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Studying the neural representations of 
uncertainty

Edgar Y. Walker1,9, Stephan Pohl2,9, Rachel N. Denison    3, David L. Barack    4,5, 
Jennifer Lee6, Ned Block    2, Wei Ji Ma    6,7,10 & Florent Meyniel    8,10 

The study of the brain’s representations of uncertainty is a central topic in 
neuroscience. Unlike most quantities of which the neural representation 
is studied, uncertainty is a property of an observer’s beliefs about the 
world, which poses specific methodological challenges. We analyze how 
the literature on the neural representations of uncertainty addresses 
those challenges and distinguish between ‘code-driven’ and ‘correlational’ 
approaches. Code-driven approaches make assumptions about the 
neural code for representing world states and the associated uncertainty. 
By contrast, correlational approaches search for relationships between 
uncertainty and neural activity without constraints on the neural 
representation of the world state that this uncertainty accompanies. 
To compare these two approaches, we apply several criteria for neural 
representations: sensitivity, specificity, invariance and functionality. 
Our analysis reveals that the two approaches lead to different but 
complementary findings, shaping new research questions and guiding 
future experiments.

Understanding how the brain represents its environment is one of the 
major goals of neuroscience and psychology. Another major goal is to 
understand the uncertainty of these representations1–5. Taking into 
account uncertainty in perceptual processing can be crucial when inter-
acting with the world. Imagine that while hiking through the mountains 
you have to decide whether to attempt to cross a steep slope. Besides 
your perception of the slope itself, your uncertainty about the slope 
should also be taken into account. Perhaps you should move closer 
in order to reduce your uncertainty before you decide to attempt the 
crossing. A wide range of human behavior takes into account such 
uncertainty, including decision-making6–9, learning10–13, perception3,14–16 
including multisensory fusion17–20, motor control21,22 and memory23–26. 
Similar observations have been made in nonhuman animals27–35.

Many neuroscientists aim to understand how this uncertainty is 
represented in the brain. Studies of uncertainty often contain claims of 

the form ‘in a given brain region, neural activity r represents uncertainty 
about the latent state s’. In practice, r can be measured with functional 
magnetic resonance imaging (fMRI), electroencephalography, intrac-
ranial recordings of local field potentials or spike trains, among others, 
and s can be the orientation of an object, a reward probability or some 
other feature. The goal of this Review is to provide a framework for cate-
gorizing and evaluating claims about the representation of uncertainty.

Defining uncertainty
Uncertainty characterizes the representation of a world state 
by an observer
Consider some subject who perceives s, some feature of interest of  
the world state. We will understand this situation in terms of a genera-
tive model (Fig. 1a; see glossary in the Supplementary Information). The 
feature s is not directly accessible, and is thus called a ‘latent’ feature. 
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too complex for observers to compute an optimal inference38,39; they 
might, for instance, exclude some variables and simplify the shapes of 
probability functions40–42. Because an observer’s uncertainty depends 
on the generative model assumed in their inference, a major task in the 
study of representations of uncertainty is to study what generative 
models are assumed by observers.

Often, an idealized observer is considered who infers s from I 
based on an optimal inference and the true generative model; the 
uncertainty such an idealized observer would have about s is called 
the ideal observer uncertainty5,14,43.

Origins of uncertainty
Uncertainty about the world state s is present whenever s is 
under-determined given the inference an observer performs. This 
under-determination manifests as a many-to-one mapping from 
the world state to a later state in the generative model assumed by  
the observer.

One source of under-determination is ambiguity of the input, 
illustrated for instance by the case of the Necker cube44. One and the 
same two-dimensional image could be interpreted to be the result of 
different states of the three-dimensional world, leaving the observer 
uncertain between these different states.

Another common source of uncertainty is randomness in the 
way an earlier state in a generative model generates a later state. One 
important type of such randomness pertains to the input the observer 
receives, such as the random pixel noise that corrupts the image of a 
grating in Fig. 1. An observer is left uncertain when I under-determines 
s because of noise.

Another important type of randomness is internal to the observer. 
The firing behavior of neurons is driven only partially by the signal they 
receive and partially by further random factors45. One and the same 

The observer receives information about s from the more proximal 
input state I. The brain processes this input to arrive at the neural 
response r, which is a representation of s.

In an experimental context, I is the input to the observer that is gen-
erated by the feature s in a particular trial. For example, in a visual task, 
I is the pattern of light that hits the observer’s retina, which in practice 
is considered to be equivalent to the pattern of pixels presented on a 
screen. As a standard example throughout, let I be an image: a grating 
with orientation s and added random pixel noise (Fig. 1a). Participants 
report their estimate of the orientation s.

Consider an observer who forms a representation of the world 
state s through a process that can be described as an inference from I 
(Fig. 1b). That is, the observer computes values for s given the observed I 
(Iobserved) and the dependence of I on s assumed in the generative model36. 
However, one and the same input can often be generated from multiple 
states of the world. That is, the state of the world is under-determined 
given the input, leaving the observer uncertain about s.

Unlike most quantities that are represented in perception, the 
uncertainty u about s is not a world state. Rather, the uncertainty u is a 
property of an observer’s belief about the world; u measures the lack 
of information the observer has about s on the basis of an inference 
from I37.

The posterior probability distribution p(s|Iobserved) characterizes 
the uncertainty about s given Iobserved in a given trial (Fig. 1c). This dis-
tribution describes the probability of different values of s given the 
particular input Iobserved (Box 1). If there were no uncertainty, the value of 
s would be perfectly determined by some particular input Iobserved, and all 
the probability mass in the distribution p(s|Iobserved) would be assigned 
to a single value of s. But here, multiple values of s are possible given 
Iobserved; thus, there is uncertainty about s given Iobserved.

The generative model assumed in an observer’s inference need 
not be the true generative model. The generative process might be 
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Fig. 1 | Uncertainty from a generative model. a, Example generative model. The 
world state s is an orientation. The input I is an image of a grating with orientation 
s and some pixel noise. The neural response r is a train of spikes from neurons in 
some population. b, Black arrows indicate the dependencies in the generative 
model between the world state s, input I and neural response r. Red and blue 
arrows indicate inferences an observer could make by inverting dependencies 
in the generative model from I and r, respectively. c, Probability distributions 
of s given the particular input Iobserved or the particular neural response robserved in 
a given trial. σ is a measure of the uncertainty about s given Iobserved, and μ is the 
expected value of s given Iobserved.

Box 1

Measures of uncertainty
Different formal measures are available to summarize uncertainty 
u. Often, uncertainty is understood as the standard deviation of 
a random variable under a posterior distribution, especially for 
the frequently used Gaussian distribution (Fig. 1c). The larger the 
standard deviation (that is, the more spread out the probability 
distribution) the more uncertainty there is about this variable.

Another useful measure of uncertainty is entropy. The entropy37 
of the posterior distribution p(s|Iobserved) is a measure for how much 
freedom of choice (hence, uncertainty) there is left about the 
variable s, after one already knows that the variable I takes the value 
Iobserved. The advantage of entropy as a measure of uncertainty is that 
it applies to probability distributions of any shape (categorical and 
numeric variables, and with one or more dimensions). However, 
the fact that entropy ignores ordinality can be a disadvantage: 
for instance, if two orientations have high probability and all 
other orientations have the same low probability, entropy (unlike 
standard deviation) will be the same no matter whether those two 
orientations are very close or very far apart.

Yet rather than summarizing uncertainty in a single quantity, one 
might also keep track of it implicitly in terms of the full probability 
distribution. If one were to represent the state of the world s in terms 
of, for instance, the posterior distribution p(s|Iobserved), uncertainty 
about s would be implicit in that representation. This uncertainty 
can be taken into account implicitly by performing computations 
on the full probability distribution92. Whether observers use full 
distributions or summaries is an open empirical question58,108,124.
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neural response r can be caused by different input states I, which in turn 
depend on different world states s. An actual observer does not infer 
s from I but from r; there is generally more uncertainty about s given r 
than given I owing to the additional uncertainty about I given r (Fig. 1c).

The extent to which randomness increases uncertainty depends on 
the amount of data available to the observer. For instance, when there 
is a fixed amount of pixel noise, the orientation task in Fig. 1 is easier 
for images with more pixels. Similarly, uncertainty about s decreases 
when evidence can be accumulated across multiple sensory inputs I,  
and it is large when only little evidence about s is observed, such as 
when s changes across time11,46–49.

Studying representations of uncertainty with 
correlational and code-driven approaches
Empirical studies on the neural representation of uncertainty differ 
along various dimensions, such as the recording technique used, the 
species and the tasks. Here we propose a distinction that reflects a 
difference in approaches to uncertainty of distinct research communi-
ties, one rooted in cognitive neuroscience and the other in theoretical 
neuroscience. At the methodological level, this distinction is based on 
whether assumptions about neural coding of world states are used to 
study uncertainty.

The correlational approach to the representation of uncertainty 
does not make any (explicit) assumption about a neural code for rep-
resenting s. Instead, researchers use a proxy for the brain’s uncertainty 
about s that they derive from the input and behavior (denoted u(I) and 
u(b), respectively). This proxy then guides the search for parts of the 
brain whose activity r covaries with it. This search is loosely constrained 
by assumptions about the neural code of u. For instance, in a study that 
measures r with fMRI, a relation between u and r is typically tested for 
every single voxel in the brain.

The code-driven approach, by contrast, makes strong assumptions 
about the neural code of the representations of the latent world state 
s and the associated uncertainty u. On the basis of those assumptions, 
researchers can read out u from neural activity r. The model is tested 
by relating the uncertainty derived from the neural activity (denoted 
u(r)) with estimates of uncertainty derived from the sensory input (u(I)) 
or the behavioral response b.

Prototypical examples of the two approaches
We illustrate the correlational approach with an fMRI study from 
Vilares and colleagues50. In this study, participants were presented 
on each trial with an input I consisting of a dot-cloud sampled from a 
Gaussian distribution whose mean location was the latent state s that 
participants had to report. The experimenters used two dispersion 
levels for the dot-cloud (that is, variance of the Gaussian distribu-
tion), small and large, to manipulate the participant’s uncertainty 
about s. The authors asked where the input-related uncertainty u(I) 
(using the dispersion of the dot-cloud as a proxy) was represented in 
the brain, and stressed the absence of strong hypothesis: “it remains 
unknown whether uncertainty is represented along the sensorimotor 
pathway or within specialized brain areas outside this pathway.” To 
detect and localize a representation of uncertainty, they regressed 
u(I) against the fMRI signal in each voxel throughout the brain. They 
found that fMRI activity positively correlated with u(I) in the early 
visual cortex.

As an illustration of the code-driven approach, consider a study 
from Geurts and colleagues51, who presented participants with an input 
I consisting of an oriented grating (the orientation is the latent state s)  
with low contrast. Participants reported both the orientation of the 
grating and their uncertainty. The authors made very specific assump-
tions about the neural representation of s (the orientation) in the early 
visual cortex: “The model assumes that, across trials, voxel activity 
follows a multivariate normal distribution around the voxel’s tun-
ing curve for orientation.” When fitted to the fMRI data, this model 

characterizes the probability of an activity pattern r given the orien-
tation s. Using probabilistic inference, this model can be inverted to 
estimate the probability distribution of s given the observed r (Fig. 1), 
and the uncertainty about s inferred from r, u(r), can be measured as 
the standard deviation of this distribution. To test whether it is indeed 
a neural representation of uncertainty about s, the authors regressed 
across trials u(r) against u(b), the uncertainty reported by participants, 
and they found a significant positive effect.

Estimates of uncertainty derived from the input and behavior
The above prototypical examples illustrate that the two approaches 
use some estimate u(I) and u(b) of uncertainty derived from the input 
or behavior and provide specific examples of such estimates; below we 
provide a broader range of examples. In general, the same estimates 
of u(I) and u(b) are available for either approach. What distinguishes 
the two approaches is the way those estimates are used: as a proxy for 
the brain’s uncertainty to search for neural representations of this 
uncertainty in the correlational approach, and as a check of the neural 
readout of uncertainty in the code-driven approach.

Different aspects of behavior are used to derive estimates of uncer-
tainty. In some studies, u(b) is the uncertainty reported by human 
participants (for example, ratings or confidence judgments46,47,51–60). 
In other studies, researchers infer u(b) by assuming that uncertainty 
regulates some specific aspects of participants’ behavior58,61, such as 
how fast to respond62,63, how long to wait for a reward30,64,65, whether to 
opt out of a bet31,32,34,66–68, the variability of behavioral reports57,69 or the 
relative weight between prior information and the current input I50,70.

Different methods also exist to estimate uncertainty from the 
input. Some researchers use ideal observer models (see above), which 
are useful to quantify uncertainty across a wide variety of task struc-
tures, notably when the relation between u and I is complex (for exam-
ple, in sequential learning)7,46,47,71–73. Other models used to estimate u(I) 
go beyond the task-based generative model and incorporate assump-
tions about the decomposition of I into specific features by sensory 
systems74–76. Another method eschews the use of generative models 
of I by relying on simple qualitative relationships that exist between 
u and specific aspects of I (for example, pixel noise or contrast in the 
oriented grating example, or the fact that humans are more uncertain 
about oblique than cardinal orientations); these are used as crude 
estimates of uncertainty30,31,69,77.

Assumptions about the neural code
The correlational approach seeks to relate the uncertainty proxy u(I) 
or u(b), to r (Fig. 2). In practice, researchers test for this relationship 
by different means, such as correlation, multiple linear regressions 
or multivariate pattern decoding (for example, with support-vector 
machines; Box 2). Each method implicitly makes assumptions about 
the neural code of u (for example, linearity in the case of correla-
tion) but the choice of a method tends to be motivated more by con-
venience (the use of standard tools that capture simple statistical 
relationships between u and r) than strong hypotheses about the 
code. Depending on the method, the strength of this relationship is 
measured as a correlation coefficient, the significance of regression 
weights78, the cross-validated decoding accuracy or the fraction of 
explained variance79,80.

By contrast, the code-driven approach makes assumptions (in the 
form of a ‘neural’ generative model) about how r represents s. We pre-
sent two families of such models81: those that posit a neural code for s 
in which r encodes a likelihood function ℒ(s;r) = p(r|s) (broadly referred 
to as a probabilistic population code) and those that posit a neural code 
for s in which r corresponds to samples from a posterior distribution 
over s given the observed I, p(s|Iobserved) (sampling-based code). Note 
that those two approaches are not necessarily contradictory82. Other 
models relevant for the study of uncertainty exist3,83–87, but they have 
so far received less attention from experimenters.
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In probabilistic population codes, researchers formalize the 
uncertainty u conveyed by the neural activity observed on a particular 
trial, robserved, as the posterior distribution p(s|robserved). This posterior is 
derived using Bayes’ rule from a neural likelihood function ℒ(s;robserved) 
(and a prior over s, but this aspect is typically obviated by assuming 
non-informative priors). The construction of ℒ(s;r) can be more or 
less data driven. The dominant approach in the literature is strongly 
theory driven88,89. An influential example in the sensory domain posits 
that neurons have a stereotyped mean response to the input (known 
as their tuning curve) and some variability corresponding to the expo-
nential family of distributions (for example, Poisson distributions). 
Together with a few other assumptions, the log of ℒ(s;r) becomes linear 
with respect to r and uncertainty about s is proportional to the aver-
age neural activity on a given trial90–92. By contrast, more data-driven 
approaches require fewer assumptions and estimate ℒ(s;r) from the 
data itself. With the advent of large datasets and machine learning 
tools, even arbitrary shapes of ℒ(s;r) can be estimated35. With a smaller 
amount of data, further constraints are needed about the shape of 
ℒ(s;r), for example, assumptions about specific covariance matrices 
or noise distributions51,57,69,70.

In sampling-based codes, the neural activity is assumed to rep-
resent s in terms of samples stochastically drawn from the posterior 
distribution p(s|Iobserved)2,4,76,93. Biologically plausible neural network 
models have been proposed for such a sampling process94. Under such 
a code, u is reflected in the spread of the distribution of r (for example, 
the standard deviation) across time or across neurons.

To summarize, studies within the correlational and code-driven 
approaches to studying uncertainty differ across many dimensions 
(the recording techniques; whether mathematical models, and I or b,  
are used to estimate u). The key difference is whether assumptions 
about the neural code of s are used to relate r to the uncertainty 
about s.

General criteria for the evaluation of claims about 
representations of uncertainty
We now turn to the evaluation of claims about the neural represen-
tation of uncertainty that can be found in either the correlational or 
code-driven approach. We propose to do so by applying criteria that 
are generally used in neuroscience to support claims about represen-
tations: sensitivity, specificity, invariance and functionality (Box 3).

Correlational
approach

Code-driven
approach

s: world state of interest
I: input
u: uncertainty about s 
b: behavior
r: neural activity

The model
Test of model
Alternatives

u(I)

b

u(r)

r
s I

u(b)

s I

b

u(b) r 45°
u(I)45°

Fig. 2 | Comparison of the correlational and code-driven approaches. In 
both approaches, the participant is provided with an input I (here, an image of a 
grating) that is informative about a particular world state s (here, the orientation 
of the grating), the participant may provide a response (denoted by the hand) 
and researchers use some estimates of the brain’s uncertainty u about s. Those 
estimates are derived from I itself (denoted u(I), based on the modeling of p(I|s) 
or a simple qualitative relationship between u and I) or b (denoted u(b), based 
on the participant’ report of u or aspects of their choices that should depend 
on u). In the correlational approach, researchers test for a relationship (red 
arrow) between the proxy u(I) or u(b) and neural activity r, without making 
assumptions about the relationship between s (or I) and r. By contrast, the code-
driven approach assumes a specific neural code for s (through I), denoted by 
the black arrow from I to r. On the basis of these assumptions, researchers can 
read out u(r), the uncertainty about s given the observed r; see black arrow from 
r to u(r). In practice, u(r) is obtained by inverting a neural likelihood function 
ℒ(s;robserved) = p(robserved|s) in a probabilistic population code or by measuring the 
standard deviation of r in a sampling-based code. The validity of the code-based 
approach and the neural readout of uncertainty is evaluated by testing for some 
relationship between u(r) and either u(b) or u(I).

Box 2

Relation to encoding and 
decoding approaches
Encoding and decoding are widely used notions in 
neuroscience79,81,88,125–129. The encoding approach models r as a 
function of some task-related quantity x (typically s or I, or u(I) or 
u(b) in the context of uncertainty); the decoding approach models 
x as a function of r. The relationship between encoding or decoding 
and correlational or code-driven approaches is multifaceted, 
notably because, in practice, different implementations of encoding 
and decoding exist in the domains of data analysis (machine 
learning) and theoretical neuroscience.

In theoretical neuroscience, encoding and decoding models 
are expressed in terms of conditional probabilities88,129,130.  
An encoding model corresponds to p(r|s) (and thus the neural 
likelihood function ℒ(s;r)), whereas a decoding model 
corresponds to p(s|r) (and thus potentially captures the brain’s 
uncertainty about s). It is possible to obtain p(s|r) from p(r|s) 
together with a prior probability p(s) using Bayes’ rule, which 
indicates that encoding and decoding models are related  
but not equivalent since a prior is also involved. The essence  
of probabilistic population codes is to model ℒ(s;r) (encoding)  
and use it to obtain p(s|r) (decoding); thus, both encoding  
and decoding can be related to a code-driven approach  
to uncertainty.

By contrast, encoding and decoding in the data 
analysis domains79,128 and machine learning applied to 
neuroscience126,127,131 typically do not involve conditional 
probabilities between s and r. In this domain, an encoding model 
typically corresponds to first assuming a deterministic mapping 
(often highly nonlinear) from s (or I) to a list of latent features, 
and then testing for a relation to r by means of a (multiple) linear 
regression of the latent features onto r (linearizing encoding 
models128). Some studies that follow the correlational approach 
to uncertainty use this encoding method because they treat 
the uncertainty u(I) as a latent feature of the input I, and regress 
u(I) onto r. The same is true of sampling-based code studies 
except that they consider the variability of r rather than r 
itself. Regarding decoding models, they typically correspond 
to classifiers (for example, linear discriminant analysis or 
support-vector machine) that are trained to obtain s (or I) 
from r. This method is also used by some studies that follow 
the correlational approach, with the twist that the classifier is 
trained to obtain u(I) or u(b) instead of s itself.

Some applications of encoding or decoding are hybrid and 
use both a decomposition of s (or I) into some latent features 
that are regressed onto r, and conditional probabilities to model 
p(r|s) using the residuals of this regression. Some researchers in 
the code-driven approach used such a method to parametrize 
a probabilistic encoding model p(r|s) and then decode the 
uncertainty about s given r51,57,69,70.
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How do the two approaches compare in terms of testing 
general criteria?
Sensitivity. Testing for sensitivity is the starting point of the correla-
tional approach because it aims to identify whether some r in the brain 
is sensitive to a proxy u(I) for uncertainty (for u(b), see ‘Functionality’). 

The higher the sensitivity, such as the strength of correlation or decod-
ing accuracy, the more plausible it is that a given r is a representation 
of u. The use of better proxies for uncertainty also makes tests of sen-
sitivity more convincing. Some studies that follow the correlational 
approach address only sensitivity, especially when they are among the 
first of their kind or when uncertainty is not central in the study48,49,95.

The code-driven approach tests whether a neural readout of uncer-
tainty u(r) is sensitive to u(I). In this case, the vertical axis in Fig. 3 is u(r), 
not r as in the correlational approach, although in both cases x = u(I). 
To illustrate, u(r) was shown to be sensitive to aspects of I that impact 
uncertainty, such as the image contrast35,76,94, whether orientation is 
closer to cardinal axes69, or the presence of a higher-level context96. 
Although either a probabilistic population code or a sampling-based 
code was used to derive u(r) in those example studies, a prominent dif-
ference is that the sensitivity test is more central in studies that use a 
sampling-based code. In the case of the probabilistic population code, 
sensitivity sometimes appears as a side point35 or is even not reported70.

Specificity. In both approaches, researchers correlate (or use more 
elaborate analyses) u(I) or u(b) to r or u(r). Testing for correlation is 
vulnerable to the problem of confounding variables: r may not repre-
sent u but the aspect of I or b from which u(I) or u(b) has been derived, 
such as contrast in the orientation task. It is still possible to test for 
specificity if several features of I or b are related to u. In that case, the 
specificity of r to u with respect to each feature in isolation can be tested 
by holding each feature fixed and testing for the dependence of r on 
other features of I or b27,74,77. For example, Dekleva and colleagues27 
manipulated uncertainty about the direction of reaching in a motor 
task through the current trial’s cue and the cue history, and Bang and 
colleagues77 manipulated uncertainty about the direction of motion 
by changing the strength of motion evidence and the distance to the 
category boundary. In both studies, r continued to track u(I) when 
either feature was kept fixed. Some aspects of I can be artifactually 
correlated with u. For instance, uncertainty about local features in an 
image is expected to decrease when they are embedded in a higher-level 
structure; one can test for this effect while controlling for the spectral 
content of the image, which is often confounded with the presence of 

Box 3

General criteria for neural 
representations
Below we list criteria generally used in neuroscience to establish 
claims about representations (although they do not always appear 
under the labels we propose).

Sensitivity: r is sensitive to a feature x if changes in r are related 
to changes in x. For instance, a neuron is sensitive to the orientation 
of a bar if different activity patterns are recorded when different 
orientations are presented132.

Specificity: r represents x specifically with respect to another 
feature y if changes in r are related to changes in x even when 
controlling for y. This criterion enables researchers to test that r 
is related to x indeed, and not spuriously so because of another 
feature y that is related to x (in that case, y is termed a confounding 
variable)133. For instance, uncertainty about orientation depends on 
the image contrast: a neural representation of the uncertainty about 
orientation therefore ought to be sensitive to contrast. However,  
to be a representation of uncertainty per se rather than contrast,  
r should reflect uncertainty even when the image contrast is  
kept fixed.

Invariance: The representation of x by r is invariant to y if changes 
in r are not related to changes in y when controlling for x. This 
criterion enables the researcher to test that r is related to x because 
r does not change when a feature y unrelated to x changes. For 
instance, the representation of orientation (our x) by V1 neurons  
(our r) is not invariant to position because different r are observed for 
a given orientation when changing position in the visual field132. By 
contrast, the representation of object identity in the inferotemporal 
cortex is invariant to the position and orientation of objects116,134.

Functionality: r is functional as a representation of x if it causes 
a behavioral response b, for example, a report of the perceived 
value of x135,136; or, in the case of uncertainty, a decision that weighs 
sources of information by their respective uncertainty50. One can 
test for functionality with criteria analogous to the ones presented 
above; yet rather than testing for a dependence of r on x, these 
functionality analogs test for a dependence of b on r.

Claims about representations, ultimately, have to be 
claims about the causal structure of information processing 
in the brain. Nonetheless, we express the criteria in terms of 
information theoretic relationships between variables rather 
than in causal terms because researchers often use correlative 
(not causal) methods. Previous studies on uncertainty have 
used correlation29,51,69, differences between conditions31,32,50, 
linear regression46,47,49,55 or decoding55,103,107,137,138 to establish 
representations of uncertainty.

In practice, the criteria are evaluated in a graded manner 
such that they can be more or less satisfied (sensitivity might, for 
instance, be measured in terms of the strength of the correlation 
between r and x). Moreover, while linear relationships such as 
those illustrated in Fig. 3 are often simplest to understand and 
most common in experimental studies, many models, especially 
code-driven ones, posit nonlinear relationships.

y = or 
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Fig. 3 | Empirical criteria for neural representation. We consider three criteria 
(sensitivity, specificity and invariance) that are used in neuroscience to test 
whether neural activity r represents a feature of interest x (like uncertainty, 
derived either from some input to the participant, u(I), or from their behavior, 
u(b)), either by itself or in comparison to another feature y. The top row shows 
examples that pass a given criterion, and the bottom row shows examples that 
fail. In contrast to the correlational approach, the code-driven approach is 
interested in the uncertainty derived from r, u(r), rather than r itself; in that case, 
u(r) replaces r in the above graphs. Also note that the other feature y is categorical 
here, but it could also be continuous.
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high-level structure96. Some previous studies include tests for con-
founding variables such as reaction times97, attention97, exploration7,98 
and task difficulty30,31,64,66,77.

When u(I) is not derived from a simple feature of the input but 
from a more complex model, such as an ideal observer model, sev-
eral confounding variables might still undermine the specificity of 
r to u. For instance, in the context of sequential learning, u is often 
negatively correlated with recently surprising outcomes46,47,99. Con-
founding variables of uncertainty about the present world state also 
include constructs presented in other studies such as the likelihood of 
a change point11, expected uncertainty100, total uncertainty9,71, outcome 
uncertainty46,47,101 and expected reward102–105.

Invariance. Some researchers following the correlational approach 
have tested for invariance. For instance, Michael and colleagues106 
used a categorization task and inputs with two features: shape and 
color. The relevant feature used for the categorization task changed 
across trials and a common neural representation r of the categoriza-
tion uncertainty was found in both conditions. In the shape condition, 
r tracked the uncertainty related to shape, not color (and vice versa 
in the color condition), demonstrating that r coded for uncertainty 
beyond these low-level features. Using a similar logic, Lebreton and 
colleagues56 found a general neural representation of the uncertainty 
associated with estimating the value of paintings, objects and pros-
pects. Other researchers have tested invariance with respect to sensory 
modality47,64,107.

Invariance is rarely tested in the code-driven approach. Orban et al. 
found that u(r) (in this case, the variability of the membrane potential) 
was sensitive to some u(I) (the contrast of a grating) and tested for 
invariance with respect to the orientation of the grating. They reported 
‘mild modulations’ by orientation when u(I) was kept fixed76.

Functionality. The correlational approach can use u(b) instead of u(I) 
as just another proxy for u. In that case, functional sensitivity (tested 
as a relation between r or u(r) and u(b)) is not fundamentally different 
from the sensitivity test presented above (based on u(I)). However, u(I) 
and u(b) are unlikely to be equivalent and it is unclear whether one is 
a better proxy for the brain’s u than the other, because the ability of 
participants to introspect u may be limited108,109 and additional pro-
cesses may intervene between u and choices or reports based on u60,110. 
Instead of using u(b) in place of u(I) as just another proxy for u, more 
compelling evidence of functionality comes from correlational studies 
that combine u(I) and u(b). For instance, a neural representation r of 
u based on u(I) is identified first and then some relation between this 
r and b is sought. Some studies reported correlations between neural 
representations of u(I) and the reported uncertainty46, trial-to-trial 
variability during reaching27 and learning11. Other studies reported 
correlations across participants between neural representations 
of u(I) and aspects of behavior that should in principle depend on 
uncertainty, such as risk attitude111, exploration9,71 and prior-likelihood 
combination50,112.

In the context of the code-driven approach with a probabilistic 
population code, the functionality criterion often plays a key role. For 
instance, van Bergen and colleagues69 showed that u(r), the uncertainty 
about the orientation of a grating inferred from V1 fMRI activity, cor-
related with the variability of orientation reports. The same group also 
found that this u(r) correlated across trials with both the uncertainty 
reported by participants51 and the strength of sequential effects in 
their perceptual decisions70. Walker and colleagues35 found that the 
uncertainty read out from V1 in monkeys accounted for their decisions 
in an uncertainty-based categorization task.

By contrast, functionality is less often tested in studies that assume 
a sampling-based code. An exception is a 2016 study by Haefner and 
colleagues113, which reported that the structure of covariance among 
artificial neurons in a network reflected the uncertainty about the 

task-relevant orientation during visual categorization in a way that 
correlated with performance in the task.

Functionality can be coupled with specificity. Such a test assesses 
whether r or u(r) still correlates with u(b) when all features of the input 
I are held constant. Uncovering such an effect suggests that it is indeed 
uncertainty, and not any confounding feature of the input, that is 
represented and used for behavior. The code-driven approach lends 
itself to such a test because researchers can read out u from r, making 
it possible to find correlation between u(r) and u(b) when I is fixed35,69. 
The correlational approach does not seem suited for this test when it 
uses u(I). But, some analyses inspired by this test are still informative; 
for instance, McGuire and colleagues used u(I) from an ideal observer 
to identify a neural representation r of u(I); they then regressed u(I) out 
of r (which is analogous to keeping the effect of I fixed) and showed that 
r still correlated with some aspect of behavior11. Showing that r or u(r) is 
sensitive to u(I), and to u(b) on top of the effect of u(I), indicates that the 
way the brain computes uncertainty based on the input deviates from 
the model assumed to derive u(I), or that other processes (for example, 
internal noise, attention114 or biases) intervene in the computation of 
uncertainty or its use in behavior.

How do the two approaches compare in terms of satisfying 
general criteria?
Supplementary Table 1 reports examples of previous studies on the 
neural representation of uncertainty. The uncertainty that character-
izes representations of the world by an observer is often distinguished 
from the uncertainty about the outcome of a process95,101 and from 
decision confidence60. Yet, the corresponding studies often test the 
same criteria and face similar methodological problems; therefore, 
we include all of them in this table.

Supplementary Table 1 shows how the different approaches (cor-
relational, code driven) and the different types of uncertainty compare 
in terms of satisfying the criteria. The criteria apply to both approaches, 
but with some differences: functionality is currently a strong point of 
the code-driven approach (when it relies on probabilistic population 
codes, not on sampling-based codes) in comparison to the correlational 
approach, whereas invariance, and to a lesser extent specificity, are 
more often tested in the correlational approach than the code-driven 
approach.

Caveats of current approaches and future 
directions
We now summarize the potential and limitations of the two approaches.

Comparing correlational and code-driven approaches
Assumptions about neural codes. We based our distinction between 
code-driven and correlational approaches on whether assumptions 
are made about the neural coding of the world state s and the accom-
panying uncertainty. This methodological difference has conceptual 
implications. The code-driven approach studies neural representations 
in which a neural population r jointly represents both a world state s 
and uncertainty u about s. The correlational approach does not require 
such joint representations and, therefore, it can identify representa-
tions of u that are not colocalized with the representation of s50. It has 
been proposed that some brain regions could be specialized in the 
representation and processing of uncertainty58,101,108,115; such brain 
regions can be identified with the correlational approach but not with 
the code-driven approach in its current form.

This restriction to joint representations is likely to explain differ-
ent findings between the two approaches. The code-driven approach 
more often identifies representations of u in sensory regions such as 
the early visual cortex, which are well known for representing visual 
features35,51,69,70,75,76, whereas the correlational approach often identifies 
representations of u in regions that are further from sensory input and 
its representation, closer to the decision or reporting mechanisms, in 
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subcortical structures49,50,97,112, prefrontal cortex11,46,49,50,56,71,98,106, parietal 
cortex11,47,49,71,98,106 or temporal cortex71,111.

The two approaches also differ in assumptions about the complex-
ity of the neural code of uncertainty. In the correlational approach, 
codes are usually assumed to be linear (monotonic changes in average 
activity as a function of uncertainty); representations with such linear 
codes have been termed explicit representations116,117. Studies following 
the code-driven approach are open to nonlinear computations, which 
are often used to derive u from r, for example, when reading out the 
standard deviation of the decoded distribution51,69,70, or the standard 
deviation of neural activity76 or when using artificial neural networks35.

Specificity. Both approaches use external estimates of uncertainty 
u(I) and u(b) and thus are susceptible to confounding factors. The 
code-driven approach has an elegant method to demonstrate func-
tional specificity with respect to the features of the input I, namely by 
testing whether u(r) makes a difference to the behavioral response b, 
even while controlling for I35. Yet, concerns about specificity remain 
even in this case because representations of uncertainty may still be 
confounded by behavioral features or processes internal to the brain, 
such as attention.

Functionality. Behavioral data are used with substantial heterogene-
ity in both approaches. In the code-driven approach in particular, 
it is striking that u(b) is much more prominent than u(I) in studies 
using probabilistic population codes, and that the converse is true in 
those using sampling-based codes. Interestingly, tests based on u(b) 
have fewer degrees of freedom and thus seem more stringent in the 
probabilistic population code-driven approach than in many studies 
following the correlational approach. To illustrate, the test is passed in 
the code-driven approach only if u(r) correlates with u(b), the partici-
pant’s report of uncertainty51, whereas it is passed in the correlational 
approach if r correlates with u(b) in at least one of the many brain 
regions under investigation.

Origins of uncertainty. Externally generated uncertainty u(I) derives 
from ambiguity or noise in the generation of the sensory input I and 
can be estimated with an ideal observer model. Internally generated 
uncertainty depends on neural noise or limitations and errors in infor-
mation processing; it can only be estimated from behavioral responses 
u(b) or neural activity u(r); u(b) and u(r) also track external sources of 
uncertainty. Studies following the correlational approach that focus 
on u(I) are restricted to externally generated uncertainty. However, by 
including u(b) in the analysis, correlational studies can also account for 
internally generated uncertainty. Because they read the uncertainty 
u(r) directly from the brain state r, code-driven models are especially 
well suited to studying internally generated uncertainty. Interest-
ingly, studies using sampling-based codes currently assume that those 
internal sources of uncertainty (noise) are negligible and that u(r) cor-
respond to the uncertainty optimally computed from I76; by contrast, 
studies using probabilistic population codes stress the importance of 
internal sources of uncertainty92,118.

Setting goals for future research
Given that the code-driven and correlational approaches have differ-
ent limitations and advantages, they could be used in synergy. One 
possibility is to leverage our knowledge of early sensory cortices to 
have a neural readout of uncertainty u(r) about s in a perceptual task 
using the code-driven approach, and then use u(r) as input to the cor-
relational approach to unravel other parts of the brain that could rep-
resent this uncertainty without requiring that they represent s itself. 
Such combined analysis would reconcile the fact that the represen-
tation of uncertainty can be colocalized with the representation of 
the feature s that it characterizes while also being detached from it 
by downstream computation. Some studies have already started to 

reduce the gap between code-driven and correlational approaches. 
The study by Geurts et al.51 that we used as a prototypical example of 
the code-driven approach also used the correlational approach and 
found fMRI correlates of u(r) in the prefrontal cortex.

Understanding how the brain extracts and uses uncertainty can 
also be achieved by further investigation of the functional aspect of 
representations. If uncertainty is used only in a given context (for 
example, uncertainty about color, not shape, is relevant for color-based 
categorization106) or for different goals (for example, to guide the 
decision to wager31 or to update prior estimates47), then some aspects 
of its representation are expected to change. Manipulating the task 
relevance of uncertainty is thus a promising avenue to explore the 
function of the representation of uncertainty. In particular, it would 
be useful to distinguish representations of uncertainty that are auto-
matic and occur independently of task demands from those that are 
task dependent119.

We have stressed that uncertainty can be about different things (for 
example, orientation of a grating35, color106, the next outcome103,120–122 
and probability of an event47) and have multiple origins (for example, 
prior knowledge and current input). Whether representations of uncer-
tainty are invariant to the origin of this uncertainty, and invariant to 
what uncertainty is about, remains a largely open question. A related 
methodological concern, in particular for the code-driven approach, 
is that r may actually not represent the world state s of interest to the 
researcher but some other feature z; substantial difference between 
the uncertainty about s and z given I will undermine the code-driven 
approach. For instance, r in V1 may represent not orientation but 
instead the intensity of a specific set of image elements present in I82.

As the field matures, a switch from single-model testing to the 
comparison of different models (for example, generative models of 
the observer and the brain used to infer u(I) and u(r); linear versus 
nonlinear neural codes for u in the correlational approach; code-driven 
approaches that disentangle the representations of s and u) would be 
valuable to narrow down the neural codes of uncertainty. Because 
sampling-based codes and probabilistic population codes focus on 
encoding and decoding, respectively, they could also be combined to 
model processes from input to behavior.

Manipulating prior expectations could help to tackle the pervasive 
issue of specificity: posterior uncertainty depends on both the current 
input and the prior, but most studies focus on the former. Manipulating 
priors enables researchers to partly de-correlate posterior uncertainty 
from the current input. Some previous studies manipulated priors50,112 
but with the aim of comparing the encoding of the prior and current 
likelihood. Beyond the methodological interest regarding specificity, 
systematic manipulation of priors (as in previous behavioral stud-
ies123) would also be useful to study at which stage prior and current 
uncertainties are combined in the brain when processing the current 
input, and to compare empirically probabilistic population codes and 
sampling-based codes.

In conclusion, we propose that current studies on the neural rep-
resentation of uncertainty can be distinguished as code-driven versus 
correlational approaches on the basis of whether they rely on assump-
tions about the neural code of some world state and the accompanying 
uncertainty. This distinction results in the identification of potentially 
different types of representation of uncertainty that may be colocalized 
with, or separated from, the representation of the corresponding world 
state. Empirical conclusions from both approaches can be assessed 
with the same set of general criteria, but there is currently an emphasis 
on different criteria across studies. Because the two approaches differ 
in the assumptions they require and the types of finding they uncover, 
there is great potential for them to be used synergistically.

References
1.	 Ballard, D. H. Brain Computation as Hierarchical Abstraction (MIT 

Press, 2015).

http://www.nature.com/natureneuroscience


Nature Neuroscience | Volume 26 | November 2023 | 1857–1867 1864

Review article https://doi.org/10.1038/s41593-023-01444-y

2.	 Hoyer, P. O. & Hyvärinen, A. Interpreting neural response 
variability as Monte Carlo sampling of the posterior. In Advances 
in Neural Information Processing Systems 293–300 (2002).  
An influential article that proposed that neural activity could be 
explained with a sampling-based code.

3.	 Knill, D. C. & Pouget, A. The Bayesian brain: the role of uncertainty 
in neural coding and computation. Trends Neurosci. 27, 712–719 
(2004).

4.	L ee, T. S. & Mumford, D. Hierarchical Bayesian inference in the 
visual cortex. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 20, 1434–1448 
(2003).

5.	 Ma, W. J. & Jazayeri, M. Neural coding of uncertainty and 
probability. Annu. Rev. Neurosci. 37, 205–220 (2014).

6.	 Bach, D. R. & Dolan, R. J. Knowing how much you don’t know: a 
neural organization of uncertainty estimates. Nat. Rev. Neurosci. 
13, 572–586 (2012).

7.	 Muller, T. H., Mars, R. B., Behrens, T. E. & O’Reilly, J. X. Control of 
entropy in neural models of environmental state. eLife 8, e39404 
(2019).

8.	 Rushworth, M. F. S. & Behrens, T. E. J. Choice, uncertainty and 
value in prefrontal and cingulate cortex. Nat. Neurosci. 11, 
389–397 (2008).

9.	 Tomov, M. S., Truong, V. Q., Hundia, R. A. & Gershman, S. J. 
Dissociable neural correlates of uncertainty underlie different 
exploration strategies. Nat. Commun. 11, 2371 (2020).

10.	 Behrens, T. E. J., Woolrich, M. W., Walton, M. E. & Rushworth, M. 
F. S. Learning the value of information in an uncertain world. Nat. 
Neurosci. 10, 1214–1221 (2007).

11.	 McGuire, J. T., Nassar, M. R., Gold, J. I. & Kable, J. W. Functionally 
dissociable influences on learning rate in a dynamic environment. 
Neuron 84, 870–881 (2014).

12.	 Meyniel, F., Schlunegger, D. & Dehaene, S. The sense of 
confidence during probabilistic learning: a normative account. 
PLoS Comput Biol. 11, e1004305 (2015).

13.	 O’Reilly, J. X. Making predictions in a changing world—inference, 
uncertainty, and learning. Front. Neurosci. 7, 105 (2013).

14.	 Kersten, D., Mamassian, P. & Yuille, A. Object perception as 
Bayesian inference. Annu. Rev. Psychol. 55, 271–304 (2004).

15.	 Qamar, A. T. et al. Trial-to-trial, uncertainty-based adjustment of 
decision boundaries in visual categorization. Proc. Natl Acad. Sci. 
USA 110, 20332–20337 (2013).

16.	 Zhou, Y., Acerbi, L. & Ma, W. J. The role of sensory uncertainty in 
simple contour integration. PLoS Comput. Biol. 16, e1006308 
(2020).

17.	 Alais, D. & Burr, D. The ventriloquist effect results from 
near-optimal bimodal integration. Curr. Biol. 14, 257–262 (2004).

18.	 Deroy, O., Spence, C. & Noppeney, U. Metacognition in 
multisensory perception. Trends Cogn. Sci. 20, 736–747 (2016).

19.	 Ernst, M. O. & Banks, M. S. Humans integrate visual and haptic 
information in a statistically optimal fashion. Nature 415, 429–433 
(2002).

20.	 Trommershäuser, J., Kording, K. & Landy, M. S. Sensory Cue 
Integration (Oxford Univ. Press, 2011).

21.	 Todorov, E. Optimality principles in sensorimotor control. Nat. 
Neurosci. 7, 907–915 (2004).

22.	 Trommershäuser, J., Maloney, L. T. & Landy, M. S. Decision making, 
movement planning and statistical decision theory. Trends Cogn. 
Sci. 12, 291–297 (2008).

23.	 Flavell, J. H. & Wellman, H. M. in Perspectives on the Development 
of Memory and Cognition (eds. Kail, R. V. Jr & Hagen, J. W.) 3–33  
(L. Erlbaum, 1977).

24.	 Koriat, A., Sheffer, L. & Ma’ayan, H. Comparing objective and 
subjective learning curves: Judgments of learning exhibit 
increased underconfidence with practice. J. Exp. Psychol. 131, 
147–162 (2002).

25.	 Rademaker, R. L., Tredway, C. H. & Tong, F. Introspective 
judgments predict the precision and likelihood of successful 
maintenance of visual working memory. J. Vis. 12, 21 (2012).

26.	 Yoo, A. H., Acerbi, L. & Ma, W. J. Uncertainty is maintained and 
used in working memory. J. Vis. 21, 13 (2021).

27.	 Dekleva, B. M., Ramkumar, P., Wanda, P. A., Kording, K. P. & 
Miller, L. E. Uncertainty leads to persistent effects on reach 
representations in dorsal premotor cortex. eLife 5, e14316 (2016).

28.	 Devkar, D., Wright, A. A. & Ma, W. J. Monkeys and humans take 
local uncertainty into account when localizing a change. J. Vis. 17, 
4 (2017).

29.	 Fiorillo, C. D. Discrete coding of reward probability and 
uncertainty by dopamine neurons. Science 299, 1898–1902 
(2003).

30.	 Kepecs, A., Uchida, N., Zariwala, H. A. & Mainen, Z. F. Neural 
correlates, computation and behavioural impact of decision 
confidence. Nature 455, 227–231 (2008).

31.	 Kiani, R. & Shadlen, M. N. Representation of confidence 
associated with a decision by neurons in the parietal cortex. 
Science 324, 759–764 (2009).

32.	 Komura, Y., Nikkuni, A., Hirashima, N., Uetake, T. & Miyamoto, A. 
Responses of pulvinar neurons reflect a subject’s confidence in 
visual categorization. Nat. Neurosci. 16, 749–755 (2013).

33.	L ak, A. et al. Orbitofrontal cortex is required for optimal waiting 
based on decision confidence. Neuron 84, 190–201 (2014).

34.	 Odegaard, B. et al. Superior colliculus neuronal ensemble activity 
signals optimal rather than subjective confidence. Proc. Natl 
Acad. Sci. USA 115, E1588–E1597 (2018).

35.	 Walker, E. Y., Cotton, R. J., Ma, W. J. & Tolias, A. S. A neural basis 
of probabilistic computation in visual cortex. Nat. Neurosci. 23, 
122–129 (2020).  
Example of the code-driven approach that uses a probabilistic 
population code estimated in a data-driven manner by means 
of an artificial neural network. The uncertainty derived from 
multiunit recordings accounts for the monkey choices.

36.	 Helmholtz, H. Handbuch der Physiologischen Optik (Leopold 
Voss, 1867).

37.	 Shannon, C. A mathematical theory of communication. Bell Syst. 
Tech. J. 27, 379–423 (1948).

38.	 Beck, J. M., Ma, W. J., Pitkow, X., Latham, P. E. & Pouget, A. Not 
noisy, just wrong: the role of suboptimal inference in behavioral 
variability. Neuron 74, 30–39 (2012).

39.	 Rahnev, D. & Denison, R. N. Suboptimality in perceptual decision 
making. Behav. Brain Sci. 41, e223 (2018).

40.	 Iglesias, S. et al. Hierarchical prediction errors in midbrain and 
basal forebrain during sensory learning. Neuron 80, 519–530 
(2013).

41.	 Mathys, C. D. et al. Uncertainty in perception and the hierarchical 
gaussian filter. Front. Hum. Neurosci. 8, 825 (2014).

42.	 Norton, E. H., Acerbi, L., Ma, W. J. & Landy, M. S. Human online 
adaptation to changes in prior probability. PLOS Comput. Biol. 15, 
e1006681 (2019).

43.	 Barthelmé, S. & Mamassian, P. Evaluation of objective uncertainty 
in the visual system. PLoS Comput. Biol. 5, e1000504 (2009).

44.	 Necker, L. A. Observations on some remarkable optical 
phænomena seen in Switzerland; and on an optical phænomenon 
which occurs on viewing a figure of a crystal or geometrical solid. 
Lond. Edinb. Dublin Philos. Mag. J. Sci. 1, 329–337 (1832).

45.	 Faisal, A. A., Selen, L. P. J. & Wolpert, D. M. Noise in the nervous 
system. Nat. Rev. Neurosci. 9, 292–303 (2008).

46.	 Meyniel, F. Brain dynamics for confidence-weighted learning. 
PLOS Comput. Biol. 16, e1007935 (2020).

47.	 Meyniel, F. & Dehaene, S. Brain networks for confidence weighting 
and hierarchical inference during probabilistic learning. Proc. Natl 
Acad. Sci. USA https://doi.org/10.1073/pnas.1615773114 (2017). 

http://www.nature.com/natureneuroscience
https://doi.org/10.1073/pnas.1615773114


Nature Neuroscience | Volume 26 | November 2023 | 1857–1867 1865

Review article https://doi.org/10.1038/s41593-023-01444-y

Example of a correlational approach that uses an ideal observer 
model of the input to derive uncertainty about a probability.  
The study reports fMRI correlates of this uncertainty distinct 
from correlates of confounding factors like unpredictability  
and surprise.

48.	 O’Reilly, J. X., Jbabdi, S., Rushworth, M. F. S. & Behrens, T. E. 
J. Brain systems for probabilistic and dynamic prediction: 
computational specificity and integration. PLoS Biol. 11,  
e1001662 (2013).

49.	 Payzan-LeNestour, E., Dunne, S., Bossaerts, P. &  
O’Doherty, J. P. The neural representation of unexpected 
uncertainty during value-based decision making. Neuron 79, 
191–201 (2013).

50.	 Vilares, I., Howard, J. D., Fernandes, H. L., Gottfried, J. A.  
& Kording, K. P. Differential representations of prior and  
likelihood uncertainty in the human brain. Curr. Biol. 22,  
1641–1648 (2012).  
Example of correlational approach that used specific features of 
the input (scatter) as a proxy for uncertainty (about the location 
of a cloud of dots). The fMRI correlates of this uncertainty are 
distinct from prior uncertainty.

51.	 Geurts, L. S., Cooke, J. R. H., van Bergen, R. S. & Jehee, J. F. 
M. Subjective confidence reflects representation of Bayesian 
probability in cortex. Nat. Hum. Behav. https://doi.org/10.1038/
s41562-021-01247-w (2022).  
Example of a code-driven approach that uses a probabilistic 
population code estimated in a data-driven manner by means of 
a generalized linear model. The uncertainty derived from fMRI 
activity correlates with subjective reports of uncertainty.

52.	 Adler, W. T. & Ma, W. J. Comparing Bayesian and non-Bayesian 
accounts of human confidence reports. PLOS Comput. Biol. 14, 
e1006572 (2018).

53.	 De Martino, B., Fleming, S. M., Garrett, N. & Dolan, R. J. 
Confidence in value-based choice. Nat. Neurosci. 16,  
105–110 (2013).

54.	 Guggenmos, M., Wilbertz, G., Hebart, M. N. & Sterzer, P. 
Mesolimbic confidence signals guide perceptual learning in the 
absence of external feedback. eLife 5, e13388 (2016).

55.	 Hebart, M. N., Schriever, Y., Donner, T. H. & Haynes, J.-D. The 
relationship between perceptual decision variables and confidence 
in the human brain. Cereb. Cortex https://doi.org/10.1093/cercor/
bhu181 (2014).

56.	L ebreton, M., Abitbol, R., Daunizeau, J. & Pessiglione, M. 
Automatic integration of confidence in the brain valuation signal. 
Nat. Neurosci. 18, 1159–1167 (2015).

57.	L i, H.-H., Sprague, T. C., Yoo, A. H., Ma, W. J. & Curtis, C. E. Joint 
representation of working memory and uncertainty in human 
cortex. Neuron 109, 3699–3712 (2021).

58.	 Meyniel, F., Sigman, M. & Mainen, Z. F. Confidence as bayesian 
probability: from neural origins to behavior. Neuron 88, 78–92 
(2015).

59.	 Peirce, C. S. & Jastrow, J. On small differences in sensation. Mem. 
Natl Acad. Sci. 3, 75–83 (1884).

60.	 Pouget, A., Drugowitsch, J. & Kepecs, A. Confidence and 
certainty: distinct probabilistic quantities for different goals. Nat. 
Neurosci. 19, 366–374 (2016).

61.	 Kepecs, A. & Mainen, Z. F. A computational framework for the 
study of confidence in humans and animals. Philos. Trans. R. Soc. 
Lond. B Biol. Sci. 367, 1322–1337 (2012).

62.	 Tzagarakis, C., Ince, N. F., Leuthold, A. C. & Pellizzer, G. Beta-band 
activity during motor planning reflects response uncertainty. J. 
Neurosci. 30, 11270–11277 (2010).

63.	 Zylberberg, A., Fetsch, C. R. & Shadlen, M. N. The influence of 
evidence volatility on choice, reaction time and confidence in a 
perceptual decision. eLife 5, e17688 (2016).

64.	 Masset, P., Ott, T., Lak, A., Hirokawa, J. & Kepecs, A. Behavior- and 
modality-general representation of confidence in orbitofrontal 
cortex. Cell 182, 112–126 (2020).  
Studies decision confidence in rats using waiting times as a 
proxy for uncertainty and identifies a neural representation of 
decision confidence in the orbitofrontal cortex that passes the 
tests of sensitivity, specificity (with respect to the features of the 
input), invariance (to the sensory modality) and functionality 
(correlation with learning).

65.	 Schmack, K., Bosc, M., Ott, T., Sturgill, J. F. & Kepecs, A. Striatal 
dopamine mediates hallucination-like perception in mice. 
Science 372, eabf4740 (2021).

66.	 Gherman, S. & Philiastides, M. G. Neural representations of 
confidence emerge from the process of decision formation 
during perceptual choices. NeuroImage 106, 134–143 (2015).

67.	 Hampton, R. R. Rhesus monkeys know when they remember. 
Proc. Natl Acad. Sci. USA 98, 5359–5362 (2001).

68.	 Middlebrooks, P. G. & Sommer, M. A. Neuronal correlates of 
metacognition in primate frontal cortex. Neuron 75, 517–530 (2012).

69.	 van Bergen, R. S., Ma, W. J., Pratte, M. S. & Jehee, J. F. M. Sensory 
uncertainty decoded from visual cortex predicts behavior. Nat. 
Neurosci. 18, 1728–1730 (2015).

70.	 van Bergen, R. S. & Jehee, J. F. M. Probabilistic representation  
in human visual cortex reflects uncertainty in serial decisions.  
J. Neurosci. 39, 8164–8176 (2019).

71.	 Badre, D., Doll, B. B., Long, N. M. & Frank, M. J. Rostrolateral 
prefrontal cortex and individual differences in uncertainty-driven 
exploration. Neuron 73, 595–607 (2012).  
Example of a correlational approach that uses an ideal observer 
model of the learning process to infer uncertainty in a task. 
Findings show evidence of a functional role for uncertainty 
(here, in terms of exploration).

72.	 Stern, E. R., Gonzalez, R., Welsh, R. C. & Taylor, S. F. Updating 
beliefs for a decision: neural correlates of uncertainty and 
underconfidence. J. Neurosci. 30, 8032–8041 (2010).

73.	 Sedley, W. et al. Neural signatures of perceptual inference. eLife 5, 
e11476 (2016).

74.	 Festa, D., Aschner, A., Davila, A., Kohn, A. & Coen-Cagli, R. 
Neuronal variability reflects probabilistic inference tuned to 
natural image statistics. Nat. Commun. 12, 3635 (2021).

75.	 Hénaff, O. J., Boundy-Singer, Z. M., Meding, K., Ziemba, C. M. & 
Goris, R. L. T. Representation of visual uncertainty through neural 
gain variability. Nat. Commun. 11, 2513 (2020).

76.	 Orbán, G., Berkes, P., Fiser, J. & Lengyel, M. Neural variability and 
sampling-based probabilistic representations in the visual cortex. 
Neuron 92, 530–543 (2016).  
Example of a code-driven approach that uses a sampling-based 
code and finds that neural variability (in spiking activity and 
membrane potential) changes along features of visual input 
related to uncertainty (for example, it quenches at the stimulus 
onset, decreases with contrast and aperture).

77.	 Bang, D. & Fleming, S. M. Distinct encoding of decision confidence 
in human medial prefrontal cortex. Proc. Natl Acad. Sci. USA 115, 
6082–6087 (2018).

78.	 Friston, K., Ashburner, J., Kiebel, S., Nichols, T. & Penny, W. 
Statistical Parametric Mapping: the Analysis of Functional Brain 
Images (Academic, 2007).

79.	 Naselaris, T., Kay, K. N., Nishimoto, S. & Gallant, J. L. Encoding and 
decoding in fMRI. NeuroImage 56, 400–410 (2011).

80.	 Poldrack, R. A., Huckins, G. & Varoquaux, G. Establishment of best 
practices for evidence for prediction: a review. JAMA Psychiatry 
77, 534–540 (2020).

81.	L ange, R. D., Shivkumar, S., Chattoraj, A. & Haefner, R. M. Bayesian 
encoding and decoding as distinct perspectives on neural coding. 
Preprint at bioRxiv https://doi.org/10.1101/2020.10.14.339770 (2021).

http://www.nature.com/natureneuroscience
https://doi.org/10.1038/s41562-021-01247-w
https://doi.org/10.1038/s41562-021-01247-w
https://doi.org/10.1093/cercor/bhu181
https://doi.org/10.1093/cercor/bhu181
https://doi.org/10.1101/2020.10.14.339770


Nature Neuroscience | Volume 26 | November 2023 | 1857–1867 1866

Review article https://doi.org/10.1038/s41593-023-01444-y

82.	 Shivkumar, S., Lange, R., Chattoraj, A. & Haefner, R. A probabilistic 
population code based on neural samples. In Advances in Neural 
Information Processing Systems (eds. S. Bengio et al.) 31, 1–10  
(MIT Press, 2018).

83.	 Barlow, H. B. Pattern recognition and the responses of sensory 
neurons. Ann. N. Y. Acad. Sci. 156, 872–881 (1969).

84.	 Deneve, S. Bayesian spiking neurons I: inference. Neural Comput. 
20, 91–117 (2008).

85.	 Jazayeri, M. & Movshon, J. A. Optimal representation of sensory 
information by neural populations. Nat. Neurosci. 9, 690–696 
(2006).

86.	 Sahani, M. & Dayan, P. Doubly distributional population codes: 
simultaneous representation of uncertainty and multiplicity. 
Neural Comput. 15, 2255–2279 (2003).

87.	 Sohn, H. & Narain, D. Neural implementations of Bayesian 
inference. Curr. Opin. Neurobiol. 70, 121–129 (2021).

88.	 Dayan, P. & Abbott, L. F. Theoretical Neuroscience: Computational 
and Mathematical Modeling of Neural Systems (MIT Press, 2005).

89.	 Pouget, A., Dayan, P. & Zemel, R. S. Inference and computation 
with population codes. Annu. Rev. Neurosci. 26, 381–410 (2003).

90.	 Deneve, S., Latham, P. E. & Pouget, A. Reading population codes: 
a neural implementation of ideal observers. Nat. Neurosci. 2, 
740–745 (1999).

91.	 Fetsch, C. R., Pouget, A., DeAngelis, G. C. & Angelaki, D. E. Neural 
correlates of reliability-based cue weighting during multisensory 
integration. Nat. Neurosci. 15, 146–154 (2012).

92.	 Ma, W. J., Beck, J. M., Latham, P. E. & Pouget, A. Bayesian inference 
with probabilistic population codes. Nat. Neurosci. 9, 1432–1438 
(2006).  
Introduced the concept of probabilistic population code as the 
idea that the representation of probability distribution over a 
latent world state by a population of neurons, conferred by an 
internal model of neural variability, allows certain Bayesian 
computations to be implemented by simple neural operations.

93.	 Fiser, J., Berkes, P., Orbán, G. & Lengyel, M. Statistically optimal 
perception and learning: from behavior to neural representations. 
Trends Cogn. Sci. 14, 119–130 (2010).

94.	 Echeveste, R., Aitchison, L., Hennequin, G. & Lengyel, M. 
Cortical-like dynamics in recurrent circuits optimized for 
sampling-based probabilistic inference. Nat. Neurosci. 23, 
1138–1149 (2020).  
Shows that an artificial neural network can be trained to emit 
spikes that correspond to samples from a posterior distribution 
of some feature of the input. Although not trained to do so, the 
artificial network shows dynamics similar to those of actual 
neural networks.

95.	 Bach, D. R., Hulme, O., Penny, W. D. & Dolan, R. J. The  
known unknowns: neural representation of second- 
order uncertainty, and ambiguity. J. Neurosci. 31, 4811–4820 
(2011).

96.	 Bányai, M. et al. Stimulus complexity shapes response 
correlations in primary visual cortex. Proc. Natl Acad. Sci. USA 116, 
2723–2732 (2019).  
Example of a code-driven approach that uses a sampling-based 
code and shows that the covariance of neural activity in 
a population of neurons can be explained by hierarchical 
inference with a prominent impact of the image’s higher-level 
features even in regions tuned to local features, such as the 
primary visual cortex.

97.	 Grinband, J., Hirsch, J. & Ferrera, V. P. A neural representation 
of categorization uncertainty in the human brain. Neuron 49, 
757–763 (2006).

98.	 Trudel, N. et al. Polarity of uncertainty representation during 
exploration and exploitation in ventromedial prefrontal cortex. 
Nat. Hum. Behav. 5, 83–98 (2021).

99.	 Strange, B. A., Duggins, A., Penny, W., Dolan, R. J. & Friston, K. J.  
Information theory, novelty and hippocampal responses: 
unpredicted or unpredictable? Neural Netw. 18, 225–230 (2005).

100.	Tan, H., Wade, C. & Brown, P. Post-movement beta activity in 
sensorimotor cortex indexes confidence in the estimations from 
internal models. J. Neurosci. 36, 1516–1528 (2016).

101.	 Hsu, M., Bhatt, M., Adolphs, R., Tranel, D. & Camerer, C. F. 
Neural systems responding to degrees of uncertainty in human 
decision-making. Science 310, 1680–1683 (2005).  
Presented a distinction between uncertainty about a latent 
feature and uncertainty about an outcome (referred to as 
ambiguity and risk, respectively, in behavioral economics), 
whose fMRI correlates are anatomically segregated in the 
human brain.

102.	Monosov, I. E., Leopold, D. A. & Hikosaka, O. Neurons in the 
primate medial basal forebrain signal combined information 
about reward uncertainty, value, and punishment anticipation.  
J. Neurosci. 35, 7443–7459 (2015).

103.	Monosov, I. E. & Hikosaka, O. Selective and graded coding of 
reward uncertainty by neurons in the primate anterodorsal septal 
region. Nat. Neurosci. 16, 756–762 (2013).

104.	Preuschoff, K., Bossaerts, P. & Quartz, S. R. Neural differentiation 
of expected reward and risk in human subcortical structures. 
Neuron 51, 381–390 (2006).

105.	So, N. & Stuphorn, V. Supplementary eye field encodes 
confidence in decisions under risk. Cereb. Cortex 26,  
764–782 (2016).

106.	Michael, E., de Gardelle, V., Nevado-Holgado, A. & Summerfield, 
C. Unreliable evidence: 2 sources of uncertainty during 
perceptual choice. Cereb. Cortex 25, 937–947 (2015).  
Example of a correlational approach that uses a categorization 
task based on either shape or color from trial to trial and 
identifies representations of uncertainty about the decision that 
are invariant to the perceptual feature (shape or color) on which 
a decision is based.

107.	 Nastase, S. A., Davis, B. & Hasson, U. Cross-modal and 
non-monotonic representations of statistical regularity are 
encoded in local neural response patterns. NeuroImage 173, 
509–517 (2018).

108.	Fleming, S. M. & Daw, N. D. Self-evaluation of decision-making: 
a general Bayesian framework for metacognitive computation. 
Psychol. Rev. 124, 91–114 (2017).

109.	Zylberberg, A., Roelfsema, P. R. & Sigman, M. Variance 
misperception explains illusions of confidence in simple 
perceptual decisions. Conscious. Cognition 27, 246–253 (2014).

110.	 Fleming, S. M. & Dolan, R. J. Effects of loss aversion on 
post-decision wagering: implications for measures of awareness. 
Conscious. Cognition 19, 352–363 (2010).

111.	 Blankenstein, N. E., Peper, J. S., Crone, E. A. & van Duijvenvoorde, 
A. C. K. Neural mechanisms underlying risk and ambiguity 
attitudes. J. Cogn. Neurosci. 29, 1845–1859 (2017).

112.	 Ting, C. -C., Yu, C. -C., Maloney, L. T. & Wu, S. -W. Neural 
mechanisms for integrating prior knowledge and likelihood in 
value-based probabilistic inference. J. Neurosci. 35, 1792–1805 
(2015).

113.	 Haefner, R. M., Berkes, P. & Fiser, J. Perceptual decision-making as 
probabilistic inference by neural sampling. Neuron 90, 649–660 
(2016).

114.	 Rahnev, D. et al. Attention induces conservative subjective biases 
in visual perception. Nat. Neurosci. 14, 1513–1515 (2011).

115.	 Schultz, W. et al. Explicit neural signals reflecting reward 
uncertainty. Philos. Trans. R. Soc. Lond. B Biol. Sci. 363, 3801–3811 
(2008).

116.	 DiCarlo, J. J., Zoccolan, D. & Rust, N. C. How does the brain solve 
visual object recognition? Neuron 73, 415–434 (2012).

http://www.nature.com/natureneuroscience


Nature Neuroscience | Volume 26 | November 2023 | 1857–1867 1867

Review article https://doi.org/10.1038/s41593-023-01444-y

117.	 Kriegeskorte, N. & Diedrichsen, J. Peeling the onion of brain 
representations. Annu. Rev. Neurosci. 42, 407–432 (2019).

118.	 Pouget, A., Beck, J. M., Ma, W. J. & Latham, P. E. Probabilistic 
brains: knowns and unknowns. Nat. Neurosci. 16, 1170–1178 (2013).

119.	 Koblinger, Á., Fiser, J. & Lengyel, M. Representations of 
uncertainty: where art thou? Curr. Opin. Behav. Sci. 38, 150–162 
(2021).

120.	FitzGerald, T. H. B., Seymour, B., Bach, D. R. & Dolan, R. J. 
Differentiable neural substrates for learned and described value 
and risk. Curr. Biol. 20, 1823–1829 (2010).

121.	 Huettel, S. A. Decisions under uncertainty: probabilistic context 
influences activation of prefrontal and parietal cortices. J. 
Neurosci. 25, 3304–3311 (2005).

122.	 Monosov, I. E. Anterior cingulate is a source of valence-specific 
information about value and uncertainty. Nat. Commun. 8, 134 
(2017).

123.	Acerbi, L., Vijayakumar, S. & Wolpert, D. M. On the origins of 
suboptimality in human probabilistic inference. PLoS Comput 
Biol. 10, e1003661 (2014).

124.	Yeon, J. & Rahnev, D. The suboptimality of perceptual decision 
making with multiple alternatives. Nat. Commun. 11, 3857 (2020).

125.	Dabney, W. et al. A distributional code for value in 
dopamine-based reinforcement learning. Nature 577,  
671–675 (2020).

126.	Haxby, J. V. et al. Distributed and overlapping representations 
of faces and objects in ventral temporal cortex. Science 293, 
2425–2430 (2001).

127.	 Haxby, J. V., Connolly, A. C. & Guntupalli, J. S. Decoding neural 
representational spaces using multivariate pattern analysis. Annu. 
Rev. Neurosci. 37, 435–456 (2014).

128.	Huth, A. G., de Heer, W. A., Griffiths, T. L., Theunissen, F. E. & 
Gallant, J. L. Natural speech reveals the semantic maps that tile 
human cerebral cortex. Nature 532, 453–458 (2016).

129.	Park, I. M., Meister, M. L. R., Huk, A. C. & Pillow, J. W. Encoding and 
decoding in parietal cortex during sensorimotor decision-making. 
Nat. Neurosci. 17, 1395–1403 (2014).

130.	Pillow, J. W. et al. Spatio-temporal correlations and visual 
signalling in a complete neuronal population. Nature 454, 
995–999 (2008).

131.	 Haynes, J. -D. A primer on pattern-based approaches to  
fMRI: principles, pitfalls and perspectives. Neuron 87,  
257–270 (2015).

132.	Hubel, D. H. & Wiesel, T. N. Receptive fields of single neurones in 
the cat’s striate cortex. J. Physiol. 148, 574–591 (1959).

133.	DeWind, N. K., Adams, G. K., Platt, M. L. & Brannon, E. M. Modeling 
the approximate number system to quantify the contribution of 
visual stimulus features. Cognition 142, 247–265 (2015).

134.	Quiroga, R. Q., Reddy, L., Kreiman, G., Koch, C. & Fried, I. Invariant 
visual representation by single neurons in the human brain. 
Nature 435, 1102–1107 (2005).

135.	Baker, B., Lansdell, B. & Kording, K. A philosophical understanding 
of representation for neuroscience. Preprint at https://doi.org/ 
10.48550/arXiv.2102.06592 (2021).

136.	Nichols, M. J. & Newsome, W. T. Middle temporal visual area 
microstimulation influences veridical judgments of motion 
direction. J. Neurosci. 22, 9530–9540 (2002).

137.	 Cortese, A., Amano, K., Koizumi, A., Kawato, M. & Lau, H. 
Multivoxel neurofeedback selectively modulates confidence 
without changing perceptual performance. Nat. Commun. 7, 
13669 (2016).

138.	Gherman, S. & Philiastides, M. G. Human VMPFC encodes early 
signatures of confidence in perceptual decisions. eLife 7,  
e38293 (2018).

Author contributions
All authors contributed to the writing of this Review.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary 
material available at https://doi.org/10.1038/s41593-023-01444-y.

Correspondence and requests for materials should be addressed to 
Florent Meyniel.

Peer review information Nature Neuroscience thanks Máté Lengyel 
and the other, anonymous, reviewer(s) for their contribution to the 
peer review of this work.

Reprints and permissions information is available at  
www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds 
exclusive rights to this article under a publishing agreement with 
the author(s) or other rightsholder(s); author self-archiving of the 
accepted manuscript version of this article is solely governed by the 
terms of such publishing agreement and applicable law.

© Springer Nature America, Inc. 2023

http://www.nature.com/natureneuroscience
https://doi.org/10.48550/arXiv.2102.06592
https://doi.org/10.48550/arXiv.2102.06592
https://doi.org/10.1038/s41593-023-01444-y
http://www.nature.com/reprints

	Studying the neural representations of uncertainty

	Defining uncertainty

	Uncertainty characterizes the representation of a world state by an observer

	Measures of uncertainty

	Origins of uncertainty


	Studying representations of uncertainty with correlational and code-driven approaches

	Prototypical examples of the two approaches

	Estimates of uncertainty derived from the input and behavior

	Assumptions about the neural code

	Relation to encoding and decoding approaches


	General criteria for the evaluation of claims about representations of uncertainty

	General criteria for neural representations

	How do the two approaches compare in terms of testing general criteria?

	Sensitivity
	Specificity
	Invariance
	Functionality

	How do the two approaches compare in terms of satisfying general criteria?


	Caveats of current approaches and future directions

	Comparing correlational and code-driven approaches

	Assumptions about neural codes
	Specificity
	Functionality
	Origins of uncertainty

	Setting goals for future research


	Fig. 1 Uncertainty from a generative model.
	Fig. 2 Comparison of the correlational and code-driven approaches.
	Fig. 3 Empirical criteria for neural representation.




