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Expertise increases planning depth in 
human gameplay

Bas van Opheusden1,2 ✉, Ionatan Kuperwajs1, Gianni Galbiati1,3, Zahy Bnaya1, Yunqi Li1 & 
Wei Ji Ma1

A hallmark of human intelligence is the ability to plan multiple steps into the future1,2. 
Despite decades of research3–5, it is still debated whether skilled decision-makers plan 
more steps ahead than novices6–8. Traditionally, the study of expertise in planning has 
used board games such as chess, but the complexity of these games poses a barrier to 
quantitative estimates of planning depth. Conversely, common planning tasks in 
cognitive science often have a lower complexity9,10 and impose a ceiling for the depth 
to which any player can plan. Here we investigate expertise in a complex board game 
that offers ample opportunity for skilled players to plan deeply. We use model fitting 
methods to show that human behaviour can be captured using a computational 
cognitive model based on heuristic search. To validate this model, we predict human 
choices, response times and eye movements. We also perform a Turing test and a 
reconstruction experiment. Using the model, we find robust evidence for increased 
planning depth with expertise in both laboratory and large-scale mobile data. Experts 
memorize and reconstruct board features more accurately. Using complex tasks 
combined with precise behavioural modelling might expand our understanding of 
human planning and help to bridge the gap with progress in artificial intelligence.

Real-world decision-making often involves sequences of actions with 
multiple alternatives at each stage. Such decisions require people to 
mentally simulate the consequences of candidate actions multiple steps 
into the future using an internal model of the environment—a process 
known as planning. Examples of ecologically relevant planning tasks 
are navigation, preparing a meal, making career decisions and playing 
strategy games. Given the importance of planning, a natural hypothesis 
is that skilled decision-makers are more successful because they plan 
further into the future. Following seminal work3,11, a growing body of lit-
erature has investigated the nature of expertise in planning by studying 
how expert chess players differ from less-skilled counterparts7,12,13. This 
literature has explained the superior performance of experts as being 
due to better pattern recognition8,14,15 and/or deeper search4,7,16–18. How-
ever, developing computational cognitive models that accurately pre-
dict the moves of individual chess players has proven to be difficult6,19  
and, instead, studies rely on clever experimental manipulations5,20 or 
verbal reports 21.

By contrast, cognitive and neuroscience studies often use simpler 
tasks so that behaviour and neural activity can be precisely modelled. 
These studies provide strong evidence that humans and animals 
engage in forward planning at decision time and suggest candidates 
for the underlying neural substrates1,2. Human choices in the classic 
two-step task9 reveal a goal-directed planning component to their 
decision-making. In a more complex goal-directed decision-making 
task, it was previously found10,22 that people plan along multiple 
branches in a decision tree, but eliminate unpromising branches by 
pruning. Planning was studied23 in a fast-paced, dynamic environment, 

finding human behaviour consistent with planning several steps into 
the future. It was previously demonstrated24 that people use prospec-
tive information to guide current choices, and located the representa-
tion of prospective information to cingulate and prefrontal cortices.

In animals, hippocampal place cells display signatures of prospec-
tive activity along candidate trajectories25, particularly when an  
animal stops at a choice point26. Hippocampal neural activity has been 
associated with both planning at decision time and planning in the 
background27. Moreover, evidence for planning in animals has been 
found in adaptations of the two-step task for rodents28–30.

These human and animal studies rely on planning tasks of limited 
complexity, which imposes a ceiling for the depth of planning and 
makes them less suitable to study the nature of expertise. The perfect 
task for studying expertise in planning needs to be complex enough 
that strong play requires thinking multiple steps ahead, but tractable 
for computational modelling. Furthermore, to encourage learning, it 
should be novel, have simple rules and be engaging. We introduce a task 
that satisfies these competing desiderata, develop a computational 
cognitive model for human decision-making, validate it using choice, 
response time and eye movement data, and finally use the model to 
investigate the nature of expertise in planning.

The four-in-a-row behavioural task
Our task is a generalization of tic-tac-toe, in which two players alternate 
placing pieces on a 4-by-9 board (Fig. 1a), aiming to get four pieces in 
a row horizontally, vertically or diagonally. The game can be played 
online (https://weijimalab.github.io/). With approximately 1.2 × 1016 
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non-terminal states (Supplementary Information 3), four-in-a-row has a 
state space complexity31 far beyond common cognitive science tasks32.

Computational cognitive model
We adapted our model of human planning from the artificial intelli-
gence literature, in particular, heuristic search33,34. The core of a heu-
ristic search algorithm is a heuristic function, which maps a board state 
to a value estimate, often as a weighted linear combination of board 
features. For example, a common chess heuristic is to count pieces for 
both players, with different point values for different pieces (pawns, 
knights, rooks and so on). Similarly, our heuristic function counts how 
often particular features (Fig. 1b) appear on the board. It weighs those 
counts by feature weights, resulting in a quick-to-compute but approxi-
mate value estimate.

To refine the value estimate, the model explores a decision tree of 
possible continuations (Fig. 1c,d). We based our model on best-first 
search35. This algorithm iteratively expands nodes on the principal 
variation, the sequence of best moves for both players given the current 
decision tree. Best-first search is well-suited for human planning, as it 
preferentially allocates computational resources to relevant branches 
of the decision tree36.

Our other model choices derive from cognitive science. Inspired by 
previous studies10,22, the model prunes branches in the decision tree 
with low heuristic value. This improves the efficiency of search, but the 
model may not spot winning sequences. Moreover, to enable the model 
to capture variability and make human-like mistakes, we added Gaussian  
noise to the heuristic function and included feature dropout. For each 
move that the model makes, it randomly omits feature instances from 
the heuristic function before performing search. We interpret these 
feature omissions cognitively as lapses of selective attention37.

Model validation
We conducted several experiments and analyses to validate our compu-
tational model for human decision-making in four-in-a-row. In our first 

experiment, 40 human participants played games against other human 
players without any time pressure. For each participant, we estimated 
model parameters (feature weights, feature drop rate, decision tree 
size, pruning threshold and noise level) using fivefold cross-validation. 
The model predicts out-of-sample choices with 40.8 ± 1.4% accuracy 
(mean ± s.e.m. across participants; two-sample t-test against chance: 
t39 = 26, P < 0.001). Figure 2a shows an example model prediction, 
and Fig. 2b shows the model accuracy for each participant. In Sup-
plementary Information  4–7 (Extended Data Figs. 1–4), we validate 
our model specification by comparing against 22 alternative models, 
including ones that lesion model components, and we show that the 
model’s parameters can be reliably estimated using custom fitting 
methods38,39 and that it predicts multiple summary statistics. We found 
that a feature-based value function, tree search and a mechanism for 
attentional oversights are essential for predicting human choices (Sup-
plementary Information 8 and Extended Data Fig. 5), and selected 
the main model as a parsimonious representative of that model class.

Next, we performed a generalization experiment in which 40 partici-
pants performed three tasks: playing against computer opponents, a 
two-alternative forced-choice (2AFC) between moves in a given position 
and a board-evaluation task. We optimized the positions to make these 
decisions challenging, both to our participants and for the model to 
predict. For each player, we estimated model parameters from their 
choices during human-versus-computer games, and predicted their 
2AFC and evaluation decisions. For both tasks, the model predicted peo-
ple’s choices above chance (percentage of correct 2AFC = 58.6 ± 1.0%, 
t39 = 8.3, P < 0.001; Fig. 2c; correlation predicted-observed evaluations: 
ρ = 0.377 ± 0.039, t39 = 9.6, P < 0.001; Fig. 2d). These results suggest 
that the model can generalize between different choice tasks in the 
four-in-a-row domain. In Supplementary Information 9, we show that 
the model outperforms an oracle model (which makes objectively 
correct moves with random tie-breaking), suggesting that the model 
captures the subjective preferences of individual participants.

Moreover, we conducted a Turing test experiment40, in which 30 
observers, familiar with the game, decided whether sequences of 
moves (9.38 on average) were generated by the model or by human 
players. Human observers achieved only 55.4% discrimination accuracy 
(Extended Data Fig. 6), suggesting that the model makes human-like 
decisions.

We tested the main model’s ability to predict process data by analys-
ing response times and eye movements. To predict response times, 
we estimate model parameters from choice data, and we extend the 
best-first search algorithm using an early-stopping rule, which ter-
minates the search when the model’s decision is unlikely to change 
with more iterations (Supplementary Information 10). We then use 
the decision tree built by the model on each trial as a predictor for 
response time. Figure 2e shows the predicted and observed response 
times (in logarithmic space) across all of the participants in the 
human-versus-human experiment, and Fig. 2f shows the Pearson cor-
relation for each participant (ρ = 0.351 ± 0.029, t39 = 12, P < 0.001).

To analyse eye movements, we conducted an experiment in which 
ten participants played against computer opponents while we tracked 
their eye movements with an infrared video-based eye tracker (Sup-
plementary Information 11). Figure 2g shows one participant’s fixation 
trajectory in an example board position. We estimated the distribution 
of squares that a participant overtly attends to on an individual trial by 
convolving their fixation trajectory with a Gaussian filter, truncating to 
unoccupied squares and averaging in time. Figure 2h,i shows that the 
distribution of squares visited by the cognitive model during its search 
process resembles this distribution of attention (mean correlation 
across participants: ρ = 0.535 ± 0.024, t9 = 21, P < 0.001). In Extended 
Data Fig. 7, we show that this correlation is driven by branches in the 
decision tree occasionally reaching up to seven moves deep.

The ability of the model to predict both response times and eye move-
ments on individual trials suggests that people plan their moves by 
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Fig. 1 | Task and computational model. a, Example board position in the 
four-in-a-row game. Two players, black and white, alternate placing pieces on 
the board, and the first player to achieve four-in-a-row wins the game. In this 
position, black is about to win by moving on the third square in the bottom  
row (open circle, mouse cursor). b, The features used in the heuristic function. 
Features with identical colours are constrained to have identical weights.  
The model also includes a central tendency feature and a four-in-a-row feature. 
c, Illustration of the heuristic search algorithm. In the root position (left), black 
is to move. After expanding the root node with two candidate moves for black 
and evaluating the resulting positions using V(s), the algorithm selects the 
highest-value node (V = 2.3) on the second iteration and expands it with three 
candidate moves for white. The algorithm evaluates the resulting positions, 
and backpropagates the lowest value (V = 0.3), as white is the opponent. It then 
compares that value against its alternatives in each intermediate node of the 
tree to decide in which direction to expand the tree in the algorithm’s next 
iteration. d, The decision tree built by the model with fitted parameters on an 
example board. The red nodes indicate the principal variation—the sequence of 
highest-value moves for both players. Note that different branches are evaluated 
to different depths.
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building decision trees, using an algorithm similar to that in our com-
putational cognitive model.

The effect of expertise on planning
The model enables us to investigate how expert players differ from 
novices. To do so, we performed a learning experiment in which 30 
participants played against computer opponents for five sessions, 
spaced no more than 2 days apart. We measured the task performance 
of the participants using Elo ratings41, with a common baseline across all 
experimental data (see the ‘Playing strength estimation using Bayeselo’ 
section in the Methods).

In Fig. 3a, we show that participants played stronger in later ses-
sions (linear regression: β = 21.6 ± 4.6, P < 0.001). To investigate which 
aspects of people’s decision-making process underlie this increase, we 
converted the set of parameters inferred for each participant in each 
session to three metrics: planning depth, feature drop rate and heuristic 
quality (Supplementary Information 2.7). We define planning depth 
as the length of the principal variation in the tree—an approximate 
measure of the number of steps that an individual thinks ahead. The 
feature drop rate is defined as the attentional lapse probability, a model 
parameter. Finally, we define the heuristic quality as the correlation 
between heuristic and objective value—measuring the ‘correctness’ 
of the feature weights. These metrics map to different hypotheses on 
the nature of expertise (Discussion). In Extended Data Fig. 2, we show 
that these metrics, and planning depth in particular, can be reliably 
inferred from choice data, and together explain 56.7% of the variance 
in playing strength (Supplementary Information 12).

Figure  3b–d shows that planning depth increases across ses-
sions (β = 0.255 ± 0.061, P < 0.001) while feature drop rate decreases 
(β = −0.0119 ± 0.0028, P < 0.001). Heuristic quality does not increase, 
and even decreases slightly (β = −0.0067 ± 0.0020, P = 0.0012). In 
Extended Data Fig. 8, we show that individual differences in playing 
strength are also correlated with planning depth and feature drop 
rate, and not heuristic quality. Finally, in Supplementary Informa-
tion 12, we break down the overall gain of 90 ± 26 Elo points between  

sessions 1 and 5 as a gain of 36 ± 11 points due to increased planning,  
a gain of 46 ± 12 due to attention and a loss of 6.6 ± 3.5 points due to 
heuristic quality. These results suggest that stronger players plan 
deeper and have fewer lapses of attention. We find no evidence for 
improvements in feature weights.

In Extended Data Fig. 8, we show that the participants play faster in 
later sessions, verifying that the planning depth increase cannot be 
due to slower play. Another potential concern is that all parameter 
estimates and metrics depend on the model specification, which may 
not match human planning algorithms. Specifically, people may use 
features that are not present in our heuristic function, and there may 
be a worry that the model confuses increases in the weights of those 
features across sessions with increased planning. However, we note 
that planning depth and feature weights are not confusable, at least for 
features in our model (Extended Data Fig. 2). Moreover, Extended Data 
Table 1 shows that our correlations between expertise and metrics are 
robust across alternative model specifications. Although the existence 
of additional features in people’s heuristic functions is theoretically 
impossible to rule out, we have no evidence suggesting that adding 
features to the model will change the main result of deeper planning 
and improved attention with expertise.

The effect of time pressure on planning
To experimentally validate the planning depth metric, we conducted 
a time-pressure experiment in which 30 participants played against 
computer opponents, with a time limit of 5, 10 or 20 s per move, ran-
domly sampled for each game. In Extended Data Fig. 8, we show that 
this manipulation is effective at changing the response time of the par-
ticipants. We predicted that, if planning depth approximately measures 
the amount of computations that a participant performs while making 
a move, it should scale with time used for that move12,42,43. Figure 3f 
shows that planning depth is overall lower in the time-pressure experi-
ment compared with in the learning experiment and indeed increases 
with longer time limits (β = 0.042 ± 0.018, P = 0.019). However, despite 
this increase, we found no improvement in the participants’ playing 
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Fig. 2 | The model accounts for multivariate data and generalizes to unseen 
data. a, Example board position from a human-versus-human game. The open 
circle indicates the move that the active player (white) chose. The red shading 
indicates the probability distribution of that participant’s next move, as predicted 
by the model with parameters inferred for that participant using fivefold cross- 
validation. b, Model accuracy (percentage of correctly predicted moves) for 
each participant in human-versus-human games, ranked from worst to best 
predicted. Data are mean ± s.e.m. n denotes the number of trials per participant. 
The dashed line represents the accuracy of a ‘chance’ model, which assumes 
that people move onto a randomly selected unoccupied square. c, Model 
accuracy for 2AFC decisions in the generalization experiment. For each 
participant, we estimated model parameters from that participant’s moves in 

games against computer opponents. d, The same as in c, but for the correlation 
between predicted and observed responses on the board-evaluation task.  
e, Predicted and observed response times (RT) across all participants in the 
human-versus-human data. We exclude any positions with fewer than 6 or more 
than 30 pieces on the board. f, The correlation between predicted and observed 
response times for each participant. g, The trajectory of eye movements on  
one example trial. The black lines represent saccades and the yellow circles 
represent fixations. The circle area indicates the duration of fixation. h, The 
estimated distribution of overt attention across unoccupied squares, obtained 
by convolving the eye trajectory with a Gaussian filter. i, The distribution of 
squares visited by the model’s search algorithm, with parameters estimated 
from the participant’s choices.
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strength (β = −2.0 ± 1.6, P = 0.21; Fig. 3e). The model suggests a potential 
explanation for the lack of performance—at the most relaxed time limit, 
people overlook features more often (β = 0.0027 ± 0.0010, P = 0.009; 
Fig. 3g and Supplementary Fig.  10), and the dropped features cancel out 
the benefit of increased search. Finally, in this experiment, the heuristic 
quality does not change with time pressure (β = 0.00086 ± 0.00056, 
P = 0.13; Fig. 3h).

Generalization to large-scale mobile data
In all of these experiments, we investigated expertise in participants 
recruited to perform a psychology experiment in a laboratory con-
text. It is not clear whether our expertise results will generalize to a 
more natural context for acquiring expertise. To address this issue, 
we collaborated with Peak, a mobile app company (https://www.peak.
net), to collect a large-scale dataset of users playing a visually enriched 
version (see the ‘Large-scale mobile data’ section of the Methods) of 
four-in-a-row at their leisure in their daily environment.

We analysed data from 1,000 randomly selected users who played at 
least 100 games; this number of games approximately matches the total 
experience of participants in our learning experiment. For each user, 
we grouped their experience into 5 blocks of 20 games, and estimated 
model parameters for each block (see the ‘Large-scale mobile data’ 
section of the Methods). As before, playing strength (β = 1.13 ± 0.04, 
P < 0.001; Fig. 4a) and the depth of planning (β = 0.0108 ± 0.0010, 
P < 0.001; Fig. 4b) increase with experience, whereas the feature drop 
rate decreases (β = −2.58 × 10−4 ± 4.7 × 10−5, P < 0.001; Fig. 4c). We vali-
dated that the increase in the planning depth of the user was not a 
result of slower play (Supplementary Fig. 11), replicating the results 
from the laboratory experiment. In this experiment, we also observed 
a reliable increase in heuristic quality (6.12 × 10−4 ± 4.2 × 10−5, P < 0.001; 

Fig. 4d). However, the heuristic quality in the first 20 games of the 
mobile app data was much lower than that in the first session of the 
laboratory data (0.5301 ± 0.0098 versus 0.4788 ± 0.0044, t999 = 4.7, 
P < 0.001). Thus, the users have more opportunity to improve their 
feature weights, whereas heuristic quality in the laboratory data might 
already start at ceiling.

Contextualizing planning depth magnitude
Our model best matches the choices of individual participants with 
a planning depth of 4 to 6, which contradicts participants’ anecdotal 
responses as well as previous studies that found lower numbers23,44. 
We first note that these planning depth estimates do not imply that 
a person’s plan is equally concrete for each of their next 4–6 moves. 
Our model contains value noise that is summed along branches of the 
decision tree. Effectively, the model forms a concrete plan for the first 
few moves, and later moves are planned more loosely.

The model also contains a sophisticated algorithm for deciding which 
nodes in the tree to explore, but its decision as to when to terminate this 
search is random. In practice, this leads the model to often continue 
the search without changing its final decision. By contrast, people’s 
termination rules are more strategical and approach optimality36. In 
Supplementary Information 10, we show that, with the early-stopping 
rule, the model estimates lower planning depth. Although the stopping 
threshold cannot be identified from choice data, we find that the effect 
of expertise on planning depth is robust across a range of thresholds.

Planning depth or pattern recognition
Previous chess literature has framed the superior performance of 
experts in terms of pattern recognition4, often operationally defined 
through reconstruction experiments3,8,11. We conducted a memory and 
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reconstruction experiment with participants in the expertise experi-
ment (Supplementary Information 15), which shows that experts are 
better at reconstructing specifically those features that our model 
relies on for evaluations. Parallel work45 has replicated this result for 
memory and reconstruction of game sequences rather than individ-
ual positions. These data suggest a mechanistic explanation for the 
observed effect of expertise on planning depth: experts sharpen their 
representation of game-relevant features (Extended Data Table 1), 
allowing for more position evaluations per unit of time and therefore 
deeper planning. Thus, our results are consistent with improved pat-
tern recognition in experts, but highlight the underappreciated role 
of processing speed.

Discussion
Regarding whether our results on the nature of expertise generalize 
to more complex games or natural planning tasks, we speculate that, 
in more complex games, expertise will also improve attention and 
search. For the heuristic quality effect, we note that, in the labora-
tory data, the participants already start with approximately correct 
inductive biases46 about the relevant features and their relative val-
ues, and we observed no increase in heuristic quality with expertise. 
In the mobile app data, people’s feature weights are initially worse 
and we did observe an increase. Thus, the model reveals a difference 
between laboratory and mobile data that was not obvious from play-
ing strength alone.

Complex games such as chess or Go contain many non-obvious 
features that people can learn only through extensive experience 
or explicit instruction47. We therefore speculate that, in such games, 
the superior performance of experts also involves domain-specific 
feature knowledge. We can straightforwardly adapt our model to 
test this hypothesis, given a procedure to generate sophisticated 
candidate features. For four-in-a-row, we found a small set of sim-
ple features that enable the model to explain people’s choices 
through manual exploration and model comparison. A promising 
feature-discovery approach for complex games would be to exam-
ine internal representations of neural networks trained to either play 
these games or predict human choices. Finally, our model applies only 
to deterministic two-player games; human behaviour in stochastic 
or multiplayer games48,49 might involve additional computational  
mechanisms.

Our modelling results show how experts differ from novice players, 
but do not shed light on how those differences are shaped by their 
specific experience. A promising candidate for modelling the learning 
process is deep reinforcement learning, specifically algorithms such 
as AlphaZero50 and SAVE51, which combine learning from experience 
with forward planning at decision time. In future research, we aim to 
test these theories by analysing games from all 1.2 million users in the 
mobile dataset.

Our study opens the door to a precise understanding of human plan-
ning across development52 and in patient populations. It also raises the 
question of how the components of the model are represented neurally. 
A specific hypothesis is that the value of future states is correlated with 
the activity of neurons associated with reward-based decision-making, 
such as those in orbitofrontal cortex53. Moreover, we predict that the 
time course of neural activity while a player contemplates their move 
reflects the dynamics of the value of the root node over iterations of 
the search algorithm.

In this Article, we introduced a two-player game of intermediate 
complexity that provides rich human behaviour, but for which compu-
tational cognitive modelling is still tractable. We demonstrated that a 
computational model based on a heuristic value function and forward 
search algorithm predicts human choices, response times and eye 
movements. Using this task and model, we showed robust evidence 
for increased planning and improved attention with expertise in both 
laboratory experiments and large-scale mobile data.
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Methods

We conducted seven laboratory experiments: human-versus-human 
(n = 40 participants), generalization (n = 40), eye tracking (n = 10), 
learning (n = 30), time pressure (n = 30), a Turing test (n = 30) and a 
memory and reconstruction experiment (n = 38). The experiments 
can be played online (https://weijimalab.github.io/), except for 
human-versus-human and eye tracking.

Participants
We recruited participants through the NYU Psychology research par-
ticipant system, flyers, a sign-up link on our laboratory webpage and 
personal communication. We compensated participants with US$12 
per hour independent of task performance. The participants provided 
informed consent and our experiments were approved by the Institu-
tional Review Board of New York University.

Human-versus-human experiment
For our human-versus-human experiment, we recruited 40 participants 
in pairs. For each pair, we provided consent forms and instructed par-
ticipants on the task together, after which we separated them into dif-
ferent rooms, from which they played games against each other through 
an online interface. After 50 mins had expired and they finished their 
last game, the participants completed a post-task questionnaire, during 
which we provided them with compensation (US$12 in cash). Only after 
completing the survey and receiving compensation did the participants 
leave their respective rooms. Thus, the participants interacted socially 
before and after the experiment, but not during the games.

The participants played games against each other, switching colours 
after every game. After each game, we presented both participants with 
a pop-up showing both players’ names, the current score and a button 
to continue to the next game. The interface proceeded only after both 
players had clicked the ‘continue’ button. Every time the participant or 
their opponent moved, the interface made a faint clicking noise. During 
the games, instead of making a move, participants could offer a draw 
to their opponent, which caused a pop-up prompt to appear on the 
other participant’s screen to accept or reject the offer. If the opponent 
accepted the draw, the game ended immediately, otherwise the pop-up 
disappeared and the player who made the offer could make a move 
instead. We did not restrict how many draw offers participants could 
make (including multiple offers on the same move), but participants 
made relatively few draw offers. In this experiment, we never imposed 
any time limits.

Generalization experiment
In this experiment and all following ones, the participants performed 
the task individually. Each session started with the participant provid-
ing informed consent, after which we instructed them on the details 
of the task. We always compensated participants US$12 at the end of 
their session.

In the generalization experiment, the participants played against 
computer opponents for 30 min, after which they completed 84 tri-
als each of a 2AFC between moves in given board positions, and 84 
board-evaluation trials, in which they rated their winning chances 
in given board positions on a seven-point scale. Afterwards, we 
debriefed the participants and provided payment. The interface for the 
play-against-computer task was identical to the human-versus-human 
experiment, except for two modifications: the between-game pop-up 
did not display any names or score, and we removed the ‘offer draw’ 
button.

In all human-versus-computer games, the computer’s algorithm 
is similar to the behavioural model (see the ‘Detailed model speci-
fication’ section) with three modifications: we used the pruning 
rule from the fixed branching model, and we included scale fac-
tors for weights of features belonging to the opponent (as in the 

opponent scaling model) and for features of different orientation (the 
orientation-dependent weights model) but not between active and 
passive feature weights (as in the no active scaling model). Finally, the 
algorithm used a slightly different feature set. We artificially added a 
thinking time to each computer move, which monotonically increased 
with the number of search iterations that the computer performed 
on each move. This ensured that the computer played faster in easy 
positions than in harder ones.

We created 30 computer opponents, all using the same algorithm but 
with different parameters. We started by fitting the behavioural model 
to individual participants in the human-versus-human experiment. 
For each parameter vector for a human participant, we created eight 
additional vectors by either doubling the mean tree size, halving the 
value noise, halving the feature drop rate or any combination thereof. 
We then ran an all-versus-all tournament between agents using these 
parameter vectors, and ranked their performance using the Elo system 
(see the ‘Playing strength estimation using Bayeselo’ section). Finally, 
we selected 30 agents such that their Elo ratings uniformly cover an 
interval ranging from slightly weaker than the worst human players 
to slightly stronger than the best. We divided the set of 30 agents into  
6 levels with 5 agents per level, and matched the participants with com-
puter opponents using a one-up, one-down staircase, starting at level 
3. For each game, we randomly selected an opponent from the five 
agents on the current level.

On a 2AFC trial, we presented a participant with a board position and 
two candidate options, and they indicated their preference by clicking 
on the corresponding candidate move (Supplementary Fig. 1a). We did 
not impose any time limits on the participants’ choices. To present 
participants with interesting choices and to ensure that participants’ 
choices constrain model parameters, we selected board positions that 
maximized mutual information between the chosen move and model 
parameters, within the set of parameter vectors inferred by the model 
for human participants. We also computed the objective value of each 
move, and ensured that each trial type (both moves winning, one win-
ning and one drawn, both drawn and so on) is represented equally 
(14 times). We presented the same positions to each participant, in 
shuffled order.

In the evaluation experiment, we presented participants with prear-
ranged board positions and instructed them to indicate their expected 
winning chances by clicking one of seven buttons (Supplementary 
Fig. 1b). We labelled the first, middle and last button with losing, equal 
and winning, respectively. For the evaluation experiment, we selected 
positions using the same procedure as in the 2AFC experiment, except 
that, in the final selection stage, we ensured that the game-theoretic 
values (Supplementary Information 2.4) of the presented positions 
were equally distributed across winning, losing or drawn (28 each).

Turing test experiment
The Turing test experiment consisted of two sessions on consecutive 
days. On the first session, the participants played against computer 
opponents for 60 min. In this experiment, each computer opponent 
followed the main model with parameters inferred for an individual 
participant in the human-versus-human experiment.

On the second session, the participants performed 180 trials of a 
classification task. On each trial, we presented participants with a video 
of a segment of a game played either by two players in the human- 
versus-human experiment, or two computers following the main model 
with parameters inferred for those players. The participants could 
start the video at any time by pressing a ‘play’ button, and the video 
played at a constant speed of 1.8 seconds per move. After the video, the 
participants judged the video using a slider labelled “Certainly com-
puters” on the left, “No clue” in the middle and “Certainly humans” on 
the right. After each trial, we provided the participants with feedback 
on whether their classification judgement was correct (“Correct!”) or 
not (“Incorrect”).

https://weijimalab.github.io/
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We selected game segments to use for human-versus-human videos 

from games played in human-versus-human experiment. For each 
game, we sampled the starting number from a geometric distribution 
with rate 0.15, and discarded everything up to that move number. We 
then drew a maximum length for the segment from another geometric 
distribution with rate 0.1, and added moves from the game until the seg-
ment exceeded that maximum length or until the end of the game. For 
each game, we also generated a computer-versus-computer segment 
using a similar sampling method. We started from the same position, 
and added moves from a simulated computer-versus-computer game 
until the segment reached the same maximum length or the game 
ended. Thus, all computer-versus-computer video segments start 
from a position that occurred in a human-versus-human game, but 
all moves are made by the computational cognitive model. Owing to 
this sampling method and the constant playback speed of the videos, 
the only cues available to participants are the moves played and not 
the starting position or response times. Finally, we selected a random 
subset of 90 games to use for human-versus-human videos and 90 
others for computer-versus-computer videos.

To instruct the participants on the task, we used the following text: 
“Today, you will be shown 180 short videos, either from games between 
two human players or between two computers. Half of the videos are 
from games between humans, the other half between computers. The 
videos may start from any point in a game, so the starting position is 
not necessarily an empty board. Your task is to identify if the video is 
from a human-vs-human game or a computer-vs-computer game. You 
will also be asked to report how confident you are about your choice. 
There is no time limit to this task.”

Eye tracking experiment
In the eye tracking experiment, the participants played against com-
puter opponents for 40 min and performed 84 trials of the 2AFC 
experiment, with settings for both experiments identical to the 
generalization experiment above. For the entire experiment, we 
recorded the eye movements of the participants using a remote infra-
red video-oculographic system (EyeLink 1000; SR Research54) with 
a 1 kHz sampling rate and around a 0.01° precision. We acquired eye 
position data with the EyeLink software using the ‘Heuristic filter ON’ 
option. We displayed stimuli on a 21 in Sony GDMF520 CRT monitor 
(resolution: 1,280 × 960 px; refresh rate, 100 Hz). The participants used 
a headrest located approximately 57 cm from the screen. We configured 
the eye tracker to record events only, so that our dataset consists of a 
time series of fixations, saccades and blinks.

For each session, we first calibrated the eye tracker with the built-in 
nine-point calibration method, but we also added a calibration condi-
tion directly before and after the play-against-computer component of 
our experiment. In this calibration procedure, we presented an empty 
board with a white piece with a fixation cross on top of it on the bottom 
left square (Supplementary Fig. 1d). We instructed the participants to 
fixate on the cross and press the space bar when they believed that their 
fixation was steady. After they pressed the space bar, the piece and the 
cross moved one square to the right, instructing the participant to 
fixate on the next square, which they again indicated with a space bar 
press. We continued moving the cross accordingly across all 4 rows, 
obtaining 9 fixation coordinates and time stamps for the space bar 
presses at each square in each row.

Learning experiment
The learning experiment consisted of five sessions. We required the par-
ticipants to schedule consecutive sessions no more than 2 days apart. 
On the first, third and fifth session, the participants played against 
computer opponents for 30 min and completed 60 trials each of the 
2AFC and evaluation conditions. On the second and fourth sessions, the 
participants played against computer opponents for the entire 60 min 
session. In all these sessions, the computer opponents were identical to 

those of the generalization experiment and the positions were selected 
using the same information criteria, with one difference. We selected 
180 positions that we divided into 3 groups of 60, and ensured that the 
order of the days on which we presented these positions was counter-
balanced across participants. We compensated participants US$12 
per session, with a US$12 completion bonus at the end.

Time-pressure experiment
In the time-pressure experiment, the participants played against com-
puter opponents for 50 min, again with the identical procedure as in 
the generalization experiment. However, in each game, both the human 
participant and the computer opponent had to obey a time limit of 5, 10 
or 20 s per move. The time constraint was constant within each game 
and varied randomly between games. If a participant exceeded this 
time limit, the game ended immediately and counted as a loss. We also 
amended the thinking time for the computer, to ensure that it never 
used more than 80% of its allotted time. However, we emphasize that 
this did not change the computer opponent’s decisions, as those take 
only a fraction of a second to compute. We control the opponent’s 
thinking time by simply pausing the interface for the appropriate 
amount of time.

To inform the participants of the time constraint, we indicated the 
time limit for each game in a pop-up before the start of that game. 
Furthermore, directly to the right of the board, we displayed a timer—a 
coloured bar that shrunk gradually while participants were contemplat-
ing their move. Directly below the timer, we displayed a text-based 
count-down with the remaining thinking time in seconds (Supplemen-
tary Fig. 1c). In the 20 s condition, at the start of each move, the colour 
bar was equally high as the board and linearly decreased to zero in 20 s. 
Initially, the bar was green, but when the participant had 10 s left, it 
changed colour to blue and, 5 s before the end, it changed colour to red. 
To warn the participants even more of the passage of time, we played 
three warning sounds (short beeps) when the participant had 2, 1 or 0 s 
left, with an increasingly higher pitch each time. In the 5 or 10 s condi-
tion, we started the timer in the same state that it would be in the 20 s 
condition after 10 or 15 s had elapsed (10 s, blue colour bar, half as high 
as the board; 5 s, red bar, quarter board height). When the computer 
was ‘thinking’, we displayed a timer to the left of the board, with the 
identical behaviour. The time warnings were largely effective, and the 
participants lost on time in only 1.87% (33 out of 1,766) of their games.

Large-scale mobile data
In collaboration with the mobile app company Peak (https://www.peak.
net), we collected a dataset of people playing four-in-a-row. When sign-
ing up for the app, users consented to a privacy policy, which included 
a provision that aggregated and anonymized data might be shared with 
third parties such as universities. The Institutional Review Board of New 
York University determined that no further consent was required and 
approved the research protocol as ‘exempt’.

We collected 10,874,547 games from 1,234,844 unique users. Users 
always play first, and the game board is oriented vertically and visually 
enriched (Supplementary Fig. 1e). Moreover, users play at will against 
a computer opponent implementing a version of our main model, with 
the parameters adapted from fits on data collected in the laboratory 
experiments (human-versus-human, generalization, eye tracking, 
learning and time pressure). The procedure for generating the com-
puter opponents is identical to the one in the generalization, learning 
and time-pressure experiments, but we recalibrated the computer 
opponents as they always play second. We created seven classes of 
computer opponents of varying strength, and matched users with an 
opponent based on their track record of game results. For analysis, 
we randomly selected 1,000 participants from this dataset that had 
each played at least 100 games. We grouped their experience into 5 
blocks of 20 games to approximately match the total experience level 
of participants in the learning experiment.

https://www.peak.net
https://www.peak.net


Memory and reconstruction experiment
In this experiment, the participants memorized and reconstructed 
board positions. We recruited 2 groups of 19 participants. The first 
group consisted of participants who had previously completed the 
learning experiment, no more than 4 weeks before. The second group 
had no previous experience with the game and were informed that the 
task involved memorizing patterns of squares and circles.

On each trial, we presented the participants with board positions 
for 10 s followed by a blank board for 1 s. We then prompted them to 
reconstruct the original position without a time limit. The reconstruc-
tion interface allowed the participants to right-click on any square to 
place or remove a black piece and to left-click to place or remove a 
white piece. At any time, the participants could click a ‘submit’ button 
to indicate that they had finished their reconstruction, after which they 
received feedback indicating the fraction of the 36 squares correctly 
reconstructed, including empty squares.

Each participant reconstructed the same set of 96 positions in a ran-
dom order, in an approximately 1 h session. We generated 2 sets of 48 
positions. The first set contained positions from human-versus-human 
games. To generate this set, we varied the number of pieces in each 
position from 11 to 18, and randomly selected 6 positions from 
human-versus-human games with that number of pieces. The second 
set consisted of procedurally generated positions, constrained to 
exactly match the distribution of the number of pieces, and approxi-
mately match the marginal distribution of occupied squares.

Analysis methods
Playing strength estimation using Bayeselo. To estimate a player’s  
playing strength from games against computer opponents, we use  
Elo ratings55,41, implemented using the publicly available program  
Bayeselo56. To measure Elo ratings of all players in all experiments  
against a common baseline, we run Bayeselo on a database contain-
ing all human-versus-computer games and a simulated computer- 
versus-computer tournament, in which each computer plays once 
against every other computer, including itself. In the computer- 
versus-computer tournament, we include all agents used in the gener-
alization, learning and time-pressure experiment as well as the agents 
used in the mobile app.

Model specification. We assume that people’s choices on each move 
are independent and generated by the same decision-making process 
with the same parameters within a single session. We first describe the 
model broadly, then in more detail. Our model is based on heuristic 
search 57, and consists of a value function and a tree search algorithm. 
Furthermore, we include sources of noise to capture variability in  
human play and human-like mistakes.
Value function. The core of our model is a value function V(s, w), which 
assigns a value to a board state s. The higher this value, the more likely 
the black player is to win from that state. We assume that people use 
value function approximation58, and that people’s value function is a 
weighted sum of features

w ∑ ∑V s w φ s w φ s( , ) = ( , self) − ( , opponent) (1)
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i i
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i i
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where ϕi denotes the features and wi the weights. In the following, and 
in the main text, we omit the dependence of V(s, w) on w for brevity. 
The value function uses five features: centre, connected two-in-a-row, 
unconnected two-in-a-row, three-in-a-row and four-in-a-row. The centre 
feature assigns a higher value to squares near the centre of the board. 
The other features count how often their corresponding patterns occur 
on the board (horizontally, vertically or diagonally).

Whenever the model evaluates a state, the weights of features 
belonging to the active player are multiplied by a scaling constant C.  

This captures value differences between active and passive features. 
For example, a three-in-a-row feature signals an immediate win on the 
active player’s move but not the opponent’s (it can be blocked). We do 
not scale the centre feature.
Tree search. The value function guides the construction of a decision 
tree with an iterative best-first search algorithm35. Each iteration, the 
algorithm chooses a board position to explore further, evaluates the 
positions resulting from each legal move and prunes all moves with 
value below that of the best move minus a threshold. After each itera-
tion, the algorithm stops with a probability γ, resulting in a geometric 
distribution over the total number of iterations.
Noise. To account for variability in people’s choices, we add three 
sources of noise. We model selective attention by randomly dropping 
features (at specific locations and orientations) before constructing 
the decision tree, which are then omitted during the calculation of V(s) 
anywhere in the tree. During the tree search, we add Gaussian noise to 
V(s) in each node. Finally, we include a lapse rate λ.
Detailed model specification. Value function. The value function 
consists of two terms, the first of which measures whose pieces are 
closer to the board centre:

x x x xx x∥ ∥ ∥ ∥∑ ∑ (2)V s( ) =
1

−
−

1
−centre

∈Pieces(s,black) centre ∈Pieces(s,white) centre

where Pieces(s, p) enumerates the locations of all pieces that player p 
owns, xcenter denotes the coordinate of the board centre, and ∥ ⋅ ∥ is the 
Euclidean distance.

The second term counts how often particular patterns occur on 
the board (horizontally, vertically or diagonally). A feature is a binary 
function ft,x,y,o(s) that returns 1 if a pattern of type t occurs at loca-
tion (x, y) with orientation o, and 0 otherwise. We use the following 
four patterns. (1) Connected two-in-a-row: two adjacent pieces with  
enough empty squares around them to complete four-in-a-row.  
(2) Unconnected two-in-a-row: two non-adjacent pieces that lie on a 
line of four contiguous squares, with the remaining two squares empty.  
(3) Three-in-a-row: three pieces that lie on a line of four contiguous 
squares, with the remaining square empty. This pattern represents 
an immediate winning threat. (4) Four-in-a-row: four pieces in a row. 
This pattern appears only in board states where a player has already 
won the game.

We define F to be the set of all such features (one for each type, ori-
entation and board location), and associate a weight w to each feature 
in this set. The feature weight depends only on its type, and not on the 
orientation or location. Finally, we write the value function as:

∑

∑

V s w V s c w f s

c w f s

( ) = ( ) + ( , black)

− ( , white) + (0, 1)
(3)

F
i F

i i

i F
i i

centre centre black
∈

white
∈

N

where cblack = C and cwhite = 1 whenever black is to move in state s, and 
cblack = 1 and cwhite = C when it is white’s move. The final term N(0, 1)  
represents additive Gaussian noise with mean zero and unit variance.
Search algorithm. The search algorithm constructs a decision tree, 
consisting of nodes that contain a state s, the colour of the active player 
in that state and a value associated to the state. The algorithm initializes 
the value of each new node by calling the feature-based evaluation 
function V(s). However, this value changes as the algorithm investigates 
the consequences of future play from that state. The algorithm starts 
with a single-node decision tree and gradually grows the tree. Each 
iteration, the algorithm selects a leaf node, expands it by adding one 
child node each for a number of candidate moves and backpropagates 
the value of these new nodes recursively into the leaf node as well as 
its parents. Specifically, to make a move in a given position, the model 
(Supplementary Algorithm 1) follows the following steps. (1) Decide 
whether to lapse, with probability λ. If it does lapse, the model makes 
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a random move. (2) Randomly drop features from the value function, 
each instance independently with probability δ. (3) Iteratively select a 
node, expand it and backpropagate the resulting value (see below for 
details of these three functions) until the value of the root node (win-
ning, losing or drawn) has been determined with certainty. Moreover, 
after each iteration, the algorithm has a stopping probability γ to ter-
minate. (4) Finally, make the move that maximizes value in the root 
node: arg max c.val

c∈children(root)

 .

To select a node, we use best-first search (Supplementary Algo-
rithm 2). This search procedure relies on the principal variation, the 
sequence in which both players always make the best moves according 
to the currently estimated values starting from the root to a leaf node. 
The model selects this leaf node for expansion. As the value of nodes 
in the tree change after each iteration, so does the principal variation, 
and the search algorithm therefore dynamically switches between dif-
ferent branches of the tree.

To expand the selected node, the model adds one child node for each 
legal move in the associated state (Supplementary Algorithm 3). As it 
initializes the children, it automatically evaluates their states using V(s) 
as defined above. The algorithm does not yet check whether either of 
these states is terminal (that is, either player has achieved four-in-a-row 
or the board is full), but it effectively does so if wfour-in-a-row is high enough. 
Next, the algorithm prunes unpromising children; those of which the 
value difference with the best candidate move exceeds a threshold θ. 
Only afterwards does it assign V = 10,000 to each child state in which 
black has won, V = −10,000 if white has won and V = 0 for draws. It is 
therefore possible that, if wfour-in-a-row is too low, or if the algorithm has 
dropped a four-in-a-row feature in a relevant location, it will prune away 
an immediately winning move, which can result in bad (but human-like) 
blunders.

To backpropagate, the search algorithm incorporates the value 
of the newly created nodes into the decision tree using the minimax 
rule, which sets each node’s value to the maximum of its children’s 
values if black is to move or minimum if white is to move. It achieves 
this efficiently by updating only the nodes on the principal variation, 
in backwards order (Supplementary Algorithm 4). Thus, after back-
progagation, the value of each state reflects the search algorithm’s 
best estimate of the result of a game starting in that state with perfect 
play from both sides.

The search algorithm continues to run until the root node is deter-
mined, or the random stopping occurs. If the value of the root node is 
never determined with certainty, the stopping probability is constant 
and independently drawn each iteration, and the total number of 
iterations is geometrically distributed, with parameter γ. When imple-
menting our model as an AI algorithm to play against human opponents, 
we convert the number of iterations N into a ‘thinking time’ for the AI 
by t a Nγ b= + , where a = 4 s and b = 0.5 s.

The main model has 10 parameters: the pruning threshold θ, the 
stopping probability γ, the lapse rate λ, the feature drop rate δ, the 
active scaling constant C and the feature weights wcentre, wconnected-two-in-a-row, 
wunconnected-two-in-a-row, wthree-in-a-row and wfour-in-a-row. We do not add a para-
meter for the variance of the value noise, as changing the noise distri-
bution from (0, 1)N  to N σ(0, )2  has the same effect as changing θ → θ

σ  
and w → w

σ  for each feature. Thus, adding σ would over-parametrize the 
model and cause σ, θ and {wi} to be unidentifiable from data.

Computing game-theoretic values. We can use the model to calculate 
the game-theoretic value 

∼
V s( ) of a position s, that is, the outcome of a 

game starting from position s with perfect play from both sides. To 
compute the game-theoretic value, we execute the best-first search 
algorithm with default feature weights, no sources of noise and no 
pruning. In the limit of infinitely many iterations, the value of the root 
node in the decision tree of best-first search is guaranteed to converge 
to the game-theoretic value. In practice we found that 200,000 search 

iterations was sufficient for almost all positions. For positions in which 
200,000 iterations did not yield a determined result, we set the 
game-theoretical value to 

∼
V s( ) = 0, in other words, a draw.

Alternative model specifications. Lesions. Our first set of alternative 
models are lesion models, obtained by removing components from the 
main model. Each lesion can be implemented by fixing a parameter 
to a constant. The no centre, no connected two-in-a-row, no uncon-
nected two-in-a-row, no three-in-a-row and no four-in-a-row models are 
obtained by setting the respective feature weight to zero. The no feature 
drop model is obtained by fixing δ to zero, and the no active scaling 
model results from fixing C to 1. To obtain the no pruning model, we 
fix θ to 20,000, which is larger than any value difference that occurs in 
search and causes the model to never prune. Note that the model cannot 
compensate by increasing feature weights as their order of magnitude 
is yoked by fixing the value noise to have unit variance. Finally, the no 
tree model is achieved by fixing γ to 1. This causes the algorithm to stop 
after 1 iteration, in which case it will have expanded only the root node, 
and its choice will be the highest-value child. Pruning lower-value chil-
dren does not affect this choice, so θ is not a parameter in this model.
Modifications. In our first modified model, fixed iterations, we change 
the stopping criterion to occur at a fixed iteration number N. In the 
fixed depth model, we amend the search process to explore every 
branch up to a fixed depth D. In the fixed branching model, we amend 
the pruning rule to keep the K highest-value children in each node 
(lowest value when white is to move). If the expanded node has less 
than K children, the algorithm prunes nothing. Next, we consider 
removing the feature drop mechanism and instead applying a function 
in which each child is pruned with a probability ε while expanding a 
node before the value-based pruning, resulting in the square dropping 
model. For the optimal weights model, we restrict the feature weights 
{wi} to a constant vector, which we chose by maximizing the Pearson 
correlation between V stanh( ( )/20)  and the game-theoretic value 

∼
V s( ) 

across all states s that occurred in the human-versus-human experiment 
(Supplementary Information 2.4).

Finally, we consider Monte Carlo tree search (MCTS). In this algo-
rithm, instead of evaluating a state with V(s), we perform a rollout—a 
simulated game starting from state s between two agents that follow 
a myopic policy. That is, in state s′, the agent chooses the move m that 
maximizes V(s′ + m), or the one that minimizes it when white is to move. 
We then assign a value of 1 to state s if the rollout results in a win for 
black, 0 for white wins, and 1/2 if the game is a draw. Note that, as the 
evaluation function contains noise, the myopic policy and the outcome 
of the rollout are also stochastic. Note also that we perform only a single 
rollout when evaluating a state.

After performing a rollout, MCTS backpropagates by averaging 
rather than minimax, ensuring that the value of each intermediate node 
of the tree is equal to the average outcome of the rollouts conducted in 
all descendants of that node. We also amend the best-first selection rule

m = arg max c. val (4)
c∈children(root)

to the UCB formula

m C
n N

c N
= arg max c. val + ×

log( . )
.

(5)
c∈children(root)

exp
rollouts

rollouts

where n. Nrollouts counts the number of rollouts that have been conducted 
in node n or any of its descendants, and Cexp is a parameter that controls 
the balance between exploitation (investigating high-value children) 
and exploration (investigating children that have not been investigated 
much). Finally, after the tree search terminates, the algorithm makes a 
move by maximizing Nrollouts across all children of the root node.
Extensions. We create the orientation-dependent weights by multiply-
ing the weight of vertically or diagonally oriented features by scaling 



constants cvert and cdiag, respectively. For the orientation-dependent 
dropping model, we allow the feature drop rate for horizontally, 
vertically or diagonally oriented features to vary, whereas, in the 
type-dependent dropping, we let the drop rate depend on the feature 
type. In the triangle model, we include a feature that counts the number 
of times that any of a set of three-piece patterns occurs on the board. 
Finally, the opponent scaling model extends the main model by adding 
a scaling constant copp that multiplies weights of features belonging to 
the opponent. Note that opponent scaling and active scaling are dis-
sociated as the former multiplies weights of the opponent’s features 
regardless of whose move it is, whereas the latter is adaptive.

Model fitting. The main model has 10 parameters: the 5 feature 
weights, the active-passive scaling constant C, the pruning threshold 
θ, stopping probability γ, feature drop rate δ and the lapse rate λ. We 
infer these parameters for individual participants and individual learn-
ing sessions or time limit conditions with maximum-likelihood estima-
tion. Unfortunately, deriving the log-likelihood analytically requires 
marginalization of all latent variables (which features are dropped, 
the number of iterations in the search algorithm and the value noise at 
each node), which is intractable, restricting ourselves to only models 
with analytical likelihoods would limit the types of models that one 
can consider, particularly in regards to the noise structure. Instead, 
we estimate the log-likelihood with inverse binomial sampling38,59,60, 
a method that estimates the log-likelihood by comparing the data to 
simulated data generated from the model. Inverse binomial sampling 
is unbiased but its estimates are noisy. Moreover, we cannot calculate 
gradients of the log-likelihood, so we optimize the log-likelihood with 
multilevel coordinate search 61, a gradient-free algorithm. To reduce 
overfitting, we compare models using fivefold cross-validation.

This pipeline is computationally expensive, and fitting one  
participant’s data for a single model requires approximately 1014 
floating-point operations. We perform the model fits on the NYU 
high-performance cluster (Intel Xeon E5-2690v2 CPUs 3.0 GHz) with 
a parallel implementation of inverse binomial sampling, which uses 
20 cores. On our hardware, fitting takes approximately 1 h for one 
participant and one model.

Derived metrics. To analyse the nature of expertise and the effect 
of time pressure, we convert the set of ten parameters from the main 
model to three derived metrics: planning depth, feature drop rate and 
heuristic quality.

We define the planning depth as the length of the principal varia-
tion in the model’s decision tree, averaged across simulations of the 
model with a given a parameter vector in a fixed set of probe positions, 
specifically, all positions that occurred in the human-versus-human 
experiment (5,482 positions). As in Supplementary Algorithm 4, the 
principal variation is the sequence in which both players make the 
best move according to the values in the decision tree, from the root 
to a leaf. The length of this sequence is equal to the depth of that leaf 
node, and reflects how far into the future the model plans. We average 
this depth across ten simulated moves, and across all probe positions.

The feature drop rate is simply the parameter δ. To define the heu-
ristic quality, we evaluate V(s, w) in all of the probe positions, and com-
pute the Pearson correlation between tanh(V(s, w)/20) and the 
game-theoretic value 

∼
V s( ) (Supplementary Information 2.4). Note that 

the heuristic quality depends only on the feature weights w and the 
active scaling constant C.

As the probe positions are fixed in the definition of planning depth, it 
is purely a function of the model parameters. Planning depth depends 
primarily on the stopping probability (Spearman correlation: ρ = −0.87, 

P < 0.001), and there is a minor dependence on the pruning threshold 
(ρ = −0.21, P < 0.001). These correlations are computed across a range 
of parameter vectors taken from model fits to human data. The heuris-
tic quality is a more complicated function of the feature weights and 
active scaling constant. For example, the heuristic quality correlates 
with wthree-in-a-row/wconnected-two-in-a-row, but the correlation is relatively weak 
(ρ = 0.55, P < 0.001), and other feature weights influence the heuristic 
quality too.

In other words, the derived metrics carve up the set of ten parameters: 
planning depth primarily depends on pruning threshold and stopping 
probability, feature drop rate depends on the feature drop rate and 
heuristic quality solely depends on feature weights. Together, the three 
metrics provide a reduced representation of the model parameters that 
is more interpretable, more reliably inferred (Extended Data Fig. 2) 
and sufficient to capture the increase in performance across sessions 
(Supplementary Fig. 9).

Reporting summary
Further information on research design is available in the Nature  
Portfolio Reporting Summary linked to this article.
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Extended Data Fig. 1 | Model comparison. We validate our main model 
specification by comparing to alternatives in three categories: lesions 
generated by removing model components (red), extensions generated by 
adding new model components (blue) and modifications generated by 
replacing a model component with a similar implementation (green).  

A. Cross-validated log-likelihood per move, across all participants in the 
laboratory experiments. Error bars indicate mean and s.e.m. of the difference 
in log-likelihood with the main model. B–F. Same as A., for participants in the 
human-vs-human, generalization, eye tracking, learning and time pressure 
experiments.



Extended Data Fig. 2 | Parameter validation. Because model fitting is too 
computationally expense for parameter recovery, we assess the reliability  
of the parameter estimates using less computationally expensive methods.  
A. Pearson correlation across participants between model parameters 
estimated in two independent fits. Error bars indicate the confidence interval. 
B. Same as A., for different sessions in the learning experiment. Error bars 
indicate s.e.m. across participants C-D. Same as A-B., for the derived metrics. 

E. 2-sample Kolmogorov-Smirnov test statistic between the distribution of 
θ̂ j

ilesion
 and θ̂ j

full
 for each pair of parameters. In all panels, we indicate tests  

that are significant after correcting for multiple comparisons using false 
discovery rate by *: α = 0.05, **: α = 0.01, ***: α = 0.001. For significant tests, we 
additionally report uncorrected two-sided p-values. F. Trade-offs between 
model parameters using a Pearson correlation between θ̂i

full
 and θ θˆ − ˆ

j j

ifull lesion
 

for each pair of model parameters. G-H. Same as E-F., for the derived metrics.
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Extended Data Fig. 3 | Summary statistics. Comparing our main model 
directly to human choices is challenging because the data is high-dimensional 
and discrete. Instead, we compute summary statistics as a function of number 
of pieces on the board, to probe for systematic patterns in the time course of 
people’s games, such as a tendency to start playing near the centre of the board 
and gradually expand outwards. We compare moves made in human-vs-human 

games (green solid lines), the behavioural model with inferred parameters on 
the same positions (blue solid lines) or random moves (black dashed lines). For 
all summary statistics, people deviate considerably from random, and the main 
model closely matches the human data. All panels depict cross-validated 
predictions.



Extended Data Fig. 4 | Individual differences across summary statistics. 
Each panel shows a scatterplot for the same set of summary statistics as in 
Extended Data Fig. 3, where each point represents a participant in the 
human-vs-human experiment, the horizontal coordinate the statistic 
computed on that participant’s moves, and the vertical coordinate the statistic 

computed on moves made by the model, with parameters inferred for that 
participant on out-of-sample choices. The Pearson correlation coefficient and 
two-sided p-value are reported within each panel. The model accurately 
predicts individual differences between participants.
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Extended Data Fig. 5 | Example board positions illustrating model 
components. To investigate which patterns in the data are explained by tree 
search and feature dropping, we compare the distribution of choices predicted 
by the main model against lesion models. A. Example positions from 
human-vs-human games in which the model with (right column) and without 
tree search (left column) make highly different predictions (red shade), as 
quantified by Jensen-Shannon divergence. In each position, we also show the 
models’ preferred move (with an x) and the move made by the human 
participant (open circle). These predictions are averaged across simulations 
with 200 different parameter vectors from fits to human data, to capture 
positions with robust differences between planning and no planning. Upon 

inspection, we recognize these positions as ones where the player to move has 
multiple reasonable options, but to evaluate their quality one has to calculate 
many moves ahead. For example, in the second position, the move preferred by 
the No tree model is losing and the one by the main model is drawn, but this 
relies on a specific 10-move forced sequence that can only be found through 
explicit search. B. Same as A., but lesioning the feature drop metric, and using 
the ratio of the predicted probability of the human move as metric for selecting 
positions. The feature drop mechanism is primarily necessary to account for 
people’s tendency to overlook possibilities to immediately make four-in-a-row, 
or block immediate four-in-a-row threats by the opponent.



Extended Data Fig. 6 | Turing test. In the Turing test, we showed participants 
video segments of sequences of moves, on average 9.38 moves long.  
A. Classification accuracy in the Turing test as a function of video length.  
Error bars indicate s.e.m. Participants are at chance level for classification of 
one-move videos (of which there were 8), and their accuracy only substantially 
exceeds 50% for sequences longer than 10 moves. A mixed effects linear 
regression with accuracy as dependent variable and observer-specific random 
intercepts estimates the increase in accuracy per observed move as only 

0.33 ± 0.10%. B. Histogram of the percentage of observers classifying a given 
video as human-vs-human or computer-vs-computer, for either human  
games (pink), or computer-generated games (grey). While human games  
are on average more likely to be classified as human and computer games as 
computers, there are no videos for which all 30 observers agree, and there is a 
considerable fraction of videos (63 out of 180) for which a majority of observers 
respond incorrectly.
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Extended Data Fig. 7 | Eye tracking. A. Coefficients in a linear regression 
predicting participants’ attentional distribution from the distribution of 
squares that the model includes in its principal variation at each depth. The 
regression coefficients are significantly greater than zero (one-sample T-test 
across participants) for depth up to 7, and highest for depth closer to 1. Error 
bars indicate s.e.m. across participants. B. Example positions from the eye 

tracking data in which the No feature drop model assigns low probability to 
the participant’s move. The right column shows the eye movements while the 
participant contemplates their move. In most positions, the participant spends 
no time whatsoever looking at the square preferred by the model, suggesting 
they indeed dropped the relevant four-in-a-row feature.



Extended Data Fig. 8 | Playing strength correlations and response times.  
A. Planning depth vs Elo rating of all participants in the learning (green)  
and time pressure experiments (purple). Playing strength correlates with 
planning depth (ρ = 0.62, p < 0.001). B. Same as A., for feature drop rate 
(ρ = −0.73, p < 0.001). C. Same as A., for heuristic quality, which does correlate 
with playing strength (ρ = 0.11, p = 0.088). C. Response times for participants  
in each session of the learning experiment. Error bars indicate s.e.m. across 

participants. Participants play slightly faster in later sessions. Therefore, our 
finding of increased planning in later sessions is not confounded by an increase 
in thinking time. Instead, people plan more while using less time. D. Same as C., 
for the time pressure experiment. The time limit manipulation is effective at 
increasing participants’ response times, even though they use only a fraction 
of the available time on average.
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Extended Data Fig. 9 | Memory and reconstruction experiment. A. Error 
rates in the memory and reconstruction experiment. Although experts are 
slightly worse than novices in the extra piece error rate (β = 0.0071 ± 0.0031,  
p = 0.049), experts substantially outperform novices in the missed piece 
(β = 0.037 ± 0.006, p < 0.001) and the wrong colour rate (β = 0.019 ± 0.003,  
p < 0.001). B. Scatterplot of total reconstruction time for experts and novices. 
Each point represents a board position in the memory in reconstruction 
experiment, the x-coordinate the average time that experts take to finish their 
reconstruction, and the y-coordinate the same but for novices. Positions from 
games are coloured pink, randomly scrambled positions in grey. Experts take 
more time to reconstruct pieces (β = 2.73 ± 0.57, p < 0.001), meaning that the 
error rate result could reflect a speed-accuracy trade-off as opposed to an 

overall improvement. However, experts reconstruct game-relevant features 
such as 3-in-a-row more accurately in the same amount of time. C. Example 
position of the memory and reconstruction experiment. The original board 
contains a 3-in-a-row feature on the bottom row (yellow shading). In the 
reconstructions, each circle indicates the distribution of pieces placed by 
different observers, with the angles of the grey, black and white wedges 
indicating the probability for that square to be empty, contain a black or 
contain a white piece, respectively. Novices correctly reconstruct the 
3-in-a-row feature 42.1% of the time, but experts 84.2%. Together, these results 
suggest that players represent boards in memory in terms of game-relevant 
features.



Extended Data Table 1 | Robustness analysis

To demonstrate that correlation between Elo rating and derived metrics are robust to choices in the model specification, we report outcomes of a two-sided Pearson correlation test between 
Elo rating and derived metrics across all participants and sessions in the learning experiment (analogous to Extended Data Fig. 8A-C), with derived metrics computed for each alternative model 
specification. For the Orientation-dependent dropping and Type-dependent dropping models, we define the feature drop rate as the drop rate of the horizontal 3-in-a-row feature. For all 
other models and metrics, the extension is straightforward. Note that the Fixed depth model explores every branch of the decision tree up to the same depth, hence the planning depth is not 
just the length of the principal variation, but also the length of every other variation. Across all 22 models for which it is applicable, participants’ Elo rating correlates strongly with planning 
depth and feature drop rate, confirming that our main result on the nature of expertise is robust to the choice of model specification.
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