; t38 = 0.848, P = 0.402, two-sided t-test, no multiple 
comparisons); the efficient code accounts for this (mean = 5.36). b, RPEN gain, 
that is, maximal response of a fitted sigmoid function, plotted against threshold. 
There is a significant positive relationship (r37 = 0.637, P = 1.277 × 10−5, two-sided 
test, no multiple comparisons, normality assumption not tested). The neurons of 
an efficient population (blue) again match the measured population (black) quite 
well. c, Efficient coding accounts for the relationship between asymmetry and 
threshold. The spontaneous activity r* is reached at θ1 within the concave part of 
the sigmoidal response function for a neuron with low threshold and gain and at 
θ2 within the convex part of a sigmoidal response function for a neuron with high 
threshold and gain. d, Degree of asymmetry of neural responses ( β+

β−+β+
) plotted 

against threshold. There is a strong positive relationship between these two 

variables (r37 = 0.832, P = 5.55 × 10−11, two-sided test, no multiple comparisons, 
normality assumption not tested). The neurons of an efficient population (blue) 
closely approximate the measured population (black). The dashed line is 
expected from ideal distributional temporal difference learning. e, DRL accounts 
for the relationship between asymmetry and threshold. A reward value Rt shifts 
the response function down proportional to β− if below the threshold (Rt < θ) and 
up proportional to β+ if above the threshold (Rt ≥ θ). An equilibrium is achieved 
when the two expected shifts cancel each other. f, Slope of the sigmoid fit a 
plotted against threshold for the efficient code neurons. There is a significant 
negative linear relationship (r37 = −0.915, P = 3.59 × 10−16, two-sided test, no 
multiple comparisons, normality assumption not tested). The inset shows the 
same plot for the measured neurons. There is a significant negative linear 
relationship in the data (r37 = −0.550, P = 0.000290, two-sided test, no multiple 
comparisons, normality assumption not tested; the shaded region displays a 95% 
confidence interval for the prediction of the linear regression model).
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measured neurons, we indeed find a significant negative correlation 
of slope and threshold (r37 = −0.550, P < 0.001). To our knowledge, 
this empirical finding has also not been reported before. Overall, the 
measured neurons have shallower tuning curves than predicted by 
the efficient code. A possible explanation is that we did not take into 
account stochasticity in the RPEN inputs. Such stochasticity would 
produce random horizontal shifts of the sigmoid tuning curve, which, 
when averaged, would result in a lower slope.

Application 2: variable-distribution task
So far, we have examined RPEN responses to a fixed reward distribution. 
Rothenhoefer et al.17 instead exposed two macaque monkeys to cues 
associated with rewards drawn from one of two distributions (either a 
‘uniform’ or a ‘normal’ distribution) with the same mean (Fig. 3a,b). The 
main finding of Rothenhoefer et al. was that dopamine responses are 
amplified for rare rewards, producing steeper response functions for 
the ‘normal’ distribution than for the ‘uniform’ distribution (Fig. 3c,d). 
This suggests that RPENs encode the frequency of rewards.

The variable distributions make this dataset an interesting addi-
tional test for the efficient coding framework. We derived an efficient 
code for a moment-matched continuous approximation of each dis-
tribution (Fig. 3a,b). We fitted the parameters α, k and rmax to minimize 
the mean squared error between the model and data on the response 
slopes for the individual distributions. The resulting estimates were 
α̂ = 0.473, ̂k = 2.00 and ̂rmax = 28.2 (Extended Data Fig. 5). As in ‘Appli-
cation 1: variable-reward task’, we find that the midpoints of the neurons 
in the efficient code cover the range of the reward distribution 
(Extended Data Fig. 5b,d). Moreover, the efficient coding model suc-
cessfully reproduced the main finding (Fig. 3c,d), where the majority 

of neurons in the efficient code (39 of 40) exhibited steeper slopes for 
the ‘normal’ distribution, in agreement with the data (31 of 40).

Learning rules for the efficient code
DRL16 proposes that RPENs update their thresholds in proportion to 
the difference between the received reward and their thresholds, with 
different proportionality factors for positive and negative differences 
(Fig. 2e). This learning rule leads those thresholds to converge to the 
expectiles of the reward distribution. This is very similar to the predic-
tion of the efficient code, which places the midpoints of neurons at 
specific quantiles of the distribution. With the additional assumption 
that the slope of the reward tuning curve above and below threshold 
is proportional to the learning rate, DRL accounts for the observed 
relationship between threshold and asymmetry. However, without 
modification, it does not account for the relationship between gain and 
threshold or the relationship between slope and threshold. Because 
the efficient code does account for these observations, a good way 
to consolidate the two theories is to extend the DRL rule such that 
the gain and slope of neurons also converge to the parameters for the 
efficient code.

To learn the placement of neurons on the reward axis, we can use 
the asymmetric DRL rules. To converge to the quantiles of the distribu-
tion, we shift the neuron to higher reward values by a step size b and 
toward lower reward values by a different step size a if a reward below 
the midpoint occurs (Fig. 4a). If we set a and b such that ap = b(1 − p), 
this procedure converges to the pth quantile of the distribution. In the 
DRL formulation, neurons instead update their position proportional 
to the difference between their location and the presented reward 
and thus converge to the expectiles of the distribution. This changes 
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Fig. 3 | Efficient coding accounts for response slope characteristics in the 
variable-distribution task. a, ‘Normal’ distribution used in the experiment 
(purple) and moment-matched continuous distribution. b, Same for the 
‘uniform’ distribution. Vertical dashed lines mark the boundaries of the uniform 
distribution. c, Left, example neuron from Rothenhoefer et al.17 showing steeper 
tuning for the ‘normal’ distribution than for the ‘uniform’ distribution. Error 
bars represent ±1 s.e.m. across trials. Right, example neuron from the efficient 
code. d, Scatter plots of the response slopes of all neurons in the data (n = 40 

(ref. 17); left) and in the efficient code (right). The dashed diagonal marks the 
identity line. Insets show the histograms of differences, and the downward 
arrows indicate the mean. The data show a significantly different response 
slope with a mean difference of −0.605 (t38 = −3.26, P = 0.002, two-sided test, no 
multiple comparisons, normality assumption not tested), and the model also 
demonstrated a significantly different response slope with a mean difference 
of −1.58 (t38 = −10.4, P = 1.13 × 10−12, two-sided test, no multiple comparisons, 
normality assumption not tested).
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the population only slightly but achieves similar efficiency as the 
populations placed at the quantiles (Extended Data Fig. 6). It should 
also be kept in mind that both the step function that we apply for the 
quantiles and the linear weighting functions that yield expectiles are 
idealizations.

In the efficient code, the RPEN slope should be proportional to 
the local probability density of rewards. To learn the slope, we can 
estimate the local probability density based on the probability that 
a reward within the dynamic range of the neuron occurs, that is, in 
the range where the neuron has a high slope. As the dynamic range is 
inversely proportional to the slope, it should be inversely proportional 
to the local reward density as well, which means that the probability 
of a reward in the dynamic range should be constant. A simple learn-
ing rule to achieve this is to increase the slope and shrink the dynamic 
range when a reward falls into the dynamic range and decrease the 
slope and increase the dynamic range when a reward falls outside the 
dynamic range. When we allow a gradual definition for falling into the 
dynamic range, a natural choice is to use the derivative of the sigmoid 
function; this is the kernel we chose for our simulations (Fig. 4b). Any 
other kernel around the midpoint of the sigmoid whose width scales 
inversely with the slope would also work.

Finally, we need to adjust the gain of the neurons to match the effi-
cient coding solution. For this purpose, we present two solutions that 
work similarly well but that are based on different biological mecha-
nisms. In the first method, we learn an estimate of the expected firing 
rate and set the gain based on this estimate. Effectively, this results 
in the inverse of the sigmoid shape for updating the gain, with high 
rewards reducing a neuron’s gain and low rewards increasing a neuron’s 
gain (Fig. 4c). In the second method, we couple the fixed gain to the 
quantile the specific neuron should converge to based on its learning 
asymmetry (Fig. 4d).

These learning rules for midpoints, slope and gain together pro-
duce a population of neurons similar to the analytical efficient coding 
solution (Fig. 4c,d,f) with similar efficiency (Fig. 4g). These populations 
clearly beat the best possible solution that assumes the same tuning 

function for every neuron (Fig. 4e,g). Thus, these rules successfully 
extend the DRL rule to produce an efficient code.

Discussion
We have presented evidence that RPENs implement an efficient code 
for reward. Starting from a normative account of the tuning of RPEN 
responses, we were able to account for five empirical findings across 
two tasks. Thus, efficient coding could serve as a unifying principle 
underlying the response characteristics of RPENs.

Dependence on additional assumptions
Our results are robust to changing the measure of information used 
for optimizing the population, the assumed distribution of neural 
responses or the assumption of a sigmoid shape. Different objective 
functions or different response distributions lead to different relation-
ships between the density of the reward distribution and the optimal 
density and gain of neurons18. However, neural density always increases 
with reward density, as it is more efficient to focus neural resources 
on probable rewards. Analogously, all objectives lead to higher gains 
at higher thresholds, as gain increases are ‘cheaper’ for neurons with 
higher thresholds. Furthermore, changing the mathematical form of 
the shape of the response function does not change the density and 
gain predictions, as those were derived independently of the shape, 
and only leads to slightly different predictions for the asymmetry of 
the responses around the threshold. For any shape that is convex in 
its lower response range and concave in its upper response range, the 
qualitative argument for the dependence between threshold and asym-
metry will hold.

Limitations
Our work has limitations. To simplify our analysis, we restricted our-
selves to a task with a single reward supplied in each independent epi-
sode without any action required by the animal. In this simple case, 
the reward received and the change in value of the current state are 
confounded. Thus, all our analyses are agnostic to this distinction.  
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Fig. 4 | Combination of learning rules to learn the efficient code. Each graph 
shows the steady-state distribution population of 20 neurons after learning 
based on 20,000 reward presentations, with insets illustrating the learning rule. 
a, Learning the position on the reward axis for the neurons to converge to the 
quantiles of the distribution. This learning rule is similar to the DRL rule.  
b, Additionally learning the slope of the neurons to be proportional to the local 
density by increasing the slope when the reward falls within the dynamic range 

and decreasing otherwise. c, First method to set the gain: iterative adjustment 
to converge to a fixed average firing rate. d, Second method to set the gain: use a 
fixed gain per neuron based on the quantile it will eventually converge to.  
e, Efficient tuning curve for a single neuron. f, Analytically derived optimal 
solution. g, Comparison of the different populations in the overall information 
transfer with the same number of neurons (20) and expected firing rate (8.27 per 
neuron as in the fit to the measured data).
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In multistep24 and delayed-reward tasks25, RPENs take future rewards 
into account with temporal discounting. The efficient coding frame-
work that we presented here would need to be modified for a temporally 
discounted value code. Moreover, our theory covers only the phasic 
reward prediction error response of RPENs. The ramping activity of 
RPENs (for example, refs. 26,27) will require additional explanation, 
most likely including an encoding of reward timing28. In fact, it has 
been proposed that RPENs encode elapsed time more generally29 and 
that this encoding is tuned to task properties in a manner reminiscent 
of efficient coding13.

Compatibility with RL
The efficient coding hypothesis is compatible with RL. Specifically, we 
extended the learning rule from DRL16 to account not only for the rela-
tionship between asymmetry and threshold but also for the three other 
tuning properties predicted by the efficient code. Besides DRL, there 
are two alternative explanations of the data by Eshel et al.14: the Laplace 
code30 and normalized RL31. In the Laplace code, temporal difference 
learning neurons with different parameters are used to encode the tim-
ing and a whole distribution of rewards in the future by representing an 
analog of the Laplace transform in the neural responses. Individual neu-
rons still have a sigmoid response curve in this code, and the dependence 
between asymmetry and threshold can be created similar to as in the 
efficient code by cutting the curve at different response levels. In their 
formulation, they subtract the expected response from each neuron 
instead of changing the gain (as we predict and observe). Normalized 
RL31 proposes that RPENs perform divisive normalization with different 
half saturation constants. This yields sigmoid (Naka–Rushton32) neurons 
with different thresholds, and the asymmetry around those thresholds 
is explained again by cutting the sigmoids at different heights. Neither 
of these explanations explicitly examines code efficiency or attempts 
to account for the dependencies of gain or slope on threshold.

Future work
Future work could examine how learning rules that produce an efficient 
code can be implemented in biologically realistic circuits (perhaps simi-
lar to refs. 33–36), empirically distinguish between candidate learning 
rules and examine how RPENs can switch from one reward distribution 
to another relatively quickly.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author con-
tributions and competing interests; and statements of data and code 
availability are available at https://doi.org/10.1038/s41593-024-01671-x.
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Methods
Analysis of neural data
Variable-reward task. We used the data from the variable-reward task 
by Eshel et al.14 as preprocessed by Dabney et al.16. For details of data 
acquisition, please refer to Eshel et al.14. Five mice were subjected to a 
variable-reward paradigm incorporating two experimental conditions: 
a no-odor condition and an odor condition in which an odor was pre-
sented to cue the reward delivery. During each trial, one of seven reward 
magnitudes (0.1, 0.3, 1.2, 2.5, 5, 10 and 20 μl) was randomly chosen with 
probabilities of 0.066, 0.091, 0.15, 0.15, 0.31, 0.15 and 0.077, respectively. 
Electrophysiological data were recorded from n = 40 ventral tegmental 
area dopaminergic RPENs. From each of the mice, 3, 6, 9, 16 and 6 neurons 
were selected, respectively. One neuron was excluded because it never 
showed a response larger than its baseline for any reward magnitude. 
We used the data as preprocessed by Dabney et al.16. As part of this pre-
processing, on each trial, a prestimulus response was subtracted from 
the later responses, and an offset was added to the neural responses in 
the no-odor condition to equalize the two conditions. As this procedure 
yielded negative firing rates, we additionally subtracted for each neuron 
the overall smallest response from all its responses.

Variable-distribution task. To further investigate the responses of 
dopaminergic RPENs with different reward distributions, we analyzed 
the data from the variable-distribution task presented in Rothenhoefer 
et al.17. For detailed data acquisition methods, we refer to that paper. 
Two macaque monkeys were subjected to a variable-reward paradigm, 
where cues indicated rewards from either a uniform or a normal distri-
bution. In each trial, rewards of 0.2, 0.4 or 0.6 ml were delivered based 
on a uniform distribution (1/3 chance for each amount) or a normal 
distribution where rewards of 0.2 and 0.6 ml had a 2/15 probability 
and a reward of 0.4 ml had an 11/15 probability. Electrophysiological 
data from RPENs were collected to monitor dopamine responses. The 
peristimulus response was subtracted from the later responses and 
smoothed as in the variable-reward task.

Logistic fits. For each neuron separately, we fitted logistic sigmoid func-

tions σ(R) = a1

1−e−a2(x−a3)
 to the responses. We denote the gain a1, the slope 

a2 and the midpoint a3 collectively by a. To estimate the parameters, we 
used maximum-likelihood estimation based on Poisson noise, so that

â = argmin
a

T

∑
j=1
(rj log (σ(Rj;a)) − σ(Rj;a)) , (3)

where rj is the measured firing rate of a neuron responding to the reward 
magnitude Rj on the jth trial. We proceeded to compare the fitted 
parameters between the data and the efficient code.

Fitting asymmetric slopes. To enable comparisons to the asymmetry 
data from Dabney et al.16, we repeated their analysis and applied the same 
asymmetry calculation to the simulated neurons in our efficient code.

First, we subtracted a baseline from the smoothed peristimulus 
time histograms for each neuron and trial. The baseline was the mean 
firing rate over the 1,000 ms before stimulus onset. We then estimated 
asymmetric slopes, β+ and β−, by separately fitting linear functions to 
the responses above and below threshold. Following Dabney et al.16, we 
used estimated utility space as the x axis for this step, but the results 
are not sensitive to the choice of utility function.

In math terms, the slope above threshold β+ and the slope below 
threshold β− for responses yj to rewards Rj are thus defined as

β+
i
= argmin

βi

T

∑
j=1
[r∗ + βi (Rj − θ) − yj]

2 , forRj ≥ θ

β−
i
= argmin

βi

T

∑
j=1
[r∗ + βi (Rj − θ) − yj]

2 , forRj ≤ θ,

where r* is the spontaneous firing rate and the sum over j runs over 
the T trials.

To achieve more efficient fitting than Dabney et al.16, we derived 
analytical solutions for β+ and β− for a given θ, which are

β+
i
=
∑T

j=1(R j − θ)( y j − r∗)

∑T

j=1 (R j − θ)
2 forR j ≥ θ (4)

β−
i
=
∑T

j=1(R j − θ)( y j − r∗)

∑T

j=1 (R j − θ)
2 forR j ≤ θ. (5)

Thresholds (called reversal points in Dabney et al.16) were then chosen 
to minimize the overall sum of squares by sampling 20,000 thresholds 
from a uniform distribution between the range of rewards and choos-
ing the best-fitting one. Dabney et al. used the same random sampling 
procedure for β+ and β−.

For fitting our simulated neurons, we set the threshold θ = h−1
i
(r∗) 

and yj = hi(vj) and fit the β values based on the results for 105 trials each 
above and below threshold sampled from the approximated log-normal 
reward distribution restricted to the range above and below threshold, 
respectively.

Statistics and reproducibility
We used standard statistical tests based on normal distribution assump-
tions throughout, even though our hypothesis is much more detailed 
than predicting the existence of a difference. For the tests, the data 
distribution was assumed to be normal, but this was not formally tested.

All data we use here were already publicly available. Thus, no 
statistical method was used by us to predetermine sample size. We 
followed the original authors in excluding one neuron that never 
responded above its spontaneous rate. The experiments were not ran-
domized, as there were no experimental groups to assign to randomly. 
The investigators who collected the data were blind to our hypothesis 
as this hypothesis was not stated when the data were recorded, but 
they were not blind to any aspect of the experimental design. Data 
collection and analysis were not performed blind to the conditions 
of the experiments.

Derivation of the efficient code
To derive the efficient code for reward, we extended the framework 
for analytical solutions proposed by Ganguli and Simoncelli18. In this 
framework, a population is uniformly defined not on a specific numeri-
cal interval, as was done by Ganguli and Simoncelli (who used the 
interval [0, N], with N being the number of neurons, which is entirely 
equivalent), but on the unit interval [0, 1]. By using an adaptable map-
ping between the unit interval and the stimulus space and functions 
that transform the population, we can define a broad class of popula-
tions among which we can find the most efficient ones analytically. We 
extended this framework by allowing the distribution of neurons to be 
nonuniform, which decouples the local slope and density of neurons 
that are coupled in the original framework.

Definitions. We start by defining a ‘standard’ population of RPENs. 
This standard population is a collection of sigmoidal tuning curves 
sω, [0, 1] → [0, 1], indexed by their ‘center’ ω ∈ [0, 1]. Individual neurons 
are assumed to be monotonically increasing functions whose deriva-
tives are unimodal functions with their peak near ω. Additionally, we 
assume that the overall Fisher information IF(x) of this population 
about the position x ∈ [0, 1] and the overall increase in firing rate are 
independent of x, that is,

∫ s′ω(x)dω ≈ const (6)
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IF(x) = ∫ IF(x,ω)dω ≈ const, (7)

where IF(x, ω) is the Fisher information provided by the tuning function 
with center ω, and s′ω(x) is the derivative of the tuning function.

Finally, we assume that the total amount of Fisher information 
provided by each neuron is approximately constant,

∫ IF(x,ω)dx ≈ const. (8)

One simple way to construct a population that fulfills these criteria 
is to start with a prototypical sigmoid function s0 centered on 0 and 
define the other tuning curves as sω(x) = s0(x − ω). This construction 
often leads to strong edge effects at 0 and 1 because a substantial part of 
the sigmoid response curves near the borders will fall outside the [0, 1] 
interval. We ameliorate these effects by using a more sophisticated 
population based on cumulative beta distributions below. Nonethe-
less, this simple construction illustrates the intuition behind a uniform 
population of sigmoidal neurons well and was actually used by Ganguli 
and Simoncelli in their implementation.

To map between the unit interval and stimulus space, we use a 
strictly monotonic function F(R) = ∫R−∞ f(s)ds from the stimulus space 
into the unit interval parameterized by its derivative f(s) > 0, which we 
will optimize below. As F is strictly monotonic, it is also invertible, with 
its inverse F−1 mapping the unit interval into stimulus space. Addition-
ally, we allow a gain function g > 0 of stimulus space, which scales the 
tuning curve of neurons placed at different positions in stimulus space.

With these definitions, we can now define the tuning function hμ 
of a neuron with a midpoint at stimulus level μ,

hμ(R) = g(μ)sF(μ)(F(R)), (9)

that is, we map both the positions of the neurons and the stimuli into 
the unit interval, evaluate the sigmoids there and scale the result with 
the gain.

Up to this point, our definitions are equivalent to those of Ganguli 
and Simoncelli18, who now assume that the neurons are equally spaced 
in the interval. This additional assumption makes it impossible to place 
more neurons in some stimulus range without changing their shape. 
This removes one of the possible adaptations of neural populations 
mentioned by other authors such as, for example, Wei and Stocker37. 
To allow different distributions of the neurons, we instead assume that 
the μi are drawn from a distribution over reward space with density 
d, which we will optimize below. The equal placement assumed by  
Ganguli and Simoncelli is equivalent to the assumption d(R) = f(R), which 
yields a uniform distribution over the placements in the unit interval ω.

Optimization objective. We further assume that the RPEN firing rates 
are subject to independent Poisson noise, which is the simplest noise 
assumption. We can then calculate the Fisher information IF(R; μ)  
provided by a neuron centered on μ,

IF(R;μ) = g(μ)
s′
F(μ)(F(R))

2

sF(μ)(F(R))
f 2(R). (10)

We then optimize the expected value (over both R and μ) of the loga-
rithm of the Fisher information, IF, based on N neurons,

IN = 𝔼𝔼R𝔼𝔼μμμ [log (
1
N
∑
i

IF(R;μi))] (11)

This objective was originally proposed as a lower bound on the 
mutual information between the neural responses and the stimu-
lus18,38,39, which becomes tight for small Gaussian-shaped errors on 

the encoded value. However, some later publications cast doubt on 
this interpretation. In particular, Wei and Stocker40 interpret this 
equation as an upper bound on mutual information instead. Addi-
tionally, low firing rates and/or steep changes in firing rate can lead to 
this approximation being highly inaccurate, and this realm is actually 
reached for cases in which neurons are measured only for short times41. 
Nonetheless, IN remains the best Fisher information-based approxima-
tion to mutual information, and we follow Ganguli and Simoncelli18 in 
optimizing it. They also tried a few other functionals of Fisher informa-
tion and got qualitatively similar results. Mutual information itself is 
unfortunately untractable for these derivations.

Assuming further that there is a large population of RPENs, we 
can now look at this distribution in the limit of infinitely many neu-
rons. According to the strong law of large numbers, the logarithm of 
the mean in Eq. (11) almost surely converges to the logarithm of the 
expected Fisher information, because the Fisher information provided 
by each single neuron has finite variance:

lim
N→∞

log ( 1
N
∑
i

IF(R;μi)) = log𝔼𝔼μ[IF(R;μ)] (12)

Because this is a constant with respect to μ, we can drop the outer 
expected value, yielding

I ≡ lim
N→∞

IN = 𝔼𝔼R [log (𝔼𝔼μ [IF(R;μi)])] . (13)

To make this expression amenable to optimization, we simplify it as 
follows:

𝔼𝔼R [log (𝔼𝔼μ [IF(R;μ)])] (14)

= ∫
∞

−∞
p(R) log(∫

∞

−∞
d(μ)g(μ)

s′
F(μ)(F(R))

2

sF(μ)(F(R))
f 2(R)dμ)dR (15)

≈ ∫
∞

−∞
p(R) log(d(R)g(R)f(R)∫

∞

−∞
f(μ)

s′
F(μ)(F(R))

2

sF(μ)(F(R))
dμ)dR (16)

≈ constant +∫
∞

−∞
p(R) log (d(R)g(R)f(R))dR. (17)

Here, we eliminated the inner integral through two steps, which 
are only approximately correct. First, we observe for sigmoidal func-

tions that h
′
0(F(R)−F(μ))

2

h0(F(R)−F(μ))
 is a unimodal function that is centered around R, 

which effectively acts as a smoothing kernel that is convolved with the 
rest of the integral. If d(μ), f(μ) and g(μ) change little over the range of 
this smoothing kernel, we can replace them by their values at R and pull 
them out of the integral. Second, the integral over μ we are left with is 
(approximately) shift invariant, that is, the same for all R and invariant 
to the monotonic transformation F, if the original population is 
(approximately) uniform as defined in Eqs. (7) and (8).

The final optimization problem is now to optimize this approxima-
tion of I with respect to the three functions d, g and f:

I ≈ ∫
∞

−∞
p(R) log (d(R)g(R)f(R))dR. (18)

Additionally, we enforce that the expected number of spikes 𝔼𝔼[r] 
under the prior distribution is smaller or equal to a bound rmax. The 
expected number of spikes is

𝔼𝔼[r] = N𝔼𝔼R [𝔼𝔼μ[hμ(R)]] (19)
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= N∫
∞

−∞
p(R)∫

∞

−∞
d(μ)g(μ)sF(μ)(F(R))dμdR (20)

≈ N∫
∞

−∞
d(μ)g(μ)∫

∞

μ

p(R)dRdμ (21)

= N∫
∞

−∞
d(μ)g(μ)(1 − P(μ))dμ, (22)

where P is the cumulative density function of the reward distribution. 
In Eq. (21), we approximated the sigmoid with a step function at μ. This 
approximation is close if p(R) is near constant over the range where 
the sigmoid hμ changes from 0 to 1. This is the case if the sigmoids are 
reasonably steep.

There are two further constraints, one to make d a valid probability 
density and one to limit the range of F to the unit interval:

D = ∫
∞

−∞
d(R)dR = 1, d(R) > 0 (23)

Fmax = ∫
∞

−∞
f(R)dR = 1, f(R) > 0. (24)

Solving the optimization. Now we are ready to solve this optimization 
problem using Lagrange multipliers. To do so, we first compute the 
following functional derivatives of our objective function:

δI

δf
(R) = p(R)

f(R) , (25)

δI

δg
(R) = p(R)

g(R) and (26)

δI

δd
(R) = p(R)

d(R) . (27)

Similarly, we compute the functional derivatives of the constraints. 
First, for the expected spike rate,

δ𝔼𝔼[r]
δf

(R) = 0, (28)

δ𝔼𝔼[r]
δg

(R) = (1 − P(R))d(R) and (29)

δ𝔼𝔼[r]
δd

(R) = (1 − P(R))g(R). (30)

Second, for the integral of the density D,

δD

δf
(R) = 0, (31)

δD

δg
(R) = 0and (32)

δD

δd
(R) = 1. (33)

Finally, for the upper end of the interval reached by F, Fmax,

δFmax
δf

(R) = 1, (34)

δFmax
δg

(R) = 0and (35)

δFmax
δd

(R) = 0. (36)

With these derivatives in place, we solve the optimization problem 
using Lagrange multipliers λR, λD and λF, which results in the following 
three equations:

p(R)
f(R) − λF = 0, (37)

p(R)
g(R) − λRd(R)(1 − P(R)) = 0and (38)

p(R)
d(R) − λRg(R)(1 − P(R)) − λD = 0. (39)

From Eq. (37), we obtain

f(R) = 2p(R)
λF

∝ p(R). (40)

From Eq. (38), we obtain

λRd(R)g(R)(1 − P(R)) = p(R) (41)

d(R)g(R) = p(R)
λR(1 − P(R))

∝ p(R)
1 − P(R) (42)

By inserting this result into Eq. (39), we see that it is guaranteed with 
λD = 0.

We conclude that under a constraint on the expected number of 
spikes, the neural population that optimizes the Fisher information 
bound on mutual information has the following properties:

•	 The inverse slope of the sigmoids is proportional to the prob-
ability density.

•	 The product of the probability density for neurons with a given 
midpoint and the gain for neurons with this midpoint is equal to 
the ratio of the reward probability density and the probability 
that rewards larger than the midpoint appear.

The formulation by Ganguli and Simoncelli18 with equally spaced 
neurons in the unit interval enforces the additional constraint that 
d(R) ∝ f(R) and thus arrives at the special case of d(R) ∝ p(R) and 
g(R) ∝ (1−P(R))−1.

Splitting density and gain. In our solution, d and g entirely compen-
sate for each other. Due to the fact that their product needs to be 
proportional to a product of the two factors p(R) and 1

1−P(R)
, a natural 

choice to parameterize a family of solutions is to use a parameter 
α ∈ [0, 1] that trades off the distribution of the two factors to density 
and gain,

d(R) ∝ p(R)
(1 − P(R))1−α

g(R) ∝ 1
(1 − P(R))α

. (43)

Effectively, α trades off the gain increase at higher thresholds against 
placing more neurons at higher thresholds. We illustrate this for several 
different reward distributions and values of α in Extended Data Fig. 2.

Other ways of writing p(R)
(1−P(R))

 as a product of neural density and gain 

are possible, but the split we chose has two convenient properties. First, 
the density p(R) appears only as a whole factor, which corresponds  
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to the density of the reward distribution actually observed by the 
animal. This allows realistic learning rules for the neurons, as we derive 
below. Second, this formula for the density yields a valid density when 
α > 0 independent of the reward distribution so that the same split can 
be applied to all distributions. We can derive this fact by looking at the 
uniform distribution on [0, 1]. For this reward distribution, the density 
of neurons becomes (1 − x)α−1, whose integral over [0, 1] is

∫
1

0
(1 − x)α−1dx = [− 1

α
(1 − x)α]

1

0
= {

1
α
, forα > 0

∞, forα ≤ 0
(44)

Thus, the valid range for α for the uniform distribution is all positive 
numbers. For any other reward distribution, we can transform the 
distribution of neurons for the uniform distribution with the inverse 
cumulative density function P−1. This yields samples with the desired 
density 1

α

p(R)
(1−P(R))1−α

, which must therefore be a valid density.

Choosing a solution. We fitted α using only the midpoints of the 
measured neurons. To do so, we extracted the midpoints of the meas-
ured from logistic function fits as described above. We then estimated 
α using maximum-likelihood estimation, resulting in α̂ = 0.673.

The requirements we put forth in Eqs. (6)–(8) are approximately 
met by many populations of sigmoid-shaped tuning curves. Thus, 
the exact shape and, in particular, the slope of the sigmoid are not 
fixed by these efficient coding considerations. For all optimal popu-
lations in this paper, we use the cumulative density functions of beta 
distributions because these sigmoid functions are defined on the unit 
interval [0, 1] and become exactly 0 and 1 at the ends of the interval, 
which yields good boundary behavior. These sigmoid functions are 
not exactly shifted versions of each other (as we assumed in the deri-
vations), but functions that are shifted versions of each other lead to 
relatively strong boundary effects that produce worse deviations 
from the theory. To place a neuron at a specific position p ∈ [0, 1], we 
set the parameters such that p is the mean of the beta distribution 
(a = kp, b = k(1 − p)). Thus, we are left with one more parameter k > 0, 
which controls the slope of the sigmoid functions. As the efficient 
coding scheme does not determine what the overall slope should be, 
we set k = 5.20 to fit the threshold distribution of measured neurons 
as described below. We do not expect other shapes to behave funda-
mentally differently.

We used a fixed spontaneous firing rate r* for all RPENs. We fitted 
r* and the slope parameter k to minimize the mean squared error 
between the thresholds of the efficient code, θ∗

i
= h−1

i
(r∗) , and the 

thresholds of measured neurons,

argmin
r∗, k

𝔼𝔼 [θi − h−1i (r∗; k)]
2
.

The resulting estimates were ̂r∗ = 7.63 and ̂k = 5.20.
Finally, the efficient code has a parameter rmax that restricts the 

budget for spikes. In the efficient code, the gain of all neurons is pro-
portional to this parameter. To fit this parameter, we fit sigmoids to 
both the empirical and the efficient tuning curves as described above 
and added the squared error of the neuron-averaged gains to the opti-
mization objective.

Checking the solution. We performed several checks to confirm that 
the derived population is indeed efficient given the reward distribu-
tion. To do so, we compared the amount of information communicated 
to some other populations with the same number of neurons and the 
same expected number of spikes (Extended Data Fig. 1). The optimized 
populations retain more information than other populations. The 
population with the optimized α = 0.673 is equally efficient as the solu-
tion of Ganguli and Simoncelli18, which corresponds to α = 1.

Other objectives. Our predictions stay qualitatively similar for  
optimization objectives that transform the Fisher information in  
different ways, such as the discrimax objective studied by Ganguli  
and Simoncelli18. In particular, our results can be derived when-
ever the loss is an expected value over a convex function of Fisher  
information, which goes to infinity at 0 and is monotonically  
decreasing. Then there are diminishing returns for increasing 
the Fisher information at any specific reward value, but we need 
to achieve some nonzero Fisher information for finite loss. The  
optimal population will then always be a trade-off between distrib-
uting the Fisher information broadly and the lower cost for higher 
thresholds.

As the Fisher information itself and the expected spike rate both 
depend on the density and gain only through the product of density and 
gain, we will find a trade-off between density and gain for any objective 
function defined in this way.

Learning rules for the efficient code
Here, we define the learning rules for the efficient code exactly and 
show that they converge to the desired population.

Midpoints. We start with a learning rule that makes the midpoints con-
verge to the quantiles of the reward distribution so that their density is 
proportional to p(R). This covers the α = 1 case of Eq. (2). We will then 
describe how to achieve other α values by choosing the quantiles from 
a specific nonuniform distribution.

To create a neuron that converges to the quantile q of the reward 
distribution, we can adjust its midpoint μ in analogy to the distribu-
tional RL rule. When a reward above μ occurs, we increase μ by a con-
stant value γ+; if a reward below μ occurs, we decrease μ by a (usually) 
different value γ−:

μi+ 1 = {
μi − γ− forR ≤ μi;

μi + γ+ forR > μi.
(45)

The expected change of the midpoint with this learning rule is

𝔼𝔼(μi+ 1 − μi) = P(R > μi)γ+ − P(R ≤ μi)γ− (46)

= (1 − P(R ≤ μi))γ+ − P(R ≤ μi)γ− (47)

= γ+ − P(R ≤ μi)(γ+ + γ−), (48)

which is exactly 0 if the current quantile of μ, P(R ≤ μi), satisfies

P(R ≤ μi) =
γ+

γ+ + γ−
, (49)

negative if it is larger and positive if it is smaller. If we set γ+ and γ− such 

that q = γ+

γ++γ−
, the neuron with these parameter values will converge to 

(or oscillate around) the desired quantile. By setting the distribution 
of γ+ and γ− values across the population of neurons, we can thus enable 
convergence to an arbitrary distribution of quantiles. Choosing a 
uniform distribution solves the α = 1 case.

To enable convergence to a distribution with density proportional 
to p(R)

(1−P(R))1−α
 for α ≠ 1, we can choose quantiles proportional to 1

(1−P(R))1−α
. 

By the transformation theorem for probability densities, this will result 
in a distribution with the desired density.

Slopes. The slopes need to converge to values proportional to the 
local density of rewards (see Eq. (40)). As in kernel density estimation, 
an estimate of the density around the midpoint of a neuron μ can be 
found by evaluating a positive kernel function K with integral 1 at the 
observed reward values Ri,
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̂d(μ) = 1
N
∑
i

K(Ri − μ). (50)

From this equation, we could already derive a simple learning rule for 
the slope of the sigmoids, namely setting them based on a running 
average of these kernel evaluations. However, this would imply a fixed 
kernel size for any reward distribution, which would be suboptimal 
if the variance of reward distributions varied. To avoid this problem, 
we can use a learning rule that adapts the kernel size simultaneously 
with the slope. We set the width of the kernel h antiproportional to 
the slope b of the sigmoid function. Thus, the tuning function and 
the kernel are stretched and shrunk equally such that bh = constant. 
We then get

constant = bh = ̂d(μ)h = 1
N

N

∑
i=1
k (Ri − μ

h
) . (51)

In other words, we need to define a learning rule such that k ( Ri−μ
h
) 

converges to a constant. This can be achieved for any constant 
c ∈ [0, k(0)] by changing the slope and kernel width proportional to 

k ( Ri−μ
h
) − c. As h and b need to stay positive, we perform these updates 

in log-space, that is, multiply both by exp λ (k ( Ri−μ
h
) − c) for some small 

learning rate λ.

Gain learning. As the first of two ways of adjusting the gain of a neuron, 
we can use the expected firing rate before scaling with the gain. This 
can achieve convergence to the efficient code because the factor 
1 − P(μ) arises as an approximation of the expected firing rate of a 
neuron in Eq. (22) before multiplication with the gain. To learn this 
value, a neuron can compute a running average of the unscaled neural 
responses ̄r  with some learning rate λr:

̄ri+1 = (1 − λr) ̄ri + λr
ri
gi
. (52)

Plugging this into the efficient code solution yields

gi =
1
̄rαi
. (53)

With α = 1, this learning rule would yield the same expected firing rate 
for all neurons. With α < 1, it yields a less extreme growth in gain.

Gain coupled to quantile. Another way of adjusting the gain is  
by setting a fixed gain based on the quantile a neuron is meant to 
converge to. As the quantile fixes P(μ), we can read off the  
correct value from the analytical efficient coding solution, that is, set 
the gain g equal to 1

(1−q)α
 for neurons that are meant to converge to the 

quantile q.

Expectiles instead of quantiles
For the figures in the main text, we placed neuron midpoints at the 
quantiles of the reward distribution as predicted by maximizing cod-
ing efficiency. As distributional RL predicts that neurons should con-
verge to expectiles instead, we tested the efficiency of such a code in 
Extended Data Fig. 6. The efficiency of the code is slightly lower for 
the expectile-based code due to a slight shift of midpoints toward 
the mean of the distribution. These differences are small, and the 
code does not show qualitative differences. We understand them as 
essentially equivalent.

Comparing thresholds and midpoints
Because we are using two metrics for the placement of neurons, thresh-
old and midpoint, we discuss here how they compare. In our formalism, 
‘density’ refers to the midpoint of a neuron with a sigmoid response 

function. Threshold is the reward when a neuron fires at spontaneous 
activity, this is, the point at which the neuron codes zero prediction 
error in RL. Their distributions are slightly different. The relationship 
between the two depends on the relationship between the gain of the 
neuron (which defines the midpoint) and its spontaneous firing rate 
(which defines the threshold). A neuron whose gain exceeds twice its 
spontaneous firing rate has a higher midpoint than threshold, as reward 
needs to be higher for the firing rate to reach half the gain than to reach 
the spontaneous rate. The threshold will then lie in the lower convex 
part of the response function. Correspondingly, a neuron with gain less 
than twice its spontaneous rate has a higher threshold than midpoint, 
and its threshold will lie in the upper concave part of the response func-
tion. In the efficient code, gain increases with threshold. As a result, the 
prediction is that low thresholds are higher than their corresponding 
midpoints, and high thresholds are lower than their corresponding 
midpoints. In turn, this means that the threshold distribution should 
be less dispersed than the midpoint distribution.

We illustrate this in the variable-magnitude task (Extended Data 
Fig. 4). Empirically, the threshold distribution is indeed narrower (and 
taller) than the midpoint distribution, as predicted by the efficient 
code. Additionally, the spontaneous firing rate we estimated for this 
task is lower than the average half gain. Correspondingly, the average 
threshold (5.00 μl) is smaller than the average midpoint (5.96 μl). 
However, these shifts are all relatively small, and the relationships 
with other variables (Fig. 2b,d,f) hold for midpoints as they do for 
thresholds.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.
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Extended Data Fig. 1 | Comparing encoding populations for reward with  
10 neurons and the same expected number of spikes. A: Compared neuronal 
populations: single neuron: All neurons share the same response curve, 
optimized to maximize transferred information. equal spacing: neurons tile 
the space, not optimized. no gain: positions and slopes are optimized, but all 
neurons have equal gain. optimal α = 1: fully optimized population as derived 

previously18 with density proportional to the distribution. optimal α = 0.673: 
Equally optimal distribution but with α fit to match the midpoint distribution 
for the optimal code and the experimental data. B: Fisher information as a 
function of reward for each of the populations. C: Expected logarithm of Fisher 
information under the reward distribution relative to the single-neuron case.
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Extended Data Fig. 2 | Illustration of the solution of the efficient coding problem, varying α (rows) and the reward distribution (columns). The reward 
distributions are all log-normal distributions with their pdfs and parameters plotted at the top.
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Extended Data Fig. 3 | Efficient code for the variable-reward task14. A: Tuning curves. For clarity, only 20 of 39 neurons are shown. B: Density of neurons as a function 
of midpoint. C: Gain as a function of midpoint.
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Extended Data Fig. 4 | Log-normal kernel density estimation of midpoints and threshold. A: Midpoints. B: Thresholds. Measured neurons (black) and efficient 
code (cyan) are overlayed over the reward density (gray).
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Extended Data Fig. 5 | Efficient code for the variable-magnitude task17. A-C: Efficient code for the uniform distribution. D-F: Efficient code for the normal 
distribution. A,D: Tuning curves. For clarity, only 13 of 40 neurons are shown. B,E: Density. C,F: Gain.
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Extended Data Fig. 6 | Evaluation of learning rules placing neurons’ 
midpoints at expectiles instead of quantiles. Plotting conventions as in  
Fig. 4. Each panel shows the converged population of 20 neurons after learning 
based on 20, 000 reward presentations. The inset illustrates the learning rule. 
A: Learning the position on the reward axis for the neurons to converge to the 
quantiles of the distribution. This learning rule is the distribution RL learning 
rule. B: Additionally learning the slope of the neurons to be proportional to the 

local density by increasing the slope when the reward falls within the dynamic 
range and decreasing otherwise. C: First method to set the gain: iterative 
adjustment to converge to a fixed average firing rate. D: Second method to set the 
gain: use a fixed gain per neuron based on the quantile it will eventually converge 
to. E: The efficient tuning curve for a single neuron. F: The analytically derived 
optimal solution. G: Comparison of information transfer across the different 
populations with the same number of neurons and expected firing rate.
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