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Bayesian optimal inference is often heralded as a principled, general framework for human perception.
However, optimal inference requires integration over all possible world states, which quickly becomes
intractable in complex real-world settings. Additionally, deviations from optimal inference have been
observed in human decisions. A number of approximation methods have previously been suggested, such as
sampling methods. In this study, we additionally propose point estimate observers, which evaluate only a
single best estimate of the world state per response category. We compare the predicted behavior of these
model observers to human decisions in five perceptual categorization tasks. Compared to the Bayesian
observer, the point estimate observer loses decisively in one task, ties in two and wins in two tasks. Two
sampling observers also improve upon the Bayesian observer, but in a different set of tasks. Thus, none of
the existing general observer models appears to fit human perceptual decisions in all situations, but the point
estimate observer is competitive with other observer models and may provide another stepping stone for

future model development.

Keywords: perceptual decision making, point estimate observer, Bayesian observer, observer model

A central question in cognitive science is how humans make
decisions based on uncertain information about the world. This
question has been studied extensively in the realm of perceptual
inference. This area is particularly suited to precise quantitative
modeling of decision making, as perceptual tasks can be carefully
controlled and large amounts of data can be collected efficiently.
Nonetheless, few models provide a unifying explanation for deci-
sions across many different perceptual tasks.

This most successful framework for explaining human perceptual
decision making is based on the Bayesian optimal solution to the
task faced by participants (Banks et al., 1987; Burge & Geisler,
2011; Ernst & Banks, 2002; Geisler, 1989, 2011). In this framework,
one assumes perfect use of all available information as a starting
point and then adds restrictions to this optimal observer to adjust the
model to human behavior. Similar models have also been success-
fully applied in other contexts, such as cognitive decision making
(Griffiths & Tenenbaum, 2006; Tenenbaum & Griffiths, 2001; Vul
et al, 2014) and motor control (Kording & Wolpert, 2004;

Najemnik & Geisler, 2005; Wolpert et al., 1995). There is strong
evidence that humans take into account prior information (Adams
et al., 2004; Tassinari et al., 2006) and the uncertainty associated
with sensory variables (Adler & Ma, 2018; Denison et al., 2018;
Ernst & Banks, 2002), which are two predictions of Bayesian
models. However, the success of Bayesian optimal observer models
does not necessarily imply that humans perform full Bayesian
probabilistic computation (Ma, 2012; Maloney & Mamassian,
2009), as near-optimal performance can be achieved by other means
(Jones & Love, 2011; Ma & Jazayeri, 2014).

A key operation of the Bayesian approach is marginalization.
Marginalization refers to a mathematical procedure which allows
one to compute a probability distribution over a specific variable of
interest (referred to as a marginal distribution), from a probability
distribution over a larger number of variables (joint distribution).
This is achieved by integrating “out” all variables that are not of
interest. Marginalization scales badly with the dimensionality of the
distributions involved. This is because the required integration can
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2 SCHUTT, YOO, CALDER-TRAVIS, AND MA

often only be performed by summing the probabilities of all possible
combinations of the irrelevant variables,' an example of the phe-
nomenon known as the curse of dimensionality (Bishop, 2006;
Hinrichs et al., 2014). While performing marginalization may be
feasible in simple experimental settings (Where only a few variables
need to be integrated out), even simple perceptual inferences
become intractable in a world with many objects, whose many
features interact in complicated ways (Pouget et al., 2013). For
example, Bayesian inference for the color of a single surface under a
single source of illumination is not trivial, but manageable (Brainard
& Freeman, 1997). Bayesian inference for the surface color of many
objects, that reflect light onto each other, implies handling the joint
distribution over the surface reflectances and positions of all objects.
Thus, it seems unlikely that the marginalization assumed by the
Bayesian observer is a good mechanistic explanation of human
decision making. Indeed, for the example of inferences about color,
models that work in naturalistic environments are not Bayesian
(Kraft & Brainard, 1999).

Here, we present point estimate observers, a class of general
models for decision making that avoid marginalization. A point
estimate observer bases their response on values obtained by
maximizing over irrelevant variables, rather than values obtained
by integrating them out. To be more precise, the Bayesian observer
finds the probability a possible response is correct by summing
(through integration) the probabilities of all possible world states
associated with that response (i.e., all possible values of the irrele-
vant variables). The point estimate observer evaluates a response by
maximization to find the most probable world state associated with
that response (i.e., most probable combination of values for the
irrelevant variables).” By using maximization, instead of marginali-
zation over the space of all possible world states, point estimate
based inference is computationally cheaper than full Bayesian
inference. Despite this difference in computation, point estimate
observers can reach near-optimal performance.

One can arrive at point estimate observers through at least three
routes. First, point estimate observers represent an approximation to
the Bayesian observer and similar approximations are sometimes
used in statistics. Second, point estimate observers may be under-
stood as performing frequentist statistical inference. In frequentist
model comparisons, models are fit and evaluated based only on the
best-fitting parameters, just as the point estimate observer does for
the response categories. In contrast to typical frequentist analyses,
though, the point estimate observer takes the prior into account for
fitting and evaluating the model. Finally, we can understand the
point estimate observer as the best approximation of the posterior
with a point mass. In all cases, the point estimate observer is a
particularly simple or reduced incarnation of the framework, cor-
roborating the idea that the point estimate observer implements a
theoretically simple and computationally cheap solution.

By arguing for the point estimate observer on the basis of lower
computational complexity, we assume that optimization is indeed
easier than marginalization or integration. For general computer
algorithms solving these problems, this is almost universally true
(Quarteroni et al., 2000, compare Chapters 7 and 9). For convex
functions for example, optimization algorithms like gradient descent
achieve quadratic convergence, that is, their error scales with K2
with the number of steps k, while the amount of computation scales
linearly with the number of dimensions and can be parallelized
across these (Boyd & Vandenberghe, 2004). In contrast, the error of

sampling-based algorithms for integration scales only with k=" and

the number of dimensions enters with a higher exponent than 1 (% for
Hamiltonian sampling e.g., see Neal, 2011). Therefore, sampling
and numerical integration are certainly computationally more
expensive than optimization, and we are not aware of any situation
in which finding the maximum is more difficult than integration.
Nonetheless, it requires a leap of faith to assume that this is also true
for the brain solving real-world problems. After all, there are also
problems for which marginalization or optimization have closed
form solutions that require virtually no computation, and specialized
methods for specific probabilistic graphical models can perform
much better than the general purpose algorithms (Koller &
Friedman, 2009) As we do not know the exact form of the problem,
the brain solves and much less the algorithm and implementation it
uses, it remains possible that the brain employs a clever combination
of problem formulation and solving algorithm that avoids the
computational inefficiencies of the general purpose algorithms.

Other approximate solutions to the marginalization problem have
been proposed as models of human decision making before. Per-
haps, the most common proposal is sampling from the posterior
(Berkes et al., 2011; Deneve, 2008; Haefner et al., 2016), an idea
that is based on a common method for computing posteriors in
statistical analyses (Markov chain Monte Carlo [MCMC]; Gelman
etal., 2013). While this proposal reduces the impact of the argument
that marginalization is hard, the approximation converges to the full
Bayesian optimal solution, such that the behavioral predictions with
many samples are identical to the Bayesian observer. To make
predictions that differ from the Bayesian observer, sampling ac-
counts assume that only few samples are taken (Lieder & Griffiths,
2019; Vul et al., 2014).

Another way to avoid complex marginalization problems is to
approximate the true posterior with a factorized distribution. By
factorized distribution, we mean a probability distribution that is the
product of independent distributions for each variable (Bishop,
2006). Hence, any patterns in the joint distribution of variables—
for example, correlations—are lost when a factorized distribution is
used as an approximation. This type of representation is attractive,
because it allows a representation of uncertainty about each stimulus
dimension and can remove the need to marginalize: A factorized
distribution already contains a distribution over the relevant vari-
able, independent from the other variables. Several techniques have
been proposed to find factorized approximations. Two popular
techniques, which are related to each other, are variational inference
and expectation propagation (Minka, 2005). Variational inference
has been proposed as a general inference scheme humans might
employ in the context of the “free energy principle” (Friston, 2010).
In perception research, variational inference is mostly discussed as a
normative explanation for interactions within and between brain
areas, that show similarities to the messages passed in message
passing implementations of variational inference (Friston, 2008,
2010; Friston & Kiebel, 2009). In cognition research, the focus is
more on the effects variational approximations have on decision

! The same criticism applies to the computation of various other aspects of
high dimensional distributions like expected values, variances, entropies, or
expected rewards, but for brevity, we will discuss things as if we always aim
for a marginal distribution over some variable of interest.

2 Point estimate observers could also choose the point estimate they
evaluate based on different criteria than probability, but here, we consider
only optimization based on the probability density.
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behavior, due to splitting the representation into dimensions that are
represented separately (Sanborn, 2017; Sanborn & Silva, 2013).
Expectation propagation is discussed less, but has the advantage that
the inferred distributions for the stimulus dimensions converge to
the marginal distributions of the correct posterior, such that a better
approximation of full Bayesian inference is achieved.

To qualify as a theory or explanation, a model needs to apply to a
large collection of decision making tasks. At least, such a theory
should capture all perceptual categorization tasks, that is, any
categorical decision made on the basis of incoming perceptual
information. This encompasses a wide range of decisions from
simple detection (e.g., is the object I am searching for at the locations
I am looking at?) through typical categorization examples (e.g.,
what kind of animal is that? Is this fruit edible?) to inferring a general
context (e.g., what situation am I in?).

We will first describe and analyze the different observer models on a
theoretical level. In this theoretical analysis, we will notice that the
variational observer cannot handle situations where some combina-
tions of variable values are consistent with one category, but are
impossible under another category. By “category,” we refer to sets of
world states between which the observer is deliberating. This restric-
tion excludes the application of the variational observer to a broad
range of situations. Furthermore, we find that the expectation propa-
gation observer makes the same predictions as full Bayesian inference
in our tasks. We find two different sampling observers that each apply
to all our tasks. The importance sampling observer samples from the
prior under each category and uses the samples to estimate the
evidence in favor of the category. The joint sampling observer samples
from the joint posterior over the category and the proximate stimulus.

Next, we test the point estimate observer against its competitors.
To make this exercise tractable, we only consider competitor models

that apply to a broad range of tasks and make different predictions to
the Bayesian observer without further constraints. Concretely, this
rules out the variational inference observer model and the expecta-
tion propagation observer model respectively. We are thus left with
the point estimate observer the two sampling observers and the
Bayesian observer for empirical comparisons; for completeness, we
keep the variational observer model for the one task to which it
applies. To empirically test these observer models, we compare their
predictions to human behavioral data. This comparison would be
futile if all human behavior was well explained by the Bayesian
observer model already. However, optimal observer models have
been found to make predictions that deviate from human behavior
(Rahnev & Denison, 2018) and some of these deviations are
significantly better explained by other (task specific) models than
by the Bayesian model (Adler & Ma, 2018; Stengard & van den
Berg, 2019). Thus, we know there are some deviations to be
explained. Additionally, there are many more data sets that were
never formally tested for such deviations, partially due to the lack of
a serious competing model (Bowers & Davis, 2012).

Theoretical Analysis

A simple testing ground for point estimate observers is provided
by binary categorization tasks. These tasks have the following
structure (see Figure 1A). There are two categories, and in each
trial one of these is the true category (C). Each category is defined by
a probability distribution p(s|C) over a stimulus variable denoted by
s. The observer makes a noisy observation of s, denoted by x. Based
on this observation, the observer decides which category was
presented.

Figure 1
General Model Overview
A B Bayesian observer
Brain
Category based - Proto-posterior of category 1
prior over stimuli 3 integral over stimulus
Category 23
S E
2a
Observation Proto-posterior of 5 Proto-posterior of category 2 Decision
—> likelihood stimulus and category 3 integral over stimulus
| ]
Stimulus
Point estimate observer
i Brain
Category based Proto-posterior of category 1
prior over stimuli 2 at most probable stimulus
83
Observation €E
) =7
Observation Proto-posterior over S5 Proto-posterior of category 2 Decision
—> likelihood stimulus and category 3 at most probable stimulus

Note. A: Graphical model for the general task structure. There are categories of stimuli C, to be discriminated by the participants. Each category
defines a distribution over true stimulus values s. The participant makes a noisy observation x of s. Based on this observation, the participant
determines which category the stimulus belongs to. B: Flow diagram for the Bayesian observer model and the point estimate observer model.
Both model observers operate on the joint posterior over category and stimulus. The Bayesian observer integrates evidence over all stimulus
values to compute the marginal posterior over categories. By contrast, the point estimate observer finds the most probable stimulus for each
category and bases their decision on the posterior density at these stimulus values. Proto-posterior over stimulus and category here refers to the
unnormalized distribution p(s, C|x) = p(x|s)p(s|C)p(C), which is used by our observer models instead of the posterior, because the
normalization is a potentially costly further processing step, which does not change the final decision. See the online article for the color version

of this figure.
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Bayesian Observer

The Bayesian observer bases their decision on the log-posterior
ratio between the two categories:
p(C=1}) p(C=1pHC=1)

de=log e o pc=oplc=0) P

This is the optimal decision variable, that is, choosing Category 1
if dp is greater than 0 and Category O otherwise, maximizes the
probability that the decision is correct. In Equation 1, the category-
conditioned distributions of the observations, p(x|C =0) and
p(x|C = 1), are not directly known. Therefore, we need to rearrange
this equation to replace these distributions with distributions that we
do know. Per the rules of probability calculus, Equation 1 becomes

(C=1) [p(xls)p(s|C = 1)ds
(C=0) [p(xls)p(s|C = 0)ds’

dy =log? )
P

using the information that x is independent of C given s. Computing
this decision variable requires the computation of integrals over
possible stimuli, s. This may be computationally hard and scales

poorly with the complexity of the stimulus (or more generally, of the
world state).

Point Estimate Observer

The point estimate observer replaces the integral over the world
state s with a maximization:

(C = max,[p(x|s)p(s|C = 1)]
(C = 0)max, p(xis)p(s|C = 0)]°

dp = logp 3)
p

The primary computation necessary for the point estimate
observer is optimization, while for the Bayesian observer, it is
integration or marginalization. Optimization avoids the computa-
tional cost of marginalization, because it can be solved by gradually
adapting the estimated world state to the observations and the prior
knowledge. This is computationally far cheaper than evaluating a
wide range of possible world states, especially in high dimensions.

The point estimate observer uses a separate estimate of the world
state for each category (note the two separate maximisations over s
in Equation 3). At first glance, an observer model that estimates the
world state only once may seem attractive, but this observer model is
ill defined for tasks that contain categories that restrict the range of
possible stimuli to different sets. First, if the optimization ignored
the restrictions given by the categories, it would sometimes yield
world state estimates which are impossible according to all catego-
ries which means that its behavior is undefined. Second, if the
optimization allowed all stimulus values that are possible under any
category, it could still yield estimates of the world state that are
impossible under some of the categories. In this case, the observer
model would suddenly be infinitely confident in its decision and
would loose its probabilistic interpretation. This second case con-
tains taking the average prior over all categories p(s)=
>~ p(s|C = i) as a special case. Finally, if the optimization allowed
only stimuli that are possible under all categories, the response
probability for a category would depend mostly on its overlap with
the shared space with other categories. This is problematic because
(a) adding another category could then change the response

probabilities for the existing categories completely and (b) the
categories can be entirely disjoint, such that there are no stimuli
which are possible under all categories. In fact, because there is no
adequate way to take these restrictions into account within a single
optimization, an observer model with only one optimization would
not be able to do four of our five tasks.

By looking only at the maximum of p(x|s)p(s|C = i)p(C =) in
Equation 3, the point estimate observer ignores how broad this
distribution is. When one category allows a broader range of stimuli
than the other, a priori (i.e., p(s = i) is wider), this leads to a
systematic bias in the decisions of the observer. For any single
condition, a bias can be accommodated through the decision
criterion. However, the direction and magnitude of this bias depends
on the task and on the amount of noise in the observation x, such that
different conditions in an experiment are biased to different extents.
We created two variants of the point estimate observer: one with a
fixed criterion, such that the model inherits the bias pattern
described, and one with an optimally adjusted criterion that opti-
mizes task performance, such that the model is equally biased or
unbiased in all conditions. In statistics, such corrections are often
discussed in the context of model selection. We can view observers
as doing a kind of “model selection” when performing the catego-
rization tasks studied here. In statistics, a full Bayesian solution
(based on the model evidence) automatically accounts for the bias
that would otherwise be introduced by model complexity, while an
analysis that relies on maximum likelihood requires corrections as
implemented in the Akaike information criterion (AIC) and Bayes-
ian information criterion (BIC), the degrees of freedom in a likeli-
hood ratio tests, or more data driven methods like cross-validation.

A related type of model called the self-consistent Bayesian
observer has been proposed before (Luu & Stocker, 2018; Stocker
& Simoncelli, 2008). In this model, the observer commits to a
categorization of the stimulus, unlike the point estimate observer
who commits to (two) values of the stimulus itself (through the two
maximizations). This type of model was proposed to explain post-
decision biases present when observers were first asked to categorize
the stimulus, and then to report the stimulus. However, such biases are
also observed and explainable when observers are not asked to
categorize the stimuli (e.g., Zamboni et al., 2016). Such a scheme
is suboptimal (Fleming et al., 2013), although it can be beneficial in
the presence of later distortions of the stimulus representation (Qiu
etal., 2020; and closely related Li et al., 2017). Also, in contrast to our
point estimate observers, the original categorization decision is
usually based on full Bayesian inference. Thus, the self-consistent
Bayesian observer makes the same predictions for the categorization
decision and is equally computationally expensive as the full Bayesian
observer. A similar proposal in the cognitive literature can be found in
the context of reasoning with uncertain categories (Chen et al., 2014;
Murphy et al., 2012; Ross & Murphy, 1996), where humans sometimes
appear to only rely on the most likely category for their decisions. In
other cases, however, humans appear to take all possible categories into
account (Chen et al., 2016; Murphy & Ross, 2010).

Sampling

A broad class of models for how humans may implement
Bayesian decision making is based on sampling (e.g., Lieder
et al., 2018; Vul et al., 2014). This kind of observer approximates
the integrals in Equation 2 with a (potentially weighted) sum over
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samples from the posterior (or other appropriate distribution).
Importantly, samples can be generated for the full joint posterior
and marginalization can then be performed simply by ignoring all
variables which are not of interest, so that no integrals need to be
computed (Sanborn & Chater, 2016).

There are many different sampling algorithms, but typically,
models of human decision making employ a form of MCMC
sampling. The distinctive feature of these algorithms is that samples
are taken sequentially and the next sample depends only on the
current one. These sequential dependencies can explain anchoring
effects if a small number of samples is taken for the approximation
(Lieder et al., 2018). The origin of decision noise and some
deviations from optimal decision making can also be explained
by a small number of samples even if the samples are independent
(Vul et al., 2014). In particular, the deviations caused by sampling
can explain distortions in the handling of probabilities and reconcile
the approximate Bayesian observer hypothesis with the observations
that humans often make errors when handling probabilities (Zhu
et al., 2020).

Most sampling accounts of human perceptual inference are
concerned with estimating the proximate stimulus (s in our formu-
lation, e.g., Moreno-Bote et al., 2011; Orbéan et al., 2016; Vul et al.,
2014). To do so, these approaches draw samples from the posterior
p(s]x). Such samples are not immediately usable for making
decisions about the category C. To generate sampling observer
models that apply to the decision about the category C, we had to
adapt the idea slightly. We implement two sampling observer
models: One important sampling observer that samples s values
from the prior of each category, and a MCMC algorithm that
samples from the joint posterior p(C, s|x) and bases its decision
on the sample frequencies of the two categories.

Importance Sampling

The first sampling-based observer we test is based on an impor-
tance sampling estimate of the integrals required for the Bayesian
observer. Its implementation is straight forward. For all our experi-
ments, we can directly sample stimulus values s; from the prior
distribution under each category p(s|C) and compute an approxi-
mation to the probabilities in the ratio used by the Bayesian
observer:

1 &

p(x|C) = jp<x\s>p(s|c>ds~ ;Do) )

We then use the sampling estimates of these integrals for the two
categories in the same way that we used the analytic solutions of
these integrals for the full Bayesian observer.

Joint Posterior Sampling

The other sampling observer we implemented is based on sam-
pling from the joint posterior over category and stimulus p(C, s|x).
Sampling from this posterior is not trivial, because the stimulus s
may have different dimensionality for the different categories, and
the stimulus distributions according to the two categories may not
overlap. Thus, designing a proposal distribution for MCMC algo-
rithms that can switch category is not trivial for general situations,
especially if we additionally aim to produce proposals that are in

some sense close to the current sample to achieve high acceptance
rates. To avoid this problem, we simply use the prior p(C, s) as a
proposal distribution independent of the current sample. This choice
allows the same model to apply to all tasks and has no additional
parameters to be tuned to the distribution to be sampled.

Using a Metropolis—Hastings rejection sampler, this observer
takes a fixed number of samples to make their decision. We then
convert the number of samples for the two categories into a decision
variable in analogy to the other observers as follows:

L+ 1=
L+ 1c0’

Adding one to each category guarantees a valid decision variable
for any sampling outcome. We then pass this decision variable
through the same mapping to behavior as for all other observer
models.

d, =log %)

Variational Inference Observer

Variational inference is a general method that approximates
complex posteriors with simpler distributions (Bishop, 2006; Blei
et al., 2017; Minka, 2005). To do this, one chooses a family of
simple distributions and optimizes within this family to find the
distribution which is closest to the full posterior. This approach has
been proposed prominently as part of the free energy principle
framework (Friston, 2010), which aims not only to explain infer-
ence and decision making, but also how observers learn the world
model, that is, how the observers understanding of the world is
adjusted to match their oservations better. While there have been
some attempts to experimentally test this type of observer model
with neural data (e.g., Grabska-Barwinska et al., 2017), most
discussion of the approach has remained on a theoretical level
(Gershman, 2019).

Here, we use the family of factorizing distributions as the family
to optimize within. This means that we require our approximate
posterior to be expressible as the product of separate distributions
over s and C (g(s) and g(C)). In other words, we require that the
approximate posterior “factorizes over” the categorical variable C
and the nuisance variable s. The best factorizing distribution is
sometimes referred to as the mean field approximation. This model
observer then bases their decision on the approximate posterior. To
find the approximate posterior, we search for the g(C, s) = g(C)q(s)
that minimizes the Kullback—Leibler (KL) divergence between ¢
and the true posterior p, KL(g||p) (KL being a quantity that increases
as two distributions become more dissimilar). We then define:

_q(C=1)
m_agza. ©6)

In many tasks, and most of the tasks we discuss here, variational
inference fails. Any distribution ¢ that assigns a nonzero probability
to a case which has zero probability under p is an infinitely bad
approximation of p as measured by the KL divergence. In most
tasks, the support of s differs between categories, that is, under p
there are some values of s, which happen in category C = 1, but
never in category C = 0 and/or vice versa. As we try to find a
factorized approximation, a combination of C and s will only have
zero probability according to the approximation if one of the
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corresponding factors g(C) and g(s) has zero probability (recall the
approximation is g(C, s) = g(C)q(s)). Thus, for any s, which lie
outside of the support of one category C, either g(s) must be zero or
q(C) must be zero. As a consequence, all g with finite KL divergence
commit fully to one of the categories and/or restrict s to the overlap
of all supports (i.e., to values of s which are possible under both
categories). If our approximation, ¢ commits to one category
completely, there is no distribution over C and the model observer
is perfectly sure of their response, which is nonsensical. If s is
restricted to the shared support, the inference will be strongly biased
toward the narrower category, such that the model observer would
always report that category, which is also nonsensical.

For example, take a simple classification task in which the
participants distinguish between positive and negative values of
s, like judging whether a stimulus is tilted left or right (illustrated in
Task 2 of Figure 2). Then any value of s can only happen under one
of the categories, that is, there is no overlap in the supports of the two
probability distributions. Thus, all acceptable factorized solutions

Proto-posterior C

assign zero probability to one category and commit to the other
category fully.

As another example, take the collinearity judgment task of Zhou
etal. (2019); discussed in detail below. There, the two entries of s are
equal in category C = 1 and are independently drawn in category
C =0. Thus, all distributions with g(C = 1) > 0 and g(s; # s,) > 0 are
considered to be infinitely bad approximations. If we restrict g(s) to
be nonzero only for s; = s, then C = 1 is infinitely more likely than
C = 0. Thus, the model observer would always conclude with full
confidence that C = 1.

Thus, the variational inference scheme fundamentally fails as a
general scheme for probabilistic inference for many typical cogni-
tive tasks.

Expectation Propagation Observer

The expectation propagation observer is similar to the variational
inference observer. It also tries to find a factorized distribution ¢ that

Variational approximation

Bayesian
observer

Figure 2
Hllustration of the Model Observers Using Two Simple Tasks (Rows)
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Note. A: Prior distribution for the stimulus and the two categories, P(s, C), and likelihood for an example observation x, P(x|s) . The colored
lines each represent the distribution for s for one category. Together, they represent the joint prior over stimulus level and category. The area
under the curves corresponds to the prior probability of the categories, which is equal here. In Task 1, the two categories are Gaussians with
different means at +p. In Task 2, the two categories are the positive and negative halves of a single Gaussian. The black dashed lines represent
the likelihood derived from an observation x, which all further illustrations are conditioned on. B: Joint posterior over the stimulus level and the
category, P(s, C|x), which can be computed by multiplying the prior and likelihood from the first column. Both curves together represent the
joint posterior over category and stimulus level. The Bayesian optimal observer compares the posterior probability of the categories, which
corresponds to the area under the curve, as for the prior (shaded). The point estimate observer instead compares the maximums of the posterior
for the two categories (dashed lines). C: Variational mean field approximation of the posterior g(s, C) = g(s)q(C), that is, an approximation
which assumes a category independent distribution over the stimulus. In this factorized approximation, comparing the maximums, comparing
the areas and using the computed marginal over categories all result in the same ratio between categories which is the basis for the decision of
these observer models. In Task 2, the variational approximation fails entirely because variational inference never assigns any probability
density in its factorized approximation to combinations of s and C for which the true posterior is 0. Expectation propagation (not shown) finds a
factorized approximation in this task, but produces the exact same ratio of probabilities for the two categories as the Bayesian optimal observer.

See the online article for the color version of this figure.
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approximates the true posterior p. However, expectation propagation
uses KL(p||q) instead of KL(g||p) as a measure for how well the true
posterior is approximated. This might seem like a small difference,
but it fundamentally changes what kind of approximation we search
for. In particular, this change reverses the restriction on zeros, such
that any combination which has nonzero probability under p also has
to have nonzero probability under ¢ (Minka, 2005).

Upon convergence to the global minimum, the approximation
will reproduce the marginals of the true posterior distribution such
that ¢(C) = p(C|x). In all tasks presented here, participants were
only asked about C. Because participants only responded to one
stimulus, the expectation propagation observer would produce the
same responses as the Bayesian observer (unless further approx-
imations are enforced on the distribution, ¢). Thus, we do not
explore expectation propagation further here.

We chose to call this model the “expectation propagation
observer,” as it has similarities to the approximate inference technique
“expectation propagation.” Technically, expectation propagation is
the name for a specific message passing algorithm to compute the best
factorized approximation according to the KL(p||q) criterion. This
algorithm requires the projection of the problem onto an exponential
family distribution, which we do not perform here. As we are not
aware of a succinct name for the best factorized approximation
according to the KL(p||q) criterion, and we do not commit to any
algorithm for the computation of this approximation that we could
name our observer model after, we settled on expectation propagation
observer as a name, despite its inaccuracy.

Method
Formal Task Description

For all tasks, we have the following general layout: Trials come
from two different categories which we index with a binary random
variable C. Different categories result in different distributions over
one or more true stimulus values s. For some tasks, there is an
additional categorical variable L, which indexes the target location.
We write L = i to denote that the target location is i. (In this case, the
point estimate observer maximizes over both stimulus values s and
target location L).

We assume that all observer models base their inference on
observations x, which are generated by adding normal or von Mises
distributed sensory noise to s. The strength of the noise is measured
by its standard deviation o,, or concentration parameter k. This
value may be different for different models and is estimated
separately for each stimulus signal strength, which was varied using
different approaches in the different tasks.

Probabilistic Response Model

This results in the following general probabilistic model which
applies to all tasks and (a simplified version) is illustrated in
Figure 1:

P(x.s.C.L) = P(x|s)P(s|C.L)P(C)P(L), )

(Note that for the visual search task, we did not treat C and L as
independent, although we did consider this choice. See Appendix B,
for details.) In each experiment, the task for the observer was to infer
the value of C based on x.

We add decision noise (Luce, 1959; Mueller & Weidemann,
2008), a bias (Green & Swets, 1966), and a lapse rate (Wichmann &
Hill, 2001) to all our models. These additions make the observer
suboptimal and are thus not justified by considerations of optimality.
These additions do, however, improve the match between data and
observer models as has been shown in general and, in many cases,
for the tasks and data, we model here in the original publications on
the data sets (Adler & Ma, 2018; Calder-Travis & Ma, 2020; Shen &
Ma, 2016; Yoo et al., 2021; Zhou et al., 2019). We ensured our
conclusions depended minimally on these additional components by
adding them to all inference schemes considered: If, for example,
bias really does exist, then because this is a component of all models,
no model in particular will be favored. Hence, we would not
incorrectly favor one perceptual inference scheme over another.

To implement these mechanisms, we start with the decision
variable d which each observer generates. This decision variable
is transformed into response probabilities by adding a bias term f,
soft-max noise, and a lapse rate A. This results in the following
formula for the transformation:

exp(Pd + fo)

1 +exp(Bd + Bo) ®

A
P(respondC = 1) = >t (1=2)

Alternatively and equivalently, this type of noise can be imple-
mented by exponentiating the probabilities of the categories and
renormalizing to yield the probability for each response (Sanborn,
Griffiths, & Shiffrin, 2010; Vulkan, 2000).

The observer models we consider do not have any additional
parameters. That is, their free parameters are the sensory noise
standard deviations o, for the different conditions, B, o and A.

A truly “optimal” observer would not lapse (A = 0), would not
have a bias (fy = 0) and would not have decision noise (f — o0). We
use the term “Bayesian Observer” to refer to observer models based
on this decision variable, allowing for an additive bias, decision
noise, and lapses. Note that in building this “Bayesian observer,” we
added substantive and important additional mechanisms beyond
simply assuming optimal inference (Rahnev & Denison, 2018).

For the point estimate observer, we created a fixed criterion
variant and an optimal-criterion variant: The fixed criterion variant
takes d,, as defined above and thus inherits any noise-level depen-
dent bias. To generate the optimal-criterion variant, we add a noise-
level dependent term to d, such that By = 0 leads to maximal
performance regardless of the noise level (for an otherwise optimal
observer with f — oo, A = 0). In most cases, we could not find a
closed form solution for the noise-level dependent bias. To estimate
it, we simulated 100,000 trials for each category and calculated d for
each sample (or 50,000 trials when fitting the visual search data set
due to computational cost). We then found the optimal criterion with
a bisection search.

Model Fitting and Comparison

The parameters for each model and task are reported in Table 1.
For each task, all our models have equivalent parameters and the two
sampling observers have one additional parameter for the number of
samples.

For some of the models, we use in this article, we cannot directly
compute likelihoods as this would require us to integrate out the
measurement x, and this integral can be intractable. Thus, we chose
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Table 1
Parameters for the Tasks With Limits for the Bayesian Adaptive
Direct Search Algorithm for Optimization

Task Parameter Bounds Probable bounds
Simple categorization c; [e73, €°] [e7!, &
p e €] [e72, €]
Bo [10, 10] [-3, 10]
A [e, 0.25] [0.01, 0.1]
N, [1, 1000] [1, 100]
Collinearity o; [0.1, 100] [1, 25]
B [0.01, 25] [0.1, 5]
Bo [-10, 10] [-5, 5]
A [0.0001, 0.5] [0.01, 0.05]
N, [1, 1000] [1, 100]
Visual search log k [-6, 7] [—4, 4]
B [0.01, 25] [0.1, 5]
Bo [-10, 10] [-5, 5]
A [0.005, 1] [0.01, 0.2]
N, [1, 1000] [1, 1000]
Outlier classification c [0, 50] [0, 20]
B [0, 20] [2, 10]
Bo [-5, 5] [-5, 5]
A [0.0001, 0.5] [0.0001, 0.5]
N, [1, 1000] [1, 100]
Change detection Thigh [0.1, 100] [20, 40]
Jiow [0.1, 100] [5, 25]
T [0.1, 100] [1, 25]
B [0.01, 25] [0.1, 5]
Bo [-10, 10] [-3, 3]
A [0.0001, 0.5] [0.01, 0.05]
N, [1, 1000] [1, 10]

Note. ¢ stands for the smallest number different from O in machine
precision. In the visual search task, there is one log k parameter for each
possible value of the number of items in the display.

to estimate all log-likelihoods (LLs) using Inverse Binomial Sam-
pling (van Opheusden et al., 2020). We ran inverse binomial
sampling repetitions until the estimated variance of the log-
likelihood became smaller than 4.

We fit the parameters of each model to each participant sepa-
rately, by maximizing the estimated log-likelihood using Bayesian
adaptive direct search (Acerbi & Ma, 2017). As bounds for the
parameter optimization, we chose values reported in Table 1. We
initially used 20 different starting positions, uniformly choosing
positions within the plausible bounds, to reduce the probability of
finding only a local maximum. For each optimization, we aimed for
at least five other starting positions leading to an optimization result
within two log-likelihood points of the maximum log-likelihood
found, so that we are confident that model differences were not due
to failed optimisations. We continued to add more starting points, if
we did not satisfy the log-likelihood criterion. There was an
exception to this policy: For two participant-model combinations
in the visual search task, even after running the fitting from 180
starting points, there were not five runs which ended within two log-
likelihoods of the maximum log-likelihood found.

To estimate the log-likelihoods at the candidate optima more
accurately, we reevaluated the log-likelihood using 100 repetitions
of our inverse sampling approach, which each generated estimates
of variance 4 or less. Hence, after 100 repetitions, the estimated
variance of the log-likelihood at the optimum is 0.04, that is, the
standard deviation is 0.2. We then took the parameter combination
corresponding to the minimum negative log-likelihood over our

runs as the maximum likelihood estimated parameters. We report
differences in raw log-likelihood values for model comparison,
which are equivalent to both AIC and BIC values, as the number
of parameters does not differ between models.

For plotting model fits against behavior, we simulated new data
sets of the same size as the original data sets. On a participant-by-
participant basis we took the best fitting parameters and used these to
generate simulated responses to the stimuli that were used in the real
experiment.

To keep the computational requirements for the sampling ob-
servers manageable, we restricted the number of samples taken to be
less than 1,000. Restricting the number of samples is also of
theoretical interest; with a sufficiently large number of samples,
sampling observers should converge to the Bayesian observer.
Because we are interested in how these models may diverge,
specifically, how sampling observers may fit human data better
than a Bayesian observer, we are interested in lower sampling
regimes. When the fits of these observer models converge to this
bound while still yielding worse goodness-of-fit than the Bayesian
observer, we interpret this as evidence that the sampling observers
would eventually converge to the Bayesian observer if we had more
computational resources available.

Data

Data sets and analysis code are available at https://osf.io/x8q6j/
and https://github.com/NYUMaLab/AISP or dx.doi.org/10.17605/
OSF.I0/X8Q6J. This study was not preregistered, and all data were
collected for previous publications. Ethics approval from the insti-
tutional review boards were obtained for the original publications
and is reported in these articles (Adler & Ma, 2018; Calder-Travis &
Ma, 2020; Shen & Ma, 2016; Yoo et al., 2021; Zhou et al., 2019).

Model Evaluations

As we aim to find observer models that generalize to a wide range
of tasks, we chose five typical perceptual decision making tasks to
test the point estimate observer on. For all five tasks, data had been
collected and published before. For the first task, we chose the
categorization task by Adler and Ma (2018), which showed evi-
dence for non-Bayesian decision making and confidence reports.
Second, we chose a study on colinearity judgements by Zhou et al.
(2019), which again showed a slight preference for non-Bayesian
decision making and emphasized the necessity to include decision
noise and lapse rates. Third, we chose a visual search task from
Calder-Travis and Ma (2020), to collect more information on how
information is pooled from multiple items in a single stimulus.
Previous Bayesian and non-Bayesian models had fit this data set
approximately equally well. Fourth, we chose an outlier classifica-
tion task by Shen and Ma (2016), which provided strong evidence in
favor of Bayesian inference and especially for near-optimal integra-
tion over target locations. Finally, we chose a working memory
change detection task by Yoo et al. (2021), which showed evidence
in favor of Bayesian decision making. Both Bayesian and non-
Bayesian models had performed well in this data set. These studies
cover a range of tasks that are often employed, computations
required over different subhypotheses, and degrees of support for
Bayesian optimal decision making. We provide details of the
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individual experiments in Appendix A and derivations of the
decision rules in Appendix B.

Simple Categorization

In the simple categorization task (Adler & Ma, 2018), participants
were asked to report whether a Gabor or ellipse stimulus came from
a narrow central category or from a wider category with the same
mean (Figure 3A). The precision of the observation was varied by
changing the aspect ratio of the ellipse or by changing the contrast of
the Gabor patch. For both types of stimuli, there were six precision
levels. Each participant saw either Gabors or ellipses only.

Qualitatively, participants showed the patterns expected for
rational behavior (Figure 3C). At all reliability levels, participants
increasingly preferred the wider Category 2 when presented with
more tilted stimuli. Also, with decreasing precision this dependance
became flatter and, at small precisions, the preference for the narrow
Category 1 at small tilts diminished. These patterns are all qualita-
tively consistent with optimal decision behavior. However, the

relationship between the broadening of the curve and the scaling
of the peak is quantitatively different from the optimal Bayesian
observer prediction.

For this task, we evaluate the full Bayesian observer, the point
estimate observer with a fixed criterion, the two sampling observers,
and a variational inference observer. We do not evaluate the point
estimate observer with the optimal criterion because, in this task, this
observer is equivalent to the Bayesian observer (see Appendix B).

We find that all models can capture the qualitative trends in the
data. In the formal model evaluation, the point estimate observer
performs better (on average 25.1 log-likelihood points) than the
Bayesian observer. However, the relative evaluations differ dramat-
ically between participants, so that the conclusion is not consistent
across participants. The variational inference observer has an aver-
age performance between the Bayesian and point estimate observers
(on average 19.5 log-likelihood points better than the Bayesian
observer and 5.6 points worse than the point estimate observer). The
difference to the Bayesian observer for the variational observer is
considerably less variable than for the point estimate observer, but

Figure 3
Model Fits for the Simple Categorization Task (Adler & Ma, 2018)
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Note.  A: Illustration of the stimulus distributions under the two categories: Participants were asked to judge whether a stimulus came from Category 1 or

Category 2 based on the orientation of an ellipse or of a drifting Gabor patch. B: Log-likelihood comparison against the Bayesian observer. Gray dots
represent individual participants, the black represents their average. The sampling observers have the number of samples as an additional parameter for each
participant. Typical corrections like AIC or BIC are very small compared to the differences between models observed for this task. This is the only task that
we consider where the variational inference observer is applicable. For this task, we do not show the point estimate observer with an optimal criterion because
it is equivalent to the Bayesian observer. C: Illustration of the decision boundaries of the five different observers. For each observer model, the probability for
responding Category 2 is plotted against the standard deviation of the noise and against the measurement, x, which is assumed to be distributed normally
around the true stimulus level, s. D: Model predictions of the five observer models (shaded regions) plotted with the data (points in center of error bars). The
shaded regions and error bars represent SEMs over participants. The level of perceptual noise was varied by changing the aspect ratio of the ellipses or the
contrast of the Gabor patches, respectively, in six steps as illustrated on the right. AIC = Akaike information criterion; BIC = Bayesian information criterion;
SEM = standard error of the mean. See the online article for the color version of this figure.
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there are still participants who are slightly better fit by the Bayesian
observer than the variational one. Interestingly, the two sampling
observer models also perform better than the full Bayesian observer
(on average 28.3 log-likelihood points better for the importance
sampling observer, and 19.7 for the joint sampling observer). The
sampling models have one parameter more for each subject than
the other models. If we applied a correction for that like AIC
(1 likelihood point) or BIC (3.8 likelihood points), importance
sampling—the better of the two—would still marginally win against
the point estimate observer model, but the two are very close.

For this task, Adler and Ma (2018) found poor performance of the
Bayesian observer when this model was compared to ad hoc
decision models specific to this task. It appears that the point
estimate and variational inference observers can explain a part of
these deviations from Bayesian decision making.

Collinearity Judgements

In this task, participants were asked to report whether two
peripherally presented line segments disappearing behind an occlu-
der were collinear, such that they could be part of the same straight
line. The line positions were collinear in half the trials. In those
trials, they were generated as a single draw from a normal distribu-
tion. In the other half of trials, they were drawn independently from
the same normal distribution. The experiment was originally pub-
lished by Zhou et al. (2019).

SCHUTT, YOO, CALDER-TRAVIS, AND MA

Human behavior qualitatively follows the expectations for ratio-
nal behavior again (Figure 4D): Larger offsets lead to fewer
collinearity reports and this effect decreases with smaller precision.
We evaluate the Bayesian observer, a point estimate observer with a
fixed criterion and a point estimate observer with an optimal
criterion. The variational observer has no sensible interpretation
for this task (see Appendix B and discussion above).

For this task, all models can capture the data well both qualita-
tively and quantitatively. In the formal model comparison, the point
estimate observer with optimal criterion has a slight advantage of
5.81 log-likelihood points, and the point estimate observer with a
constant criterion had a slight disadvantage of 2.96 log-likelihood
points, but these differences are very small. The two sampling
observers perform worse than the Bayesian observer model (by
2.8 and 20.3 likelihood points for the importance sampling and joint
sampling observer, respectively), even without penalties for their
extra parameter. As these observers converge to the Bayesian
observer model with increasing number of samples, this indicates
that the limit of 1,000 samples we imposed, limited performance of
these observers. Indeed many observers are fitted with a number of
samples above 900 (4 of 8 for the importance sampling observer, 7
of 8 for the joint sampling observer). We take this as evidence that
sampling does not explain any additional patterns in the partici-
pants’ behavior, but just gives an imperfect approximation to the
Bayesian observer model. These results are consistent with that of
the original publication, where the authors found a slight advantage
for a non-Bayesian ad hoc observer.

Figure 4
Model Fits for the Collinearity Task (Zhou et al., 2019)
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responses plotted against the left and right measurements x. C: Log-likelihood comparison against the Bayesian observer. For this task, we evaluate
the two point estimate observer models, the two sampling observers models and the Bayesian observer model. The variational observer does not work
for this scenario, caused by the unequal support for the two categories. D: Predicted responses (shaded regions) and measured data (error bars) plotted
against the offset between the two lines. See the online article for the color version of this figure.
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Visual Search

We next evaluated the models using data from a visual search
task. Besides visual search being a heavily used cognitive function
(Eckstein, 2011), it is interesting to study this task because parti-
cipants must pool information from many items in a display. In this
task, participants were asked to report the presence or absence of a
target Gabor patch oriented at 45° clockwise from vertical, among
distractor Gabors (Figure SA). A display containing between 2 and 6
Gabor patches was presented for 100 ms, and then participants had
as long as they wanted to respond whether the target was present
using a key press. The orientation of each distractor was randomly
drawn from either a uniform distribution, or a von Mises distribution
centered on the target orientation, depending on the current block.
Further details can be found in Appendix A, and full details in the
study for which the data were originally collected (Calder-Travis &
Ma, 2020).

Figure 5

Behavior in the task, as a function of three statistics summarizing
the distractors presented on each trial, is plotted in Figure 5C.
Behavior is plotted using error bars (note behavior plots are
duplicated five times). On trials in which the mean of the distractors
was further from the target orientation (7-D mean), and trials in
which the difference between the target and the most similar
distractor was larger (min 7-D difference), participants were less
likely to report that the target was present. The effect of distractor
variance (D variance) was less clear.

For this task, we evaluated the performance of the Bayesian
model, the point estimate observer, the optimal point estimate
observer, and the two sampling observers. Again, variational infer-
ence did not provide a feasible approach (Appendix B). All models
accounted well for the relationship between both hit and false alarm
rate, and the three distractor statistics considered (Figure 5C). When
evaluating the models using the mean maximum log-likelihood, the

Model Fits for the Visual Search Task (Calder-Travis & Ma, 2020)
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at 45° clockwise from vertical, in a briefly presented display. B: Maximum log-likelihood found for each model,
compared to the maximum log-likelihood of the Bayesian model. Dots represent the result for individual
participant fits, and bars represent the mean. For this task, we evaluate the two point estimate observer models,
the two sampling models, and the Bayesian observer. The variational observer does not work for this scenario. C:
Behavioral data, and model fits. Data are plotted using error bars (+1 SEM, across participants), and model fits
with error shading (width £1 SEM across participants). All models captured the patterns in the data well. SEM =
standard error of the mean. See the online article for the color version of this figure.
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Bayesian model outperformed the point estimate and sampling
models (Figure 5B; all models share the same number of parameters
apart from the sampling observers which have an additional param-
eter). It is important to note that, while the mean maximum log-
likelihood was slightly greater for the Bayesian model than the
optimal point estimate model, the optimal point estimate model
described many participants better than the Bayesian observer
model. Even with the extra flexibility of an additional parameter,
the sampling models did not in general outperform the Bayesian
observer model. The fitted values for the free parameter governing
how many samples the sampling observers used were very high.
They often reached the upper limit set during the fitting, suggesting
again that the deviation from Bayes-optimal performance, intro-
duced by limiting the number of samples, is only detrimental to
model fit.

Outlier Classification

In the outlier classification task, participants were shown four
Gabor stimuli, three of which had the same orientation. They were
then asked to report whether the one with a different orientation was
tilted left or right. Orientations for the target and the distractors were
drawn from the same normal distribution. This task was originally
published by Shen and Ma (2016).

In this task, the optimal decision pattern is relatively complex,
because the decision of which item is the target needs to include the
orientations of all items in the display. Importantly, this leads to an

S-shaped influence of the distractors’ orientation on the judgements.
When the distractors are only slightly tilted they can be confused
with a target near the decision boundary, and thus bias the decision
toward their orientation. However, strongly tilted distractors do not
influence the decision, because they can only be confused with the
target if the target clearly has the same tilt direction. Thus, the bias
caused by the distractors diminishes at strong tilts. This pattern of
decisions is also produced quite closely by participants in this task
(Figure 6C).

For this task, we only evaluate the Bayesian observer, the two
sampling observers, and the point estimate observer. In this case, the
whole experiment was performed at a constant noise level, removing
the necessity to implement the Optimal-Criterion Point Estimate
Observer. Again, the variational observer does not work for this task
because the different categories and target locations imply incom-
patible distributions for the stimulus s.

The fits for the models are displayed in Figure 6. Comparing the
point estimate observer to the Bayesian observer, we find strong
evidence in favor of the full Bayesian observer. The data plots show
a clear discrepancy between the data and the prediction of the point
estimate model. This is also visible in the formal model comparison:
All participants are better fit by the Bayesian observer than by the
point estimate observer, and the fit is on average 174 log-likelihood
points better. The differences between the sampling observers and
the Bayesian observer are so much smaller, that we need to plot them
on a different scale to make them visible (Figure 6C). The impor-
tance sampling observer beats the Bayesian observer by a noticeable

Figure 6
Model Fits for the Outlier Classification Task (Shen & Ma, 2016)
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A: Illustration of the task: Participants were asked to report whether the Gabor with the different orientation was tilted left

or right. B: Log-likelihood difference from the Bayesian observer, dots represent the individual participants. The bar represents
the average. For this task, we compare only one version of the point estimate observer to the Bayesian one. The two variants of the
point estimate observer are equal here because the noise was not varied in this experiment. The variational observer once again
fails because the support of the categories does not overlap. C: As B, but for the sampling observers, separated to make the much
smaller differences to the Bayesian observer visible. D: Proportion of “right” reports plotted against the orientation of the target
and the orientation of the distractors, binned into nine quantiles of the normal distribution. See the online article for the color

version of this figure.
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margin (on average 9.6 log-likelihood points). The joint sampling
observer performs about equal to the Bayesian observer (on average
1.4 log-likelihood points worse).

Change Detection

In this task, participants viewed four oriented ellipses, remem-
bered their orientation over a working memory delay, then viewed
four ellipses again. Participants indicated whether they believed the
orientation of one of the ellipses changed. On every trial, there was a
0.5 probability that one of the ellipses changed orientation. If there
was a change, the change was drawn from a uniform distribution and
was equally probable to occur in any of the ellipses. Ellipses
provided either high- or low-reliability orientation information,
the high-reliability ellipses being longer and narrower. The proba-
bility of each ellipse being high reliability was 0.5, independent of
the reliability of the other ellipses. This experiment was originally
published as the “ellipse condition” by Yoo et al. (2021).

To maximize performance in this task, the participants should
take into account the item-to-item uncertainty when making the
change detection decision. For this task, we evaluate the Bayesian
observer, the point estimate observer with a fixed criterion, the point
estimate observer with an optimal criterion, and the two sampling
observers. Again, the variational observer has no sensible interpre-
tation for this task (see Appendix B).

All models provided similar fits, qualitatively (Figure 7C) and
quantitatively (Figure 7B). All models perform similarly well across
participants; the Bayesian model has an average log-likelihood two

Figure 7
Model Fits for the Change Detection Task (Yoo et al., 2021)
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higher than point estimate model, 1.3 higher than the important
sampling model, and 3.5 higher than the joint posterior sampling
model. The Bayesian and optimal point estimate models perform
almost identically (0.3 difference in log-likelihood). We do not
consider any of the differences across models meaningful.

Performance Comparison

In discussing approximate observer models, one question of
immediate interest is how well such approximate observers perform
the tasks, that is, what level of task performance these observers
achieve, as opposed to how well do these observer models match
human behavior. In this section, we investigate how sensory noise
affects the performance of each of these model observers, simulating
responses to a large number of trials (Figure 8, 100,000 at each
level).

For the plots, sensory noise was varied across a range of values.
Lapse rate (A) was set to 0, bias () was set to 0, number of samples
in the sampling observer models (N;) was set to 10. Other parame-
ters were set to their mean value across participants from the
Bayesian observer model fits. For the visual search task, we plot
performance in one specific condition (3 Gabors in the display,
uniformly distributed distractors).

In general, the optimal point estimate observer and the variational
observer primarily lead to performance drops at the high noise levels
that yield generally low performance (Figure 8B and E), if there
were any performance drops for these models at all (see Figure 8C,
D and F, for the collinearity, visual search, and detection tasks with
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Log-likelihood differences of the two point estimate observer models and the two sampling observers models, relative to the Bayesian observer
model (all models share the same number of parameters). Dots represent the individual participants. The bar represents the average. The variational
observer fails for this experiment. C: Proportion report “change” as a function of number of high-reliability ellipses, conditioned on whether there
was no actual change (false alarm, FA, blue), a change in a low-reliability ellipse (Hjow, red), a change in a high-reliability ellipse (Hpign, purple), or a
change in any ellipse (hit, H, yellow). See the online article for the color version of this figure.
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Figure 8

Performance Comparisons Between Observers, Plotted Against Level of Sensory Noise
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100,000 new random trials for evaluation at each noise level. Ticks mark the mean noise parameters across subjects for the conditions measured in the
experiments. For the sampling observers, we took 10 samples for each trial. A: Simple categorization task, plotting against the noise standard
deviation. B: Simple categorization task, as in A, but with a much higher slope (100). C: Collinearity task, plotting against the noise standard deviation.
D: One condition in the visual search task (3 Gabors in the display, uniformly distributed distractors), plotting against the precision parameter of the
von Mises noise distribution. E: Outlier classification task, plotting against the noise standard deviation. F: Change detection task, plotting against the
average precision of the variable precision model, setting the bias to the arbitrary value of 10 for the biased point estimate observer model as O is

outside the distribution of decision values. See the online article for the color version of this figure.

essentially no losses). In contrast, the sampling observers lead to an
overall scaling of the response curves, which incurs the highest
losses at low noise levels with otherwise high performance through-
out (Figure 8B-F). Note, that we chose a very low number of
samples here to make the differences between models clear. At
higher sample numbers—as we fit to our human observers—the
performance of the sampling observers converges to the Bayesian
observer as expected. Finally, the nonoptimized criterion point
estimate observer performs worse primarily at low noise values
with high performance (Figure 8C, D and F). The comparison to the
optimal point estimate observer shows the substantial performance
drop observers can incur by being biased. Taken together, these
results show that the different approximate observer models lead to
different relationships between noise level and strength of deviation
from optimal performance.

Interestingly, we observe that for the simple categorization task, the
optimal-criterion point estimate observer performs even better than
the nominally optimal Bayesian one (Figure 8 A). This happens due to
an interaction with the late noise we inject by mapping the decision
variable to response probabilities, instead of applying a hard thresh-
old. If we use a much higher slope to approximate a hard threshold,

the Bayesian observer performs best as expected (Figure 8B). This
serves as a reminder that subsequent decision noise can change what
the optimal solution for the decision variable is, as has been observed
earlier (Li et al., 2017; Tsetsos et al., 2016).

Discussion

There is a lack of task-general alternatives to the Bayesian
observer model that avoid the computationally intensive marginali-
zation operation. In response to this deficit, we introduced the point
estimate observer model and evaluated its ability to account for a
wide range of behavioral data. These point estimate observers
evaluate the plausibility of a category based only on the world
state that is most likely, if that category were indeed correct. This
model directly applies to all perceptual categorization tasks, and
slightly different read outs may apply to most other decision making
tasks. The point estimate observer takes a statistical model of the
world into account, but it is not equivalent to the full Bayesian
solution.

Comparing the point estimate observer to the Bayesian observer
in five tasks, we found that the point estimate observer model
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performs somewhat better in two tasks (simple categorization and
collinearity judgements), ties in two tasks (working memory change
detection task and visual search) and loses clearly in one task (outlier
classification). Overall, the point estimate observer model performs
competitively to the Bayesian observer model and cannot be
outright rejected.

As the evidence in favor of the Bayesian observer model is mostly
provided by a single task, the outlier classification task of Shen and
Ma (2016), we wondered how this task might be different from the
others. First, this task has the most complex statistical dependencies
between stimuli, which might trigger more complex cognitive
processing, although this was neither expected nor encouraged.
Second, a prominent feature of this task is the detection of an outlier
from a set of equal stimuli. There is some evidence that percepts
corresponding to groups of stimuli are summarized, while individual
stimuli with prominent differences to the group “pop out” and are
preferentially processed, starting relatively early in visual proces-
sing (Miiller et al., 1995; Treisman & Gormican, 1988; Whitney &
Yamanashi Leib, 2018) Thus, it could be that this task is solved by
specialized processes. Third, different tasks were done by different
participants and it is possible that the participants in this experiment
were particularly Bayesian or diligent.® Finally, our analysis of
simulated behavioral performance for the various observer models
(Figure 8) suggested that in the outlier classification task, observers
may pay an especially heavy price for performing point estimate
inference, compared to performing Bayesian inference. If observers
could choose when to engage the Bayesian observer instead, this
task would thus encourage them most to do so. These ideas are all
speculative, and our data do not allow us to state any with certainty.

We also compare to two sampling observers, which generally
perform well. In three of our tasks (collinearity judgements, change
detection, and visual search), their fit is worse than or equal to the
full Bayesian observer and the fitted sample sizes are high, which we
interpret as evidence that the sampling assumption does not help to
improve fits in these tasks beyond the full Bayesian observer. For the
outlier classification task, the importance sampling observer beats
both the Bayesian observer and the point estimate observer. For the
simple classification task, the importance sampling observer fit
better than the Bayesian observer and almost exactly equally
well or even slightly better than the point estimate observer.

Interestingly, the importance sampling observer performed better
in all tasks than the joint sampling observer. This highlights that
“sampling observer” might not be a sufficiently precise description
and future research should aim to understand which sampling
observers are particularly good models of human decision making.
A key difference here is that the importance sampling observer,
which performs better throughout, takes samples independently.
Thus, it does not display sequential dependencies, which earlier
research used as evidence in favor of sampling based, resource
constrained models (Lieder et al., 2018).

Compared to the point estimate observer, the importance sam-
pling observer loses once while tying with the Bayesian observer
(collinearity judgements), wins decisively once (outlier classifica-
tion), and otherwise essentially ties with the point estimate observer.
Thus, the importance sampling observer and the point estimate
observer do not dominate each other either way. They are not equal
though. They perform better than the Bayesian observer in different
tasks (collinearity exclusively for the point estimate observer, outlier
classification exclusively for the importance sampling observer) and

in the simple categorization task where they perform similarly they
still make different predictions.

Finally, we also tried to apply a variational inference observer
which fits a factorized approximation to the posterior. This observer
model was not applicable to most of our tasks, because the supports
of the stimulus distributions under the two categories were often
distinct.* As discussed, in this situation, all sensible distributions
that factorize over category and inferred stimulus are considered
infinitely bad approximations from the perspective of variational
inference. This highlights a shortcoming of variational inference that
is widely recognized in machine learning (Bishop, 2006; Minka,
2005) but has been largely overlooked when considering variational
inference as a principle for human perception (Friston, 2010). This
shortcoming applies broadly across different tasks, as most experi-
ments use mutually exclusive categories of stimuli in some aspect of
experimental design. In the real world, many combinations of
variables are impossible as well. A potential solution would be
to assume that the observer’s internal world model differs from the
true world model, even before the mean field approximation. The
free energy principle (which is based on variational inference)
makes predictions for how a parametrized internal world model
should be adjusted toward fitting observations better. However,
there is no general specification of what world models human
observers use, and the predictions of the theory substantially depend
on this choice. Thus, apart from assuming observers use the true
world model, there is no uniquely defined theory that we could test.
This highlights the importance of specifying the internal world
model and its deviations from the true statistical structure (Rahnev &
Denison, 2018). Making the only obvious choice, of requiring
observers to use the true world model, is far less trivial than it
sounds and dramatically constrains the range of tasks to which this
approach can be applied. In comparison, other approximate infer-
ence schemes do not share this restriction.

We found that the expectation propagation observer (as defined
here) has a different problem when used as a model of human
perception. Namely, it converges to the same marginal distributions
as the Bayesian observer. As a result, this model cannot account for
observed differences between human behavior and Bayesian optimal
behavior (Adler & Ma, 2018; Rahnev & Denison, 2018) as long as
tasks only ask about a single feature. This is because behavior in
these cases depends on the marginal distribution over that single
feature. As most tasks in general, and all tasks we discuss here ask
only about a single feature, we excluded expectation propagation
observers from formal model comparison on these theoretical
grounds. Extensions of this model which commit to other approxi-
mate posteriors, or experiments which can distinguish this type of
model from others, may well provide evidence for this model though.

In many of our analyses, some of the observer models are
indistinguishable from each other. This is true despite all original
publications containing model recovery analyses showing that
similar models to the ones we investigate here could be successfully
distinguished with essentially identical model comparison techni-
ques. In situations where models are indistinguishable, either, the

* Anecdotally, the participants in this task were mostly graduate student
friends of the first author of the study, who might have been more motivated
or knowledgeable than typical participants.

* “support” of a distribution simply refers to the set of all possible
outcomes, that is, the set of all possibilities with nonzero probability.
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two models make the same predictions matching human behavior,
or the two models make different predictions, but are equally wrong
in predicting human behavior. In the first case, the models are valid,
but we need other experiments to distinguish them. In the second
case, we need to develop better models. Both cases happen in our
analyses. The visual search task (Calder-Travis & Ma, 2020) and the
working memory task (Yoo et al., 2021) seem to fall under the first
case of essentially indistinguishable model predictions. In the
categorization task by Adler and Ma (2018), the point estimate
observer model and the importance sampling observer perform very
similarly well, but make distinguishable predictions. We thus have
to conclude that our models are not yet perfect for some data we
have, but at the same time many data sets are not helpful for
contrasting different approximations to the Bayesian observer.

Having established the point estimate observer model as a viable
alternative to the Bayesian observer, it provides a new starting
point for model development. Here, we intentionally present the
point estimate observer in a simple form. Future versions may
extend the point estimate observer. For example, the point estimate
observer could be extended to more complex situations like
processing over space or over time where the general principle
of finding the most likely state of the world instead of the full
distribution of possible world states should still apply. Also, one
could consider variants, which allow for multiple optimisations,
for example, to explore subhypotheses, such as possible target
locations in our search tasks. Finally, one could aim at unifying the
point estimate observer model with other observer models. One
such unification could be based on exponentiating and renormaliz-
ing the posterior with some exponent «. For a = 1, this yields the
original Bayesian observer, for large o, the posterior collapses
around the maximum of the posterior and thus toward the point
estimate observer. This rescaling does not simplify the marginali-
zation but is compatible with any of the approximate solutions
available for full Bayesian inference (e.g., sampling or variational
inference). Alternatively, one could try observer models which
marginalize over some variables and use a point estimate for others
(Lee & Ma, 2021) or other combinations of intermediate complex-
ity. These mixtures open the possibility that humans adaptively
apply different inference algorithms depending on task demands
(Tavoni et al., 2022). Comparisons between these extensions and
to the Bayes-optimal solutions may be more informative than the
global question whether our observer model is a complete model of
human behavior, just as these more detailed questions are more
informative when testing human behavior against optimal behavior
(Rahnev & Denison, 2018).

Response biases are a frequently observed type of deviation from
optimality (Rahnev & Denison, 2018). For example, participants
tend to favor one of the responses, favor repeating or switching
responses, or have similar preferences, which do not improve task
performance (Braun et al., 2018; de Gee et al., 2017; Urai et al.,
2019). Such biases are usually modeled as shifts and miscallibra-
tions of the decision criterion, or equivalently, as wrong prior
expectations. This approach works for all observer models that
produce a continuous decision variable, that is thresholded to make a
decision. We have used this approach for all observer models here to
model biases toward one of the response categories (see Methods
section). For the Bayesian observer model, this modeling approach
is a bit odd, as it implies that the participants actively distort an
inherently unbiased estimate, for which the optimal criterion is

always the same. In contrast, the point estimate observer has to
adjust the criterion frequently anyway, as the optimal criterion varies
between situations and the computations it performs do not yield the
optimal criterion. The inclusion of a bias to correct for miscalibrated
criterion to fit human behavior is therefore justified for the point
estimate observer. Our results provide some evidence that observers
adjust their criteria toward optimal criteria, because the point
observer model with optimally set criteria consistently models
human decisions better than the one with a fixed criterion on the
decision variable.

One interesting alternative explanation for the question how
humans may cope with the marginalization problem is that humans
may reuse computations carried out for past inferences, to produce
an approximate posterior (amortized inference; Dasgupta et al.,
2018). Such approximations are expected to be more accurate for
frequently experienced situations (Dasgupta et al., 2020). Alterna-
tively, observers may stop their internal computations early, result-
ing in an imperfect approximation (Sanborn, Griffiths, & Navarro,
2010; Shi et al., 2010; Vul et al., 2014). Such approximations can be
justified as resource rational (Gershman et al., 2015; Lieder &
Griffiths, 2019), that is, as the best solution achievable with a given
computational resource budget. These ideas have mostly been
applied to sampling-based approximations, but they could also be
applied easily to the point estimate observer. If the optimization to
find the most probable stimulus is an iterative procedure, it could be
stopped early to save computational resources. Additionally, choos-
ing the starting values through an amortized procedure would
improve convergence speed substantially. This would result in
estimates being biased toward the initial or amortized estimates,
as is the case for the sampling models, a feature that may account for
anchoring effects (Dasgupta et al., 2018, 2020; Lieder et al., 2018).
In contrast to the idea that observers may stop computation early, our
fits of the sampling observer models yield high estimates for the
number of samples. In many cases, the full Bayesian observer is a
better fit than the sampling observers with 1,000 samples taken per
category. While our results generally favor the sampling observers,
different tasks lead to extremely different sample sizes or levels of
sampling efficiency, which will eventually require explanation.

Future studies could also investigate how the point estimate
observer might be implemented in the brain. For the Bayesian
observer and the variational observer, some neuronal implementa-
tion solutions have been proposed and continue to be developed
(e.g., Beck et al., 2008, 2011; Haefner et al., 2016; Ma et al., 2006;
Parr et al., 2019; Zemel et al., 1998). Given that the variational
observer model already requires optimization, it seems probable that
a neural network could be designed that implements the necessary
optimization for the point estimate observer (similar to Deneve
et al., 1999).

It would also be useful to test the point estimate observer on more
empirical data. As the point estimate observer requires no margin-
alization, comparing the point estimate observer to the full Bayesian
observer allows us to judge whether humans do or do not use
marginalization. To do so effectively, one should focus on experi-
ments where the point estimate observer and the Bayesian observer
produce different predictions.

The analogy of our point estimate observer model to frequentist
statistics may provide some intuition for when the point estimate
observer can make different predictions to the Bayesian observer
model. In a frequentist context, the inference that our point estimate
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observer performs corresponds to the likelihood ratio test,” which is
often the most powerful test (Neyman et al., 1933). If the model is
correct and the sample is sufficiently large, the likelihood converges
to a function with a narrow peak around the true state of the world
under quite general conditions (Wald, 1949). In this case, Bayesian
and frequentist analysis largely agree (Gelman et al., 2013, Chapter
4.2). Conversely, the point estimate observer and the Bayesian
observer can only disagree if either the assumed model is wrong,
or the sensory information is sufficiently weak that the estimates are
far from convergence. Situations with substantial deviations
between the true model and the model assumed by the subjects
may exist, but are problematic for experiments, because it is almost
impossible to experimentally fix or determine the model assumed by
the subjects in this case. These observations suggest that the most
promising situations to distinguish Bayesian and point estimate
observers are situations in which the subject is particularly uncertain
about some intermediate sensory variables, such as our s. In
particular, experiments in which the width of the posterior can be
manipulated independent of the overall probabilities of the catego-
ries should be informative. The recommendation to look at the high-
uncertainty regime is further supported by our observation that the
biggest performance differences between the Bayesian optimal
observer and the point estimate observer occur at high noise levels.

If one wanted to know whether humans use factorized representa-
tions as the variational observer or the expectation propagation
observer do, it might be particularly informative to run experiments
in which participants are asked to simultaneously classify the
stimulus on two different dimensions, C; and C,. Building in
interesting interactions between the two sets of categories might
make the experiment even more powerful. When we ask about
multiple features simultaneously, we may even detect a difference
between expectation propagation and full Bayesian inference. How-
ever, we do not know of an experiment that allows this distinction.
Indeed, the design of experiments that reliably distinguish the
different observer models is further hampered by sensory noise,
decision making noise and cognitive response distortions, which
may all distort the outcomes of such experiments.

In sum, the point estimate observer demonstrates the feasibility of a
general perceptual decision model that does not rely on marginaliza-
tion. Although it does not explain all of human decision making, it
outperforms the Bayesian observer and our sampling observer models
in some tasks and is thus a competitive model in its own right. Also,
our results highlight the importance of comparing Bayesian observer
models to other observer models like the point estimate observer,
since a data set which is well described by many observer models
might provide little evidence in favor of either of them. Thus, even if
the point estimate observer is not ultimately the correct model, it
certainly extends our toolbox for modeling human behavior. Specifi-
cally, it may serve as a comparison model, helping us to determine
which tasks provide evidence for humans using marginalization.

By including the prior probabilities and treating the two response
categories as the models to be compared.
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Appendix A

Experiment Details

Simple Categorization Task

A full description of the experiment can be found in Adler and Ma
(2018). We only use choice data from task B here. The experiment
additionally collected confidence data, which we will ignore here for
consistency with the other tasks and with the modeling framework.
Furthermore, we did not analyze Task A, in which the categories had
the same standard deviation, but differed in mean. This Task A was
generally found not to distinguish between models in the primary
publication. Data are available at https://github.com/wtadler/confide
nce/tree/master/human_data.

In summary, 11 participants performed the task over five sessions
each, which were all shared with Task A. Experiments were
performed with a linearized 2013 Apple IPad display controlled
using Psychtoolbox in MATLAB (Kleiner et al., 2007).

Stimuli

The background was mid-level gray (199 cd/m?). The stimulus
was either a drifting Gabor (Participants 3, 6, 8, 9, 10, and 11) or an
ellipse (Participants 1, 2, 4, 5, and 7). The Gabor had a spatial
frequency of 0.5 cycles per degrees of visual angle (dva), a speed of
six cycles per second, a Gaussian envelope with a standard deviation
of 1.2 dva, and a randomized starting phase. Each ellipse had a total
area of 2.4 dva® and was black (0.01 cd/m?). Contrast and aspect
ratio of the stimuli were chosen uniformly randomly per trial to vary
difficulty of the task. The six contrast levels for the Gabors were
0.4%, 0.8%, 1.7%, 3.3%, 6.7%, or 13.5% and ellipses had 0.15,
0.28, 0.41, 0.54, 0.67, or 0.8 eccentricity. In Task B, which we
model here, stimulus orientations were drawn from normal distribu-
tions with mean 0, and standard deviations 6, = 3 for Category 1 and
o = 12° for Category 2.

Collinearity Judgements

A full description of the experiment can be found in Zhou et al.
(2019) and data are available at https://github.com/yanlizhou/
collinearity.

In summary, eight participants were asked to judge whether two
line segments presented peripherally at the two sides of an occluder
were collinear or not. The experiment took four 1 hr sessions and
was performed on the same Apple IPad display as the first task. We
only use the collinearity judgements here, that is, we ignore the
additionally collected height judgements and confidence data.

Stimuli

A dark gray occluder (23 cd/m?) with a width of 5.6 dva was
displayed against a light-gray background (50 cd/m?). A white (159
cd/m?) fixation dot 0.24 dva in diameter was shown in the lower
central part of the occluder. The stimuli consisted of two horizontal
white line segments on both sides of the occluder. The line segments
were 5.6 dva long and 0.16 dva wide. The mean of the normal
distributions the line positions were drawn from was set to 0, 4.8,
9.6, or 16.8 dva above the fixation location. The standard deviation
of the line positions was 0.48 dva. The occluder and the fixation dot

were displayed for 850 ms, followed by the stimulus for 100 ms. In
each session of 200 trials contained 100 collinear and 100 noncol-
linear trials. The participant pressed one of eight keys, correspond-
ing to eight choice-confidence combinations, ranging from high-
confident collinear to high-confident noncollinear. Response time
was not constrained. No performance feedback was given.

Shen and Ma

A full description of this experiment can be found in Shen and
Ma (2016) and data are available at https://github.com/shenshan/
optimal_simple.

In summary, nine participants were asked whether the one of four
stimuli with a different orientation than the others was tilted left or right.
Stimuli were displayed on a 21 in. Liquid crystal display (LCD)
monitor with a refresh rate of 60 Hz and a resolution of 1,280 X
1,024 pixels on a gray background with a luminance of 29.3 cd/m”.

Stimuli

The four stimuli were placed 5 dva diagonaly away from fixation.
Each stimulus was a Gabor with a peak luminance of 35.2 cd/m?, a
spatial frequency of 3.13 cycles per degree, a standard deviation of
0.254 degrees of visual angle, and a phase of 0. Target and distractor
orientations were independently drawn from a Gaussian distribution
with a standard deviation of 9.06° around vertical. Stimuli were
shown for 50 ms after a 500 ms display of only the fixation cross.
Response time was not limited. After the response, correctness
feedback was given by coloring the fixation dot red or green for 500 ms.
The experiment consisted of three sessions with 1,000 trials each, of
which the first was excluded from the analysis as training.

Change Detection

A full description of this experiment can be found in Yoo et al.
(2021) and data are the Ellipse condition available at https://github
.com/aspenyoo/uncertainty WM.

In summary, 13 participants indicated whether they believed the
orientation of any of four oriented ellipses changed after a working
memory delay. Stimuli were displayed on a 23 in. Light emitting
diode monitor with a refresh rate of 60 Hz and a resolution of 1920 X
1,080 pixels.

Stimuli

Stimuli were four, light-gray, oriented ellipses on a medium-gray
background. Each ellipse could be long or short, to provide respectively
higher or lower reliability information regarding the orientation of
the ellipses. All ellipses had an area of 1.19 dva. The high-reliability
ellipse had an ellipse eccentricity of 0.9, such that the major axis and
minor axes were 1.02 and 0.37 dva, respectively. The low-reliability
ellipse eccentricity was determined separately for each participant to
equate performance.

On every trial, a stimulus display consisted of four ellipses. The
probability of each ellipse being high reliability was 0.5, indepen-
dent of the reliability of the other ellipses. The location of the first
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ellipse was drawn from a uniform distribution between polar angles
0° and 90°. Each ellipse after that was placed such that all ellipses
were 90° apart on an imaginary annulus that was 7 dva away from
fixation. Afterward, the x- and y-location of the ellipses were
independently jittered —0.3 to 0.3 dva.

Visual Search

A full description of the study can be found in the original article
(Calder-Travis & Ma, 2020). Data are available at https://doi.org/10
.17605/0SF.IO/NERZK.

In summary, 14 participants took part in the experiment. Only data
from the 13 participants who completed all four 1-hr sessions of the
study is analyzed. Participants viewed an LCD monitor with 60 Hz
refresh rate and 1920 X 1,080 resolution at a distance of approxi-
mately 60 cm.

Stimuli

Stimuli were comprised of between 2 and 6 Gabor patches located
on the circumference of an imaginary circle, and were all 4.99 dva
from the imaginary line running from the participant to the center of
the screen. The six possible Gabor locations were fixed throughout
the experiment. The standard deviation of the Gaussian window for
each Gabor was 0.25 dva. On trials in which the target was present,

one of the Gabors was oriented at 45° clockwise from vertical. The
target could be at any of the six possible Gabor locations with equal
probability. The orientation of all the other Gabors (i.e., the dis-
tractors) was drawn from one of two distributions that depended on
the current block. In “uniform” distractor blocks distractors took any
orientation with equal probability. In “concentrated” distractor
blocks distractors were more likely to have an orientation similar
to that of the target orientation. Every time the block type switched
participants were informed and were provided with examples of the
distractors in the upcoming block.

Trials began with the presentation of a fixation cross for 500 ms,
followed by the presentation of the stimulus for 100 ms. Participants
had unlimited time to report “target present” or “target absent” using
a key press. Participants received trial-by-trial feedback on the
accuracy of their responses.

Plotting

For plotting the data and model fits, we quantile binned the
distractor statistics separately for each participant and data series.
We computed the mean value in each bin, and the mean of this mean
value across participants then determined the x-location of the bin.
The y-values were determined by the mean (and SEM) across
participants, of the variable plotted on the y-axis.

Appendix B
Observer Model Details

Here, we derive formulas for the responses of the different
observer models to the individual tasks.

Simple Categorization Task

There is a single oriented stimulus. When C = 0, the stimulus is
drawn from a Gaussian with mean O and standard deviation o.
When C = 1, the stimulus is drawn from a Gaussian with mean 0 and
standard deviation 6; > o,. We assume Gaussian measurement
noise. Stimulus reliability was varied in six levels, which means that
the variance of the measurement noise 2 varies. For each individual

trial, the distribution P(x|C) thus follows the following distribution:
P(x|C=0) = JN(x;s, 62)N(s;0,63)ds = N(x;0,63 + 62),

PLiC=1)= JN(x;s, 2N (5:0,02)ds = N(x:0,62 + 62).  (BI)

Bayesian Model

Inserting these distributions into the formulas for the Bayesian
model yields:

N(x;0,63 + 62)
N(x;0,6% +c2)’
V/2n(c? + o2) x? X2
= log R A YO B AL S, S, 10
2712(00 + Gn) 2(G() + Gn) 2(61 + Gn)
llo (6%+G§) s 6} —¢]

=2 6% + o2 2 (63 + 62)(c? + 62)

dp =log

(B2)

Point Estimate Model

For the point estimate observer, we derive the following decision
variable:
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22 SCHUTT, YOO, CALDER-TRAVIS, AND MA

log(q(s)) = (logp(x, C.s))y(c) + Consty,
= q(C = 0) log[N(x; 5, 62)N(s]0,63)] + g(C = 1) log[N(x; 5, 62)N(s;0,63)] + Consty,
s s (s—x)?
—g(c=0)" —gc=1)", c
q(C )208 q(C )20% 0 2 + Consty,
__ (q(C =0)o6362 + g(C = 1)c302 +;506%)v - 26303xs + 636%x° + Consty. B7)
2600'16,1
max; p(x]s, C = 0)p(s|C = 0) J p(C, s)x)
dp =lo KL = log ————ds B

=l p(xls, C= Dp(s|C = 1) (lla) =D [p(Csktog o5 rds: B

max, N(s; x,62)N(s; 0, 53)
max; N(s;x,02)N(s;0,67)°
) (x;0,03% + o2)

2
2y 1

O,
max, N(s; "

2 2y 1
ootoy Lt
O

x.\.\—

=log

)

o 0 62 4 o2
max, N( 5+G_,6L2+6L2)N(x,0,cl +o7)
T

626% .
N(p,; e cgoTcg)N(x’O' 6% + 62)

=log o ; .
WANTPH S z]+ > |N(x;0,67 + 03)
2o
1 oi+c? x? x? G% + 6,21
=—log — —
2 (:‘Zf%z 2(c3+02) 2(c?+02) 2 “oj+o:
0,46
2,2 2 _ 2
1. o7 x 6] — 0

= — B3
2 gc(z) 2 (63 +62)(c? + o2) (B3)
This has a different constant term than the Bayesian observer, but

shows the same dependance on x. Thus, the main difference created
is a different distribution of bias for the different noise strengths c,,.

Optimal Decision Rule Point Estimate

As the dependance of d on x is the same for the Bayesian observer
and the point estimate observer, we can equate their behavioral
predictions by shifting the criterion of one of them by an amount
equal to:

1. o}l+o; 11 o}
0o 5 ,
2 gc(z)+6n 282 o3

(B4)

As this makes the model equivalent to the Bayes-optimal observer
model, this is the optimal setting of the criterion and the optimal
decision rule point estimate observer behaves the same way as the
Bayesian observer.

Variational Inference

This task is the only one where we can find a sensible factorized
approximation to the true posterior using variational inference. To
do so, we search for an approximate distribution ¢(C,s) =
q(C)q(s) = p(C, s|x) which minimizes the KL divergence

c

To solve this, we can use a general inference scheme for
variational inference to iterate between updating ¢(C) and ¢(s). If
all other factors are fixed, the best solution for the logarithm of factor
q(y) is the expectation of the logarithm of the true posterior
distribution, based on the product of all other factors g% (Bishop,
2006):

log(q(y)) = (log p)» + Const. (B6)
As an update for our factor g(s), this results in:
(See above)
) _ 620'2
Now define pe,, = q(C =0)c?02 + ql(]Cl= 1)oz0% + 0307
5% = 26244 XS + Gl X’
1 — new: new: + C ,
og(q(s)) 262,02 onst
a2 )2
=- % + Const, (x). (B8)
2GH5W671
Thus ¢(s) is normally distributed:
q(s) = N(8: OpewX, OpewG3) (B9)

For ¢(C), we can use the fact that g(s) is a normal distribution to
derive the following update equation based on the mean p, and
standard deviation o, of the current g(s):

log(g(C=1))=(logp(x,C =1,5)),) + Consty,

=JN 55, 62) log[N (s5x,62)N (530,63 )]ds + Consty,
=JN 531y, 62) log[N(s;x,62)]ds
+ | N(s; by, 62) 10g[N(s;0,63)]ds + Consty.  (B10)

The first integral does not depend on C, that is, it will cancel once
we get g(C). Thus:

log(g(C =1)) = JN(S; by, 62) log[N(s; 0, 63)]ds + Const;, (B11)
Using a formula for the cross-entropy of Gaussians:

2,2
oy +
: ZPS + Consty,
20

log(g(C=1)) = —%10g(27t03) - (B12)

(Appendices continue)
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The derivation for g(C = 2) is analogous. Thus, we get the
following formula for ¢(C = 1):

exp [—%10{;(27[63) —"2%‘0”2}

=

=
a
I
—

=
I

exp |:—%10g(2750'0) °S2+ ”‘} +exp{ ilo g(ZnG%)—%}
1

22
GiDeXP (_ 0-:2-:5—(2:ll )
- (B13)

1 o? +pY o2 +pY
Goexp( )+ exp( 307 )

. 2 2
To evaluate this formula, we compute ;—Oexp [— "*‘2:2”5] and
0

—exp[ 20 S} and normalize to get ¢(C = 1) and g(C = 2). We
iterate this scheme for up to 50 iterations or until the change in g(C)

becomes smaller than 107>, After convergence, we compute the
decision variable from ¢g(C) as:

dy = log? (B14)

q(C=2)

Importance Sampling

As described in the main text this observer approximates the
integrals in the equations for the Bayesian observer by sampling
from the prior. For this particular situation, the formula for the
decision variable based on N; samples s, ; and s _; from the priors
under the two categories p(s|C = 1) and p(s|C = 0) respectively
becomes:

N, :
N%Zizlp(xbl.i)

N, g
Nizizlp(x|s2.i)

—logZexp( —s.i) > logZexp(

d,=log

— 8, 1) ) (B15)

Here, the normalization constant of the Gaussian cancels in the
ratio, as the noise distribution has the same variance in both
categories.

Joint Posterior Sampling

This observer type performs Metropolis—Hastings sampling
based on proposal samples from the prior over C and s. To add a
new sample C;,y, 5,41, we thus draw a proposal sample C.5 and
accept it with the following probability, otherwise setting C;; = C;,
Siy1 = Sit

Clp(s. Ci)) ,

) p(s
p(accept) = mm(l, —
p(si. Cilx)p(s. C)

—
)

, —) (B16)

This derivation holds for all ou(r ‘e)xpenments For this particular

experiment, the likelihood ratio 2 20ls) becomes:
p(xl5) (=3 (r—s)?
= - + , B17
P('x|si) P ( 2Gn 2611 ( )

Collinearity Judgements

The task was to detect whether two lines are colinear or not.
Stimuli were presented at different peripheral locations, which in our
models changes the standard deviation of the observations. For
convenience, we here set C = 1 to mean separate s, as this is the more
flexible category, and express s relative to the nominal eccentricity
set to the mean of the s distribution(s).

P(s|C=0) =1, _,N(s5;0,57),
P(s|C =1) = N(s1:0,65)N(s1:0,63).
P(xils;) = N(x;; 3, 03). (B18)

(Appendices continue)
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mmmc=um=jpvmnﬂ@mvwb»w=1wﬁ¢b

= JN(sl ;x1,62)N(s1;0,63)ds, JN(sz;xz, 62)N (5,0, 063)ds,,

1 1[(s; —x)% 82 1 [(s5—x,)2
_7Jexp—f {T-‘_% dsljexp—5 =

" (0,6021)° 2

n

= exp —
2n(c2 + o3) *P {2(05 +62)

P(x)P(C =0Jx) = JP(xl |s)P(x2|s)P(s|C = 0)ds,

2
A
+ % dSz,
%o

n

<ﬁ+@ﬁ

(B19)

= JN(xl;s, 62)N(x;5,62)N(s;0,63)ds,

-__L__FX.JW“‘W+
T 20 Pole, ) P\ T2

2 2

Xy — 8 s
<22>+7}d&

G, GO

) o2 o2
_ 1 J p _ls - 220‘%3—65 (X] + XZ)S + 263-?—6% (x% + x%)

(271)3/25300

1

— e
(2m)5,1/26% + o2

5
o L%
P <2c,% 262 + o (

5 ds,
0Cn

212
26;+0;

B
0,0,

x|+ x,)? —

1
e+ ).
n

Bayesian Model

The Bayesian model was already derived in the original article.
The posterior probability for the two categories are as follows:
(See above)
From the log-ratio of these two probabilities, we get the decision
variable dp:

P(C =1}x)
P(C =0Jx)
G,ﬂ/265 + o2
62 + o3 2(c3 + o2)

1 o3 , 1
(1) +
262263 + 62 (v 2) 262

dp = log

= log (3 +x3)

(3 +x3). (B20)

Point Estimate Model

For the point estimate observer, we first have to find the maximum
a posteriori estimates for 5. From standard formulas for the maxi-
mum of the product of two normal distributions, we get the
following estimates for s under C = 1:

2 2
A G A G
5 =—2 x SH=—2" (B21)
1 P 2 2 2 22
o, + o, oy + 0,

Under C = 0, s, and s, have to be equal. Again using standard
formulas for the mean of the product of Gaussians, we can calculate
an estimate for s as:

(X1 + x). (B22)

2
~ A N 0
S=51=%=7F5——
20'(2)+6%

Based on these expressions, we can now compute dp:

N(3150,060)N(35;0,09)N (3131, 6,)N (823 %, 6,)

. (B23
N(3;0,00)N(8;x1,06,)N(8; x5, 0,) (B23)

dp =log

As usual, we compute the optimal criterion based on optimization
over a sample.

Variational Observer

In this experiment, the distribution over s under Category 0 is a
one dimensional subset of the two dimensional distribution under
Category 1. One consequence of that is that the two cannot be
expressed as densities relative to the same base measure. Informally
speaking, the distribution under Category 0 would have to be
infinitely high to compensate for the infinitely small area. it covers
in the original space. Thus, the KL divergences the variational
observer is meant to optimize are not defined and there are no
sensible factorized approximations to the posterior.

Importance Sampling

As described in the main text, this observer approximates the
integrals in the equations for the Bayesian observer by sampling
from the prior. For this particular situation, the formula for the
decision variable based on N, samples 5.9, ; = (Sco, i» 1, Sco, i, 2) and
Sc1, i = (Se1, i, 15 Se1, i, 2) from the priors under the two categories
p(s|C =0) and p(s|C = 1) respectively becomes:

d, = 10g§:exp (_(xl = Serin1)” = (% = scl,i‘Z)Z)
pay 20,

N, o — g N2 (e — )2
_1ngexp< (x1 SCO,L.1)2G (%2 Sco,,.z)) (B24)
i=1 n

(Appendices continue)
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1

6°+0y ©

NN < )
Ne=ZpZy (6* + o%)o%, '

2 2.2
c°X GG 1
JH5T>0 < TyZ—LZ; ) +IZ$ >dSszN<SD

1 szL )
—Zp VirsoN | 573 o’ +o%

D) [slCpsup(LIp(alesp.sr)dsrdspL.
1 N
ZJP s|C)p(suw)p(x|L, s\, 51 )dspdsy .

T]5,>0N 5750, 62)N (xL;sT,G,ZV)dsTJN(sD;O, GZ)HN(x,-;sD,G,z\,)dsD,

i#L

2 2.2

o Zf;ein_ S d

5 2 2 2 2 Sps
36 + oy 30” +oy

(B27)

Again, the normalization constant of the Gaussian cancels in the
ratio, as the noise distribution has the same variance in both categories.

Joint Posterior Sampling

The acceptance probability for the Metropolis—Hastings sampler
depends only on the likelihood ratio as we showed for the first task
above. For this experiment, the likelihood ratio for accepting a new

sample § = (5,,5,) compared to a current sample s = (s, $»)
becomes:
p(x|s 1 . -
PEXL; = eXP(zsn (=1 =51 = (2 = 52)* + (1 = 51)°
+ (= Sz)2)>, (B25)

Here, C does not directly enter the acceptance probability, but
changes the distribution we sample 5 from.

Shen and Ma

Participants were presented with four Gabor targets sq, 53, 53, S4-
Three of these shared the same orientation. The participants were
asked to report whether the fourth target at location L was tilted left
or right.

The generative model for this experiment is as follows:

P(x,s,C,L) = P(x|s)P(s|C,L)P(C)P(L),
P(x;|s;)) = N(x;5,02),
P(sy.) = N(s\,0,05),
P(s,|C=0) = ]]& <N (s;0, Go)
P(s |C=1) = ]]v >0N(5 0, Go)
P(L) =i,
P(C) =%. (B26)

with a single noise variance 62 and variance of the prior 62. The
notation sy;, indicates the common orientation of the distractors, and
sy denotes the orientation of the target at location L.

Bayesian Model

The Bayesian model was already described in the original
publication. The derivation is as follows:
(See above)
which is consistent with the article with

2 252
Xp, -0y
N<ST962+02 ’52_+c )

B N(s7;0,0 )N(ST,XL, GN) '

_ﬂy
_ \/2n66%, exp 1 ( Z+of exp F (—xL)z} ’

252
o252 2 G Oy 2 GJZV
- o’ +0,
6° + oy N

(B28)

and analogous for Zp:

2
Nls Z#XL O'O'N
D> 302 +0'2 ’302 +5N

N(sp;0.6?) [Tz N(sp3x;.0%)

ZD=

o Zi#LXi 2
(2n03, ) 0” N 1 Z:#L( x;)*
= exp| — exp ,
252 2 o’o}
_o% e o
36% + o2 N

N

(% Ziﬂxl‘) ’ N i (i —Xy)?

2(c? + %) 203,

= \/(27[)3612\,6]2\,(362 +03)exp

(B29)

(Appendices continue)
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p(C=1x)=

1
T p)
1
)

ZN: < G2 ,;&LX)Z_

l Zl#Lxl)z lZi#:L(xi)z _ i (XL)Z & OX,
2 (36% + 6%,)0% c% 2(c® +0%) (6% + 6%)0% ,
Y 2
Z,#(x,z ) )™ )zp( oL ) (B30)
2(c? + ) 20% 2(c* + oy) (6 + 03)0%

Dropping all parts which do not depend on x we obtain:
(See above)
which is equivalent to the original article. In the original article, the
authors the authors modeled a Bayesian observer who reports the
category for which P(C|x) was larger. Here, we use these values to
calculate a posterior ratio and map it through the same decision noise
and lapse rate machinery as all other observer models.

Point Estimate Model

In this case, we cannot easily estimate s independent of L, because
L determines which orientations have to be the same. We can,
however, estimate the stimulus values for each category and base
our decision on the likelihood of this interpretation: We thus
evaluate each combination of C and L as a category:

P(sy.sp|L, C,x) o p(sr|C)p(sp)p(x 57
= P(ST|C)P(SD)HP(Xi|La Sp.S7),s

(B31)

As all distributions here are normal, we can calculate the point
estimates of s analytically:

R 0 if C # signx;,
St = {62+7xL if C = signx;, (B32)
362 1
Sp=——-—1(= il B33
°p 6% + 3c? <3 ;x,> (B33)

With this point estimate, we can calculate the maximum posterior
density for each L, C combination as:

P(§D)P(3T)P(XL|3T)HP(X1'\3D)7

i#L

= N(§D|O’G)N(§T|O’0—)N(XL|§T~GN)HN(xi|§D’GN)7
i#L

1 Sp 87 (a—37) (xi=3p)?
27“1’(_?_?_ Y 2 )
6o} c° 20 oy ; oy

i#L

Taking the logarithm and dropping parts that do not depend on x:
(L =37)°

A (53 8 (= 5p)?
logP(L,C)=—§<£+G—€+ 2 +y %,D ) (B35)
i#L

Inserting the formulas for 5, and $7 for C = signx;:
1 952 1 2 o?
logp(L.C) == —5——=(=) x| + 2
ep(L. €)== ((aﬁ 307 (3; ) CETAR

2
Oy )
+ s,
(@ +07) )

2
1 (xi c +’%6 ( Z]#L /))
- , (B36)
2; 0,2\,

As a result we get eight numbers for the four locations times
two directions. To combine these, the most compatible version
for the inference scheme is to take the maximum for each C
effectively treating L as another nuisance parameter to maxi-
mize over.

Using the maximum over locations, we get the following equation
for dp:

dp = maLxlogha(x\s,L, C=1)p(s|L,C =1)]
— max log[p(x|s, C =0, L)p(s|L, C = 0)],
(B37)

= mLaxlogﬁ(L, c=1)- mLaxlogﬁ(L, C=0).

Optimal-Criterion Point Estimate Observer

This case is symmetric in the two categories and has equal
complexity of the compared alternatives. Thus, in this case, the
optimal bias is 0!

Importance Sampling

For importance sampling, we again sample from the priors to
estimate the integrals required for solving the Bayesian observer. In
this case, this implies first sampling a location for the outlier and then

(Appendices continue)
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sampling the four stimulus orientations based on the location and the
category. The formula for the decision variable based on N; samples
85c0,i= (500, 7, 15500, i, 20 5¢0, i, 3 S0, i, &) AN Sep ;= (S, i, 15 Se1, i, 25 Sel, i, 35
Set1, i, 4) from the priors under the two categories p(s|C = 0) and

p(s|C = 1) respectively becomes:

N =3 (X = 540)?
=logZexp( el (22 Li) )

,4 1 =8¢0, 1, j)2
—log Z exp 26 : .

(B38)

Again, the normalization constant of the Gaussian cancels in the
ratio, as the noise distribution has the same variance in both
categories.

Joint Posterior Sampling

The acceptance probability for the Metropolis—Hastings sampler
depends only on the likelihood ratio as we showed for the first task
above. For this experiment, the likelihood ratio for accepting a new
sample § = (51, 5, §3, 54) compared to a current sample s = (sy, 5, 53,
s4) becomes:

2<sn(_i()‘_~

P =

Both C and L do not directly enter the acceptance probability, but
change the distribution 5§ we sample from.

Change Detection

The task was to detect whether or not one of four ellipses changed
in orientation. Using VM () to denote the von Mises distribution, the

p(C)=%v
p&) =,
P =
p(DIA. €. 1) = 5(D - C1,(4),

p§) = (2—1%)N
p(le. D) =3(p —&-D),
p(x[e) = HVM X3 &Ky, )s

N
p(ylo) = T VMG i, k.0, (B40)
i=1

where A € [0, 2] is the size of the change, L is the location of the
change, D is the vector of changes, £ is the vector of true orientations
in the first display, each in [0, 2x], ¢ is the vector of true orientations

in the second display and X, Y are the observations of the orienta-
tions in the first and second display respectively.

Bayesian Model

The Bayesian model was also derived in the original article.

p(C=1lxy) pxy|/C=1)p(C=1)

= p(C=0ky)  pxyIC=0p(C=0)’

(B41)

In order to compute this value, we must marginalize over the
unknown variables &, ¢, A, and A.
(See below)
Then, plugging this equation into the likelihood ratio:

pxy|C=Dp(C=1) _p(C=1)3¥ ffp X[E)p(y|g+ CAL;)dEdA

plxy|C=0)p(C=0) p(C=0) Ly [[p(xlE)p(yle)deda
_p(C=03L ffp X|€)p(y|E+ CAL;)dEdA
p(C=0)  2zN [p(x[E)p(ylE)dE

generative model for this experiment is: (B43)
plx.yIC)p Jjjjpxm P(310)p(GID)p(DIC, A)p(A)p(C)ddpdDdA,
N+1
w0 (5:) " [] [ rsmriosie - e+ con.
N
( > 8(D; - Cly) )d?;dq)dDdA,
i=1
=n@)(55)" 3 [ rskintie + catjasan, ®42)

(Appendices continue)
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d ZP(C = 1) Zi\il J‘ HJ#I J‘p ‘EJJ y_]|E.>j d&j jp él (yl|él + A)dé,)
P p(Cc=0) 2N TTY, [ p(ile)p (vile) d&: ’

=P(C =1) zN:f [Tz | P(5i1&)p(v18)dE) ([ p(xil&)p(vil&: + A)dE;)dA
p(C=0)4%  2aN([Tw | P(51E)P(yil&)de;) (| p(xil&)p(vilE)dE;)

_plc=1) ZNJ Jp(xile)p(vile; + A)dedA
p(C=0) =1 27N fp(xi‘gi)l?(yiﬁi)dgi

_p(C=1DIN [ VM(x; .k, ) VM & + A,k )dEdA

a p(C=0) ; 275N.[VM(xi;éhKi)VM(yi;éhKi)dgi '

_p(C=1) ZN: 1
p(C = O) i=1 ZRNIVM l’E.m X, t)VM(yl’E.w y z)dE.n

_p(C=1 ! B44
p(C=0) ,Z;znzvjmn’ﬂi,o( VM(E;; p,x)dE; (B9

Because the N items are conditionally independent, we can break Point Estimate Model
the expression up into a product of each item and further simplify.

(See above) max&,L,Ah’(X’ yIE, LA, C = 1)p(§)p(L)p(A)]

. dp =1o , (B43)
where p =x; + arctan(sin(y; — x;), (. ;/x;,) + cos(y; —x;)) and T max (. =0)p(E)p(L)p(A)]
K= \/ X, 1 +2Kx 1K) lCOS( yi)’
Note that we do not need to additionally maximize over variables
p(C=1) i K)o (%, 1) D and ¢, because they are deterministically related to the variables
= C=0 NIo(x) [ VM(E;; p K)d we are maximizing, namely &, A, and L. Expanding the denomina-
P( ) i=1 0 J E.:l p ) gl tor ﬁI‘St,
C=1)1 -1 See belo
_pC=1) Z (ke oK) (B45) _ ( W)
p(C=0)N where i ; = x; + arctan(sin(y; — x;), (K ;/%, ;) + cos(y; — x;)) and

i=

Ke;,=4/K +K 2%, %, ;cos(y urray & Morgenstern, 2010
This produces the final expression of the decision variable, s \/ 210080y = ;) (Murray g )
We choose t;,- = i, ;, t0 maximize:

pC=1)1 ¢
dp=—- 27— d.. B46
B p(C=0)N; : (B46)
N+l N ]0 Két erei
where N( ) H2nlo K, )o(ky, i) 20l (e, i)
Io(x. ) o(x, ; N Ke i
d; = ()( x.z) 0( yA,l) ) (B47) :l i 3N+1 erei ’ (B50)
IO(\/K)%,i +5,; + 2K, K, cos(x; — yi)) N \2x it To(kx )o(Ky.1)

denominator = m?xLD(X, yl&, € = 0)p(§)p(L)p(A)],

= mng?(y|¢ = &)p(x[&)p(&)p(L)p(A)],
H VM(yi: &, Ky ;) H VM(x;; &, %, ) <21*R>N Zlnli]] ’

i=1 i=1

N+l N
( ) HmaxVM y,,é,, }l)VM(xnézv Xl)]

i=1

N+l N Jo(Ke ) |
( > Hméax{m M(éi’“&,i"%i)], (B49)

i=1
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numerator = gnLa)éb?(X,yK,L, A, C=1)pE)p(L)p(A)]

= max[p(yl§, A, L, C = p(x[§)p(E)p(A)p(L)],

ELA

- . 1\V 11
=, max [H VMO &+ 1800 [T VMO8 ) (ﬁ) ﬁﬁ} :

PR Y

where I; is 1if i = L and O otherwise,

N \2=n

1 /1\N1 N
=—< ) HmaXVM(y,,§,+IL

Ky, i) VM(xi; & i), (B51)

Expanding the numerator next,

(See above)

For the Lth location, this expression is maximized if we choose
%,_ =x7, and A = y; — x;. At the remaining N — 1 locations, the
stimulus did not change, and thus the same derivation applies as for
items in the denominator. Further simplifying,

(See below)
Combining and simplifying the numerator and denominator:

3N+1 __efnleMiL e
max ;
LN (2 ) (ke )0 (%y.1) H#L o (ke )0 (xy, )
exp(dp) = TV Y 5 '
N \2n i=1 Io(Kx Mo(xy,i)
&&x, Le y.L
_ Io(x, )lo(x H#L (ki 10 i)
L N T L ’
Hl:l To(ky i)o(xy. 1)
g Ky, Le y.L S
_ K, )lo(k H’#L To(x.i)lo(x, ;)
- SEL o ’
Ky, )]0 (K H#L To(ky i) o (xy. 1)
e XALe v. L
= max ——— (B53)
L efeL

Keeping p(L)p(A) only for C = 1 would yield an additional factor
21[N We assume the model observer calculates this expression for
each possible value of L, and chooses the one which provides the
largest value. Writing out d,, explicitly yields:

dp = mL;ax[KLL + Ky —Ke 1],

= mLaX[KXA,L + KL — \/K)ZC,L + K5+ 2K, 1Ky cos(y, — X)),
(B54)

which has a minimum of 0 at y; = x; and a maximum <, ; + ¥,

the decision boundary dy; = dp + c(k,, k). This is difficult to do
analytically, so we compute c(k,, k,) numerically.

Variational Observer

The variational observer is not defined in this task. A variational
observer would not be defined in a one-item change detection task
for the same reasons laid out in the collinearity judgment task (B); it
is even less clear how this observer would be defined in a four-item
change detection task.

Importance Sampling

As described in the main text and earlier derivations, this observer
approximates the integrals in the equations for the Bayesian
observer by sampling from the prior.

px.y|C) = j p(x.yIE D)p(E. dIC)dEdd,

px[E)p(ylP)p(E, $|C)dEdd,

—_—

p(x[&)p(y[€ + 1cD)p(&)p(D)dédD,

- ﬁjp@\x)pw +1.D)p(D)dedD.,
Ny

N ;(x) ZP(YP;' +1¢D)),
s i=1

where we used Bayes rule p(&|x) = x‘?) for the third step.
Now, we take the ratio of the two hypotheses:

—

~

(B55)

forx, —y,=m.
_pxylC=1)
Optimal-Criterion Point Estimate Observer ' op(xy|C=0)
Ny
To compute the Optimal-Criterion Point Estimate Observer, we = w (B56)
need to find the offsets, c(k,, k), to maximize task performance of o P(YIE)
1 1\ N+l eXei
=y (55) VMO VM o L Gt it )
1 1\ 3V+1 |: oKL oKy L erei :|
=—|— max . (B52)
N <2W> L [To(ke ) Io(xy, )glo(Kx,i)IO(Ky,i)
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Joint Posterior Sampling

This observer uses the same Metropolis—Hastings sampling
method explained in text in earlier derivations, accepting proposal
samples from the prior over C, & and ¢ with the following
probability:

e p(XI%)p(yld3)) 857
min (1. ) ®
We calculate p(x|&)p(y|d):
N
p((E)POId) = [T VM(x;: &) VMG by x,.)),
j=1
N
= [T VM 8. ) VM(y58 + 1Ak, ),

j=1
N

« [[ VMG 5. 6) VM8 + LA K, ). (BSS)
=1

where 1; = 1 in location of change and 0 otherwise. We can directly
sample from these distributions, to calculate the acceptance
probability.

Visual Search

In this task, participants are presented with N items, each posses-
sing an orientation s;. The task is to determine whether one of the
items has been drawn from the “target” distribution (this case is
denoted C = 1), with the remainder of items drawn from a “dis-
tractor” distribution, or whether the items are all drawn from the
distractor distribution (C = 0). We use L = i to denote that item
location i is designated as the “target” location. If item location i is
the designated target location and C = 1, then the item at location i is
drawn from the target distribution. If the item location i is not the
designated target location, or if C = 0, then the item at location i is
drawn from the distractor distribution.

A subtlety here is that we could frame the relationship between C
and L in two different ways. One option is that we could conceptu-
alize L as being independent of C. In this case,

. 1
pL=iC) =

N (B59)

where N is the number of items in a trial. When C = 0, a location is
still designated as the target location, but this designation has no
effect. However, we could also conceptualize L as dependent on C
so that,

ifC=0andi=—1
ifC=0andi#—1
ifC=1andl <i>N

p(L=i|C) = , (B60)

Z—-o =

where we have used i = —1 to indicate that none of the possible item
locations have been selected as the target location. While this
distinction may appear inconsequential from a normative perspec-
tive, it affects the point estimate observer, as we will see below.

For the item at location i, the model observer receives a noisy
measurement x; of the true orientation s;. By assumption or design,

p(xils;) = VM(x;: 5. %), (B61)
p(si|L#i,C=1)=VM(s;0,x,), (B62)
p(s:|C = 0) = VM(s;; 0, x,), (B63)
plsiiL=1i,C=1)=8(s;), (B64)
p(C) = % (B65)

9() is the Dirac delta function. VM() is the von Mises distribution,
and its two parameters (following the semicolon) are the mean and
concentration parameter. s; codes the orientation in a very specific
way: It represents twice the difference between the orientation of an
item, and the target orientation, in radians. This ensures all Gabor
orientations are between —90° and 90°, avoiding any issues with the
fact that a Gabor rotated 180° is identical to the original Gabor. We
assume the measurement x; is conditionally independent of the other
measurements, given s;. This setup almost exactly matches the one
used in the original article (Calder-Travis & Ma, 2020). We will use
x and s without subscripts to denote vectors containing every x; and
every s;, respectively.

An important detail (both here and in the original article) is that
we do not assume that k, which is related to the precision of
observers’ noisy stimulus measurements, is independent of the
number of items in the display. Instead, we allow the possibility
that more items in a display may lead to noisier measurements of
those items. k therefore corresponds to one of four values Ky — 2, Ky = 3,
Ky = 4, OF Ky — ¢, depending on the number of items in a trial, V.

Bayesian Model

The derivations in this case are similar to those in the original
article (Calder-Travis & Ma, 2020). Note that L is defined differently
here, for consistency with the other studies presented in the present
article (see description above). The decision variable used by the
Bayesian observer is given by Equation 2,

. P(C=1x)
45 =108 b e = 0y
_ PHc=1) (C=1)
log pijc=0) T ¢ pic=0)
L PHCc=1)
= 10gP(x|C —0)° (B66)

We see dj is just the log-likelihood ratio. In the case we consider,
the log-likelihood ratio can be written in terms of “local log-
likelihood ratios” (Ma et al., 2011; Palmer et al., 2000),

(B67)

1.,
dp =log NZet .
i=1

(Appendices continue)
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Each local log-likelihood ratio is given by,

pllL=iC=1)
d,‘ =1lo _,
& pIC=0)
_ log [PGlsIP(IL = i, C = 1)ds
I'p(xils)p(s;|C =0)ds ~
VM(x;; 0
= log (xl’ ’ K) (B68)

[ VM(x;; 5, k) VM(s;; 0, %, )ds”

where we have used the properties of the generative model set
out above.

Using an expression given by Murray and Morgenstern (2010) for
the product of von Mises distributions, in Calder-Travis and Ma
(2020), we noted,

IO(KS)

d; =xcos(x;) + lo
' () glo(\/lc2 + &2 + 2K, cos(x;))

. (B6Y)

where I are modified Bessel functions of the first kind and order
zero. We can then find the Bayesian observer’s decision variable by
using these local log-likelihoods in Equation B67.

Point Estimate Observer Model

The point estimate observer uses the decision variable given by
Equation 3. In our case, in addition to s, we also have the location
variable L that the Bayesian observer marginalizes out, and which
the point estimate observer will maximize over. This gives us, for
the decision variable,

P(C = 1)max, ; [P(x|s)P(s|L.C = 1)p(L|C = 1)]

\
P(C = 0)max, [P(x|s)P(s|L,C = 0)p(L|C =0)]"
(B70)

dp =log

We will see that the distinction noted above, between treating L as
independent of C, versus treating L as dependent on C, has an effect
here. First consider the case in which we conceptualize L as
independent of C. In this conceptualization of the problem,

p(L=1i|C)=1/N for both C =1 and C = 0 and for all L = i.

Hence, the decision variable in this case is,

max; ; [P(x]s)P(s|L,C = 1)]
max,[P(x|s)P(s|C = 0)]

dp = log B71)

We refer to this model as the “point estimate Ind. L model.”

Consider now the second possibility in which we treat L as
dependent on C, and equal to a constant value when C = 0. In
this case, Equation B70 becomes,

max,, 1 [P(x|s)P(s|L, C = 1)p(L|C = 1)]

dp =1 , B72
p = log max,[P(x|s)P(s|C = 0)] (B72)
and using Equation B60,
max, | 4 P(als)PSIL, € = 1)
dp = log B73)

max,[P(x|s)P(s|C = 0)]

We refer to this model as the “point estimate Dep. L model.” This
is the model that we report as the “point estimate” model in the main
text (in the sections for this visual search task).

We see that the point estimate observer uses a very similar
decision variable, whichever formalization of the generative model
they assume. Comparing Equations B71 and B73, we see that the
two decision variables differ only in that one features 1/N in one of
the maximizations. Regardless of the point estimate variant used, we
need to find expressions for the following two distributions:

p(x,s|L, C = 1) = p(x|s)p(s|L,C = 1),
p(x,s|C = 0) = p(x[s)p(s|C = 0).

First consider p(x, s|C = 0). Using the assumption that the noise
corrupting the measurement of s; is independent of the noise
corrupting s;, and that the item orientations are independent of
each other, conditional on none of them being the target, we can
write,

(B74)

p(x,s|C =0)

Hp xis:)p

= HVM X3 8:, K) VM(s;; 0, xy),
i

(s;/C=0),

= HVM(si;xi, K)VM(s;; 0, ),
_ H Io( Kd
275[0

_Hp

VM(sl,ud( i) Ka(xi)),

\

VM Sl’ pd( )

a(%:))- (B75)

We have again used the result in Murray and Morgenstern (2010)
for the multiplication of two von Mises distributions such that,

Ha(x;) = x; + arctan(— sin(x;), Xy cos(x;)), (B76)
k(%) = \/K2 + %2 + 2Kk, cos(x;), (B77)
and we have used the following abbreviation,
Io(xq(x;))
(%) = —F " (B78)
2nly(x)Io(x,)

Note the “(x;)” in front of p, K4, and p is used to indicate that these
are three functions of x;. Looking at the result in Equation B75, we
see that the s; are decoupled in the sense that they all appear in
separate factors that are multiplied together. Therefore, we can find
the value of s that maximizes B by maximizing each of these factors
individually. Each factor in the product is maximal when,

5i = Pa(xi). (B79)

and we have

maxp x,s|C =0) (B80)

Hp

YVM(0; 0,y (x;))-

(Appendices continue)
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px,siIL=i,C=1)=pxls)p(slL=i,C=1),

=p(xls)p(si|lL=1i,C = 1)Hp(xj|sj)P(Sj|L #j,C=1),

J#i
= VM(x;; ;. )8 (s;) | [VM(x;3 57, ) VM (555 0, ),
J#i
= VM(x;; ;. )8 (s;) | [P () VM(s;3 pa (). K4 (7). (B81)
j#i

Now, consider p(x,s|L,C = 1) when L = i,
(See above)

We see that the different s, again appear in separate factors that
are multiplied together. Hence, we can again maximize this expres-
sion over s by maximizing over each s; individually. This gives, s; =
0 where L = i, and s; = p,(x;) where L # j. Therefore,

max p(x, s|L=1i,C =1) = VM(x;; 0, K)Hp(xj)VM(O;O, K4 (%;)).
’ i
(B82)

This is an expression for the maximal value of p(x, s|L = i, C = 1),
assuming a specific target location (L = 7). Returning to Equation B71
and Equation B73, we also have a maximization over L. Using our
expressions for p(x,s|L =i,C = 1) and p(x, s|C = 0), we have in
Equation B73, that is, for the point estimate Dep. L model,

ymax {VM(M‘;O,K) [ p(x;) YM(0;0, “d(xf'))}

dr=log I1p() VMI0:0x,5) ’
—toe( M inax VM(x;;0,k) [1;p(x) VM(0;0,%,(x;))
- g(N ; L(x»VM(o;o,Kd(xi))} TTp() VM{0:0. ,(x ,»)))’
=max log(2ml(k, )excost) %)) —Jog N. (B83)

The result for the decision variable described by Equation B71,
and used in the point estimate Ind. L model, is almost the same and
only differs in not having a factor of 1/N in the argument of the
logarithm, which only results in the removal of the log N shift.

dp = max log(2ml (k,)eXcos)xalx)), (B84)

As mentioned, for the result reported in the main text, we
exclusively used the Dep. L model in which the model observer
treats the location variable as dependent on the category. This model
is arguably more theoretically sound: In the alternative Ind. L model,
where the model observer assumes that the location variable and
category variable are independent, the model observer maximizes
over target location when evaluating the merit of the hypothesis that

no target is present. Nevertheless, we fitted both models and report
the model comparison below.

Optimal-Criterion Point Estimate Observer

On each trial there will be some value of x (which varies with the
number of items in the display), and some value of k, (which varies
depending on the distribution from which distractors are drawn; see
Appendix A). For each value of x and x,, we evaluated, via
simulation, the optimal offset to apply to the standard point estimate
observer’s decision variable, as described in the section “Method.”

Variational Inference

Using variational inference to find an approximate posterior
distribution ¢(C, s, L) = q(C)q(s)q(L) that factorizes over C, s,
and L does not work in this case, because of the nature of the joint
probability distribution over these variables. In the task considered
here if C =1 and L = i then s; = 0, and no other values for s; are
possible. For the reasons discussed in the main text (see “Theoretical
analysis”), the approximate posterior must therefore assign zero
probability to g(C =1, L=1, 5; # 0) = g(C = 1)q(L = i)q(s; # 0). This
is only satisfied if g(C =1) =0, g(L = i) = 0 or g(s; # 0) = 0. This line
of reasoning applies to all item locations i. Hence, either g(C = 1) =
0, or one of g(L =) =0 and ¢(s; # 0) = 0 is satisfied at each location
i. Both of these options lead us to an implausible approximation of
the posterior distribution.

Importance Sampling

The importance sampling observer approximates the ratio used by
the Bayesian observer in by computing approximate integrals as
follows,

s)p(s|C = 1)ds
) (s/C =0)ds’
( | i,C= l )

(BSS)
i p( sty

(Appendices continue)
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‘Where N, is the number of samples that this observer uses, and sEC=w

denotes the ith sample from the distribution p(s|C = ).

p(s|C = 0) can be computed from Equation B63, using that the
stimuli at each location, s;, are conditionally independent of the other
stimuli. To find p(s|C = 1), we have to additionally take the location
variable, L, into account,

N

pIC=1)= 3 p(slL=1.C= )p(L =1|C = 1),

=1

(B86)

and then, we can use Equations B60, B62 and B64. As before, N is
the number of items in a trial.

Equation B85 can be rewritten in a way that is easier to evaluate.
To do so, we will first find an expression for log p(x|s)

long j|s

N
Z log VM(x;; 5. %),

log p(x[s)

exp (kcos(x; —s;))
27[10( ) ’

+ E Kcosx—s

= —Nlog(2nly(x (B87)

With result Equation B87 in hand, we can now rewrite
Equation B85 as follows,

N
d= log Z Jorp(ai =)

IOg E —N log(2nly(x
—log Z:: e—N log(2nly(x)) + Z:\;l Kcos(x,—sj(."

i=1

Ny
—log E logp(xlst =)
i=1
Z chOb x-—s b= 1))

€=0) )

)

(B88)

Joint Posterior Sampling

The joint posterior sampling observer uses the decision variable
(Equation 5), and draws samples from the prior over C and s. For the
visual search experiment we also have the location variable, L, and
so the observer draws samples from the prior over C, s, and L,

p(s.L,C) = p(s|L. C)p(L|C)p(C). (B89)

Following Metropolis—Hastings sampling, if we draw a proposal
sample C, L, §, the probability of accepting it and transitioning away
from our current state, C?, L, s® (superscript in brackets denotes
sample number) is

. 0, c)
p(accept) =min(l E 5.L C| ) (I| )L( 7 C‘;)
P

- mi“(l o(c\s' )>)'

Using the previous result (Equation B87) for log p(x|s), we have
that,

(B90)

(Z COS

5) = cos(x; — s}'))), (B91)
giving,

N ~ (i)
p(accept) = min <1, M2 cosly=5) = costy—s) ))). (B92)

Von Mises Approximate Sampling

To make repeated sampling from the von Mises distribution
feasible—something required to implement the above visual search
observer models—we employed various approximations to sam-
pling from this distribution.

(Appendices continue)
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Usually, we used an approach inspired by sampling-importance-
resampling, as described in Bishop (2006). At evenly spaced angles
(6,284 angles), we evaluated the von Mises probability density
function. We then sampled from the evenly spaced angles, using the
values of the probability density function as weights, to determine
the probability each angle was sampled.

We used other approaches in specific cases. For mean p = 0, and
concentration parameter k = 1.5, we sampled with replacement from
a predrawn pool of 50,000 values, that were themselves sampled
from the von Mises. For k = 0, we did not need to use an
approximation, and simply sampled from the uniform distribution.
For the computation of the optimal offset used by the optimal-
criterion point estimate observer, we sampled directly from the von
Mises without approximation.

Model Comparison With Additional Point
Estimate Observer

Here, we compare the models from the main text with the
additional point estimate model, point estimate Ind. L (see above).
The point estimate observer from the main text is here referred to as
the point estimate Dep. L model. We fitted the models in the same
way as in the main text (except this time only repeating the fitting
from 20 different starting positions for each model and participant).
As before, we can evaluate the models using the maximum log-
likelihood obtained, because all models have the same number of
parameters (Figure B1). The point estimate Ind. L model appeared to
perform slightly better than the point estimate Dep. L model.
However, the mean maximum log-likelihood for the point estimate
Ind. L model was lower than the mean for both the Bayesian and
optimal point estimate models, leading to no change in the ordering
of the models compared to the main text.

Figure B1
Model Comparison for the Visual Search Task, Including the
Additional Point Estimate Model
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Note. In this additional model, L is considered independent of C,
which slightly changes the dependance of the bias on the number of
targets. As in the main text, the maximum log-likelihood is compared to
the Bayesian observer results. Dots represent individual subjects. The
bars represent the mean.
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