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Abstract 

Perceptual decision-making is often conceptualized as the process of comparing an internal decision variable to a categorical boundary 
or criterion. How the mind sets such a criterion has been studied from at least two perspectives. One idea is that the criterion is a fixed 
quantity. In work on subjective phenomenology, the notion of a fixed criterion has been proposed to explain a phenomenon called 
“subjective inflation”—a form of metacognitive mismatch in which observers overestimate the quality of their sensory representation in 
the periphery or at unattended locations. A contrasting view emerging from studies of perceptual decision-making is that the criterion 
adjusts to the level sensory uncertainty and is thus sensitive to variations in attention. Here, we mathematically demonstrate that 
previous empirical findings supporting subjective inflation are consistent with either a fixed or a flexible decision criterion. We further 
lay out specific task properties that are necessary to make inferences about the flexibility of the criterion: (i) a clear mapping from 
decision variable space to stimulus feature space and (ii) an incentive for observers to adjust their decision criterion as uncertainty 
changes. Recent work satisfying these requirements has demonstrated that decision criteria flexibly adjust according to uncertainty. 
We conclude that the fixed-criterion model of subjective inflation is poorly tenable.
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Introduction
We must often make judgments about what we see, from cat-
egorizing a person in the distance as a friend or stranger to 
deciding whether a faint sense of motion in our periphery was 
really something moving or in fact nothing at all. Such percep-
tual decisions require that we produce a categorical answer based 
on the available visual information. Perceptual decision-making 
is often conceptualized, therefore, as the process of comparing an 
internal decision variable to a categorical boundary or criterion.

The question of how human observers set such a criterion has 
received two apparently conflicting answers, each with broader 
theoretical implications. On the one hand, studies have proposed 
that people are only able to maintain one criterion (Gorea and 
Sagi 2000, 2001, Rahnev et al. 2011, 2012, Ko and Lau 2012, Li 
et al. 2018)—sometimes called the “unique criterion” (Gorea and 
Sagi 2001) or “common criterion” (Morales et al. 2015) model. The 
studies in this group have tended to use weak (near-threshold) 
stimuli, and their findings have been linked to consciousness-
related phenomena like subjective inflation, where it has been 
proposed that only one criterion is used at a given time (Rahnev 
et al. 2011, Solovey et al. 2015, Rahnev et al. 2012, Odegaard 
et al. 2018, Knotts et al. 2019, Abid 2019, Lau and Brown 2019) 
and blindsight, where it has been proposed that the criterion is 

fixed across time (such that it never adjusts to the weaker visual 
signals following visual cortical damage) (Ko and Lau 2012). In 
consciousness science, the nature of the criterion has important 
theoretical consequences. Threshold crossing—the process of sur-
passing a criterion—has been associated with certain kinds of 
mechanisms for the generation of conscious perception, like “igni-
tion” (Fisch et al. 2009, Noy et al. 2015) and higher-order decisional 

or metacognitive processes that attribute consciousness to sen-
sory signals of sufficient strength (Kang et al. 2017, Pereira et al. 
2022, Ko and Lau 2012, Denison et al. 2022). For example, propo-
nents of a “higher-order thought” (HOT) theory of consciousness 
propose that a higher-order representation is needed to make a 
first-order perceptual state conscious (Lau and Rosenthal 2011). 
Importantly, the model favored by some higher-order theorists 
assumes that the criterion is fixed. For example, Lau and Brown 
write, “Because human subjects can only use the same crite-
rion for both the attended and unattended if they are presented 

simultaneously (a known psychophysical fact based on previous 
work Gorea and Sagi (2000)), the higher variability of the inter-
nal signal under the lack of attention turns out to lead to more 
frequent crossing of the criterion, i.e. more frequent occurrence 
of subjective perception.” (Lau and Brown (2019), Blockheads!, p. 
180) Evidence for this view has come from the finding that visual 
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phenomenology is often inflated above what would be predicted 
based on sparse sensory content (Odegaard et al. 2018): observers 
report peripheral (Solovey et al. 2015) or unattended (Rahnev et al. 
2011) stimuli as “seen” more often than would be expected based 
on the observers’ performance in discriminating features of those 
stimuli. For threshold-crossing views of consciousness, the notion 
of a single, fixed criterion is intuitive and appealing.

Other studies, however, have proposed that people can flexibly 
adjust their criteria, applying different decision rules to catego-
rize different stimuli depending on the context and the observer’s 
goals (e.g. Qamar et al. 2013, Denison et al. 2018, Whiteley and 
Sahani 2008, Maiworm et al. 2011, Green and Swets 1974). These 
studies have often used suprathreshold stimuli with a task of 
deciding whether a stimulus belongs to one category or another, 
and the findings have indicated strategic adjustment of criteria 
depending on prior information about the more likely category, the 
relative rewards of the two categories, and sensory uncertainty. 
For example, studies have demonstrated that observers incorpo-
rate uncertainty information when integrating prior knowledge 
with uncertain sensory information (Acerbi et al. 2014, Körding 
and Wolpert 2004, Jazayeri and Shadlen 2010). The cue combina-
tion literature provides further evidence that uncertainty infor-
mation is represented and used in perceptual decision-making: 
many studies demonstrate that observers integrate noisy cues 
from multiple sensory modalities in a near-optimal way, where 
each cue is weighed in accordance with its reciprocal variance 
(Alais and Burr 2004, Körding et al. 2007, Van Beers et al. 1999, Knill 
and Saunders 2003). Moreover, subjects incorporate uncertainty 
information in many tasks requiring higher-level visual cognition 
(Zhou et al. 2020, Shen and Ma 2016, Qamar et al. 2013, Ma et al. 
2011, Yang et al. 2016). For normative views of decision-making, 
the idea of flexible, context-dependent criteria is intuitive and 
appealing.

Only a few studies have designed experiments intended to 
test whether criteria are fixed or flexible, and conclusions have 
been mixed. Foundational work by Gorea et al. found that false 
alarm rates for detecting a threshold contrast stimulus (Gorea and 
Sagi 2000) or contrast increment (Gorea and Sagi 2001) differed 
when a stimulus was presented together with another stimulus 
of different contrast vs. alone. To account for these data, Gorea 
et al. proposed that in multi-stimulus displays, observers could 
not maintain separate internal response distributions or criteria 
for decision-making, leading to a fixed absolute criterion.

Subsequent studies of near-threshold perception adopted the 
unified criterion model and found that it was qualitatively con-
sistent with their findings. An influential study by Rahnev et al. 
(2011) manipulated attention to different simultaneously pre-
sented stimuli and found more conservative signal detection cri-
teria for attended vs. unattended stimuli when d’ was matched 
across attention conditions. That is, although performance was 
equated, observers were more willing to report that a stimulus was 
present when it was unattended than when it was attended. This 
finding was called “subjective inflation” because observers felt like 
they saw more than what was explainable by their performance. 
Later work found further evidence for subjective inflation in detec-
tion tasks (Odegaard et al. 2018, Solovey et al. 2015, Li et al. 2018). 
Subjective inflation, in turn, became a key piece of motivating data 
for higher order theories of consciousness, due to the dissociation 
between objective and subjective performance (Lau and Brown 
2019, Brown et al. 2019). The original Rahnev et al. paper proposed 
an elegant model of subjective inflation based on the unified cri-
terion idea of Gorea et al.: a fixed absolute criterion could explain 
subjective inflation. Subsequent studies of subjective inflation 

adopted this model (Morales et al. 2015, Solovey et al. 2015, Ode-
gaard et al. 2018). As a result, the idea of a fixed criterion for 
conscious perception gained a foothold.

The unified criterion conclusion arrived at by (Gorea and Sagi 
2001) was later criticized, however, on the grounds that the noise 
distribution in different contrast conditions could not be known 
by the experimenter and may not have been constant, as Gorea 
et al. assumed (Kontsevich et al. 2002). When the noise variance is 
unknown, inferring the absolute criterion from false alarm rates 
is not possible, so the question of whether the criterion is fixed 
or flexible cannot be resolved (see also Denison et al. (2018)). A 
few subsequent studies worked to address this issue of model 
unidentifiability using external noise to place the noise distribu-
tions under experimental control. These studies generally found 
suboptimal but flexible criteria. In these studies, uncertainty has 
been manipulated using contrast (Qamar et al. 2013, Adler and 
Ma 2018), luminance (Zak et al. 2012), eccentricity (Zhou et al. 
2020), and orientation variability (Rahnev et al. 2011). Some stud-
ies have found evidence for “criterion attraction”, where criteria 
from different uncertainty conditions are closer to each other than 
would be optimal, although not identical (Zak et al. 2012, Rahnev 
et al. 2021). Meanwhile, an external noise study that manipulated 
uncertainty via inattention found evidence for flexible and near-
optimal criteria under different attentional states (Denison et al. 
2018). In summary, when experimental methods are designed to 
distinguish fixed from flexible criteria, the evidence has tended to 
favor flexible criteria.

This still leaves open a puzzle, though, as to whether the body 
of research, largely focused on consciousness, that has proposed 
or incorporated the idea of a fixed criterion can be reconciled with 
work that demonstrates flexible (though often suboptimal) crite-
ria. To address this issue, we have selected two very similar studies 
to use as case studies for comparison. The first is the original 
Rahnev et al. subjective inflation study, which proposed the fixed 
criterion model of subjective inflation. The second is Denison et al., 
which also manipulated attention but used external noise to mea-
sure absolute criteria and found evidence for flexible criteria. We 
have chosen to focus on Rahnev et al. (2011) and Denison et al. 
(2018) because both investigated spatial attention. Rahnev et al. 
(2011) was the original study to provide evidence for subjective 
inflation under inattention and to explain it with a fixed crite-
rion. As the concept of subjective inflation has been particularly 
influential to the consciousness science community, we have high-
lighted that paper here. These studies have potentially important 
differences—notably, Rahnev et al. used a detection task with near-
threshold stimuli whereas Denison et al. used a categorization 
task with suprathreshold stimuli. But here we sought to determine 
whether their seemingly opposite conclusions could be reconciled 
by methodological and analytical considerations alone.

To do so, we mathematically identified the space of parame-
ter combinations consistent with behavioural evidence used to 
support the “fixed criterion” hypothesis in Rahnev et al. 2011 
and show that this space in fact contains a large set of “flexible 
criterion” solutions. Here, we show that the empirical evidence 
presented by these studies is consistent with a broader class of 
generalized Bayesian observers that take uncertainty into account 
when setting decision criteria. We conclude that previous propos-
als that subjective inflation arises from a fixed decision rule are 
therefore not strictly supported; both sets of findings are consis-
tent with a flexible decision criterion that accounts for attention. 
Finally, we describe how the methods used by Denison et al., which 
go beyond the standard signal detection theoretic framework, 
allowed inferences about decision rules that were not possible 
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in previous studies—lending strength to the evidence for flexible 
criterion-setting.

Background
Signal detection theory
In signal detection theory (SDT), a visual stimulus is internally 
mapped to a one-dimensional decision variable in the observer’s 
head, corresponding—in theory—to whichever dimension of the 
stimulus which is task-relevant. In a stimulus detection paradigm, 
the subject is instructed to respond about whether they believe 
the stimulus was “present” or “absent” on a given trial. Repeated 
presentations of the same stimulus (e.g. a Gabor with the same 
contrast strength) are thought to result in a decision variable 
with some amount of trial-to-trial variability (𝜎) (Green and Swets 
1974). A trial with a low decision variable value should be classi-
fied as “unseen,” and one with a high value should be classified as 
“seen.” Each internal decision variable distribution for “present” 
or “absent” stimuli is a theoretical distribution formed from 
infinite repeated observations of stimulus-present or “stimulus-
absent” trials. These two decision variable distributions overlap 
one another, resulting in some degree of inherent ambiguity for 
any one given observation. The decision-making system resolves 
this by setting a decision boundary (also called a decision cri-
terion): an observation should be classified as “absent” unless it 
yields an decision variable value greater than a given decision 
criterion, in which case it should be classified as “present”. If 
the decision-making system has perfect metacognitive access to 
the true mean (𝜇) and variance (𝜎) of the two decision variable 
distributions, then it should be able to compute the optimal deci-
sion criterion—that is, the threshold at the intersection of these 
two distributions that maximizes decision accuracy over many 
trials (Fig. 2, panel A).

SDT is a very general framework, and the decision variable can 
range from a basic sensory signal to a highly derived cognitive 
quantity. The decision variable is often referred to, abstractly, as 
the “strength of evidence” for one decision category or another. 
Green and Swets (Green and Swets 1974) conceptualized the deci-
sion variable as a log posterior ratio, a comparison of the proba-
bilities of each category. To actually calculate such probabilities, 
one needs a generative model describing how stimulus inputs 
are transformed into internal responses. In perception science, 
it is often possible to specify such a generative model, in which 
a stimulus generates a noisy internal “measurement”, which can 
then be used to determine the probability of each stimulus given 
that internal response. This measurement is “absolute” in the 
sense that it is considered to be a physical quantity in the brain 
that is directly related to the stimulus (e.g. neural firing rate or 
estimated orientation). The fixed-criterion proposal refers to the 
measurement space: the idea is that on each trial observers make 
a decision by comparing their sensory measurement to some fixed 
value.

The first step in formalizing a signal detection theoretic model 
is to define the statistics of the observations. Part of the generative 
model is defined by the task at hand: the stimulus s takes two 
discrete values—on a detection task, the stimulus is either present 
or absent. If the stimulus is present, s has a fixed, experimenter-
set value, which we will denote by 𝜇. If it is absent, we will define it 
as 0. The two stimulus values are equally likely on any given trial, 
so that 

To complete the generative model, we have to specify the 
nature of the observations. We assume that on each trial, the 
observer makes a noisy measurement x of the stimulus s. As is 
standard in signal detection theory (and motivated by the cen-
tral limit theorem) we assume the noise to be zero-mean Gaussian 
noise. Thus, we have: 

If the signal (stimulus) is absent, then the decision variable 
is drawn from a normal distribution with mean 0 and standard 
deviation 𝜎. If the signal is present, then the variable is drawn 
from a normal distribution with mean 𝜇 and standard devia-
tion 𝜎. The distributions p(s) and 𝑝(𝑥|𝑠) fully define the generative
model.

Let us say that on a given trial, the measurement of the stimu-
lus is xtrial and the observer is asked to infer whether the stimulus 
is present, i.e. to infer s. Given the generative model, the log 
posterior ratio over s is then 

which is a multiple of the measurement itself. Therefore, it is, 
under this generative model, equivalent to use either the log pos-
terior ratio or the measurement as the decision variable, and we 
choose the latter.

To make a decision, the observer responds “present” when the 
measurement exceeds the criterion, i.e. when 

We will refer to k as the “absolute criterion”. We also introduce 
a “relative decision criterion” c, which is a linear transformation of 
the absolute criterion k: 

The absolute criterion has the same units as s, x, 𝜇, and 𝜎, 
whereas the relative criterion is dimensionless.

For a summary of different SDT-related terms and the defini-
tions we use in this paper, see Table 1.

The model observer’s “sensitivity” is a signal-to-noise ratio: 

A higher 𝜇 (a larger-magnitude difference between “present” 
and “absent”) or a lower 𝜎 (less measurement noise) will result in 
less overlap between the “present” and “absent” distributions and 
higher sensitivity. The same d′ could arise from an infinite number 
of combinations of 𝜇 and 𝜎.

Summary of Rahnev et al.’s experiment
Rahnev et al.’s experiment that we primarily consider consists of 
a detection task where attention is manipulated with visual cues. 
The screen is divided into four quadrants. Each quadrant displays 
either a patch of visual noise or a noisy Gabor patch. Each diago-
nal pair contains the same stimulus. Subjects are cued to attend 
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Table 1. Definitions used in this paper, with worked expressions 
for the main task discussed, namely distinguishing a signal at 𝜇
from 0 in the presence of Gaussian noise.

Concept
Definition (for fixed signal in 
Gaussian noise)

Discriminability (unitless) 𝑑′ = 𝑧(𝐻) − 𝑧(𝐹) = 𝜇
𝜎

Relative criterion (unitless) 𝑐 = − 𝑧(𝐻)+𝑧(𝐹)
2 = −𝑧(𝐹) − 𝑑′

2 = 𝑘
𝜎 −

𝑑′
2 = 𝑘− 𝜇

2
𝜎

Absolute criterion (same unit as 𝜎) 𝑘 = −𝜎𝑧(𝐹) = 𝜇 − 𝜎𝑧(𝐻) = 𝜎(𝑐 + 𝑑′
2 )

Log posterior ratio (unitless) 𝑑 = log 𝑝(𝐶=1)
𝑝(𝐶=0) + 𝜇

𝜎2 (𝑥 − 𝜇
2 )

Bayesian criterion on the 
measurement (same unit as 𝜎)

𝑘Bayes = 𝜇
2 − 𝜎2

𝜇 log 𝑝(𝐶=1)
𝑝(𝐶=0)

Bayesian relative criterion 
(unitless)

𝑐Bayes = − 𝜎
𝜇 log 𝑝(𝐶=1)

𝑝(𝐶=0)

to either diagonal pair. They are then probed to respond about 
whether they saw or did not see a Gabor, at either the cued or 
uncued locations. Trials on which the cued locations are probed 
for response are “valid” trials (on which attentional allocation is 
presumably high) and trials on which the uncued locations are 
probed were “invalid trials” (on which attentional allocation is 
presumably low).

In both valid and invalid conditions, experimenters measured 
the subjects’ hit rate H and false-alarm rate F. The authors use 
z-scores for H and F to compute sensitivity d′ and relative crite-
rion c according to the standard formulae from signal detection
theory: 

The authors titrate the contrast of the stimuli such that in 
approximation 

where “val” and “inv” refer to the subsets cue condition (valid or 
invalid). The empirical finding can then be summarized as 

In words, the relative decision criterion in the invalid condition 
was measured to be smaller than in the valid condition. Based 
on this finding, what can we infer about the absolute criterion in 
either attentional condition? We show in the next section that this 
finding is insufficient to infer a fixed absolute criterion.

Degeneracy of solutions
Inequality Accounting for Rahnev’s Findings 
(with d’ matched)
There are a number of combinations of absolute criteria and 
noise parameters that are consistent with the empirical findings 
in Experiment 1 of Rahnev et al. 2011. Each observer measure-
ment is made under one of two conditions: valid (attended) and 
invalid (unattended). Therefore, we first allow 𝜇 and 𝜎 to be 

condition-dependent and correspondingly attach labels “val” and 
“inv”: 

We now assume that in the invalid condition, when attention 
is lower, the level of measurement noise (i.e. the trial-to-trial vari-
ance in the observer’s decision variable) is higher. In other words, 
𝜎inv > 𝜎val. Eq. (10) can be reformulated: 

Rahnev’s empirical finding, per Eq. (11), can be reformulated 
as: 

At this point, it is helpful to consider the range of kval. Empir-
ically, Rahnev et al. find that 𝑐val > 0, which by Eq. 6 implies that 
𝑘val > 0. (In fact, the necessary and sufficient condition for the lat-
ter is that 𝑐val > − 𝑑′

2 , which is by extension also empirically true.) 
Henceforth, we will assume that 𝑘val > 0.

Combining Eqs. (16) and (17), we find 

Thus, in the signal detection theory model of the task, any com-
bination of kinv, 𝑘val > 0, 𝜎inv, and 𝜎val that satisfies Eqs. (19) and (20) 
can explain the experimental findings for detection tasks. We will 
refer to Eq. (19) as the “Inequality Accounting for Rahnev’s Find-
ings”, or the IARF for short. Throughout this paper, we will assume 
that Eq. (20) holds for stimulus detection tasks.

Rahnev solution
The authors next propose a kind of explanatory model, which, 
following Gorea (Gorea and Sagi 2000), they call a “unified cri-
terion” model. In this model, the observer uses the same, fixed 
measurement criterion in both conditions, i.e. 

This is one solution to Eq. (19), since we would have 
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All solutions
Rahnev’s fixed-criterion model is far from the only solution to Eq. 
(19). In particular, kinv could be different from 𝑘val, as long as it 
is smaller than 𝜎inv

𝜎val
𝑘val. This means that the experimental results 

are consistent with a wide range of models whose measurement 
criteria are in fact sensitive to uncertainty. For example, even in 
the scenario that 𝜎inv > 𝜎val, one could imagine an observer who 
scales their measurement criterion by the square root of the noise 
level. Then, 

where we take advantage of the fact that the square root of a 
positive number greater than 1 is smaller than the number itself. 
Thus, the IARF is satisfied even despite the measurement criterion 
shifting.

In panels A and B of Figure 1, we visualize three possible 
relationships between the trial-to-trial variance of the decision 
variable (𝜎) and an observer’s absolute (k, panel A) or relative 
(c, panel B) decision criterion. Inattention could lead to an increase 
in the trial-to-trial variability of the decision variable on a detec-
tion or discrimination task, i.e. an increase in 𝜎. Fixed crite-
rion models assume that the absolute criterion remains fixed 
as 𝜎 increases (purple line, panel A). This corresponds to a 
decreasing relative criterion as variability increases (purple curve, 
panel B)—in other words, with fixed criteria, we should expect the 
relative criterion to be more liberal in unattended (high 𝜎) com-
pared to the attended (low 𝜎) conditions. There are, however, many 
other relationships that could equally satisfy this inequality—for 
example, an observer might scale their criterion by the square root 
of the variance (orange, panel A). This would similarly account 
for the empirical finding of a monotonically decreasing (i.e. more 
liberal) relative decision criterion in a high-𝜎 compared to a 
low-𝜎 condition (orange curve, panel B). Lastly, the Bayes-optimal 
solution entails optimal sensitivity of the absolute decision vari-
able k as 𝜎 increases (green line, panel A), which corresponds 
to a fixed relative criterion in a 𝜎-normalized space (green line,
panel B).

From (19), we visualize the space of possible absolute crite-
rion and decision variable variance ratios that satisfy the IARF in 
[Figure 1c]. Any combination of parameters below the green opt 
line would satisfy the IARF. The fixed criterion observer posited by 
Rahnev is given by the purple line, with a fixed criterion ratio of 1. 
Any point above the purple line would violate the unified criterion 
assumption. An observer who scales their measurement criterion 
by the square root of the noise level (orange line) also satisfies the 
IARF and serves as just one of many possible examples of sub-
optimal, non-fixed models that do so. Anything between the opt 
line and fixed line suggests a shift in the criterion in the correct 
direction, but one which falls short of the optimal magnitude.

We should moreover leave open the possibility that even a fully 
Bayesian observer who has wrong beliefs about certain features 
of the generative model can also satisfy the IARF. We demonstrate 
this possibility in Appendix B.

Tasks that distinguish between a fixed and 
a flexible criterion
Since we are interested in distinguishing between a fixed and 
flexible criterion in observers, the goal is to determine and com-
pare the values of kval and kinv. But as we have demonstrated 
above, finding a unique solution for k is non-trivial on most task 
designs. We propose that two experimental requirements must be 

met when testing the fixed-criterion hypothesis: Firstly, the deci-
sion variable stimulus must be plausibly identifiable with some 
known stimulus-derived feature axis. Secondly, the task design 
must be such that subjects have an incentive to shift their cri-
terion as uncertainty changes. We will now elaborate on these 
requirements.

Requirement 1: A determinate mapping from the 
stimulus space to the decision variable space
We propose that the problem we ran into in the previous section is 
an example of a more general problem with standard signal detec-
tion theory paradigms, which we call the “indeterminate mapping” 
problem. The problem is that, in most signal detection theoretic 
tasks, we do not know how an observer maps the stimulus variable 
space that the experimenter can access and manipulate (orien-
tation, contrast, and luminance) to the observer’s own internal 
decision variable space, in order to make decisions in the task 
at hand. The observer’s decision variable space may reflect some 
non-linear warping of the stimulus variable space of interest or 
may reflect a different stimulus variable space altogether than 
what the experimenter had in mind. For instance, an experi-
menter may manipulate units of contrast in a Gabor detection 
task, but the observer’s decision variable might instead reflect 
units of luminance for a given patch of pixels. Even more sub-
tly, the observer’s decision variable may scale with contrast but 
in some non-linearly compressive way, for example, obeying a 
relationship characterized by the Weber–Fechner law, whereby a 
unit increase in a stimulus property like contrast or luminance 
may result in a non-linear increase in an observer’s decision vari-
able, depending on the absolute magnitude of the property. Such 
examples illustrate the need to carefully rule out plausible alter-
natives before making conclusions about what physical properties 
of the stimulus subjects use as the basis for their decision vari-
able. We cannot pin down the trial-to-trial mean of an observer’s 
decision variable (𝜇) unless we are able to justify our assumption 
about the observer’s mapping from stimulus feature to decision
variable.

We run into the problem of a degeneracy of criterion solutions 
for k as a result of our inability to pin down a definite value for 𝜇.

Recall that Eq. (6) 

shows that c is the distance between the measurement criterion 
and the optimal criterion, also expressed in units of standard 
deviation. Likewise, Eq. (7) 

shows that d′ is the distance between the means of the signal and 
noise distributions, in units of standard deviation. The two relative 
quantities d′ and c, which we can measure in an experiment, are 
therefore expressed in terms of three absolute quantities 𝜇, 𝜎, and 
k, which we would like to infer. We cannot infer three variables 
from two measurements, so if we do not know (or cannot plau-
sibly assume to know) either 𝜇 or 𝜎, k will remain fundamentally 
unidentifiable, leading to the indeterminacy problem described in 
the above section. (See Denison et al. 2018, Appendix 1).

Thus, in order to pin down the decision criterion k, we must 
first pin down the mean of the decision variable 𝜇. And in order to 
pin down 𝜇, we need to design a task that allows us to plausibly 
assume that 𝜇 is identical to some stimulus feature. This require-
ment is not met by the standard stimulus detection task (as used 
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6 J. L. Lee et al.

Figure 1. Three possible relationships between the trial-to-trial variance of the decision variable 𝜎 and an observer’s absolute (A) or relative (B) 
decision criterion. On a detection or coarse discrimination task, we assume that inattention leads to an increase in the trial-to-trial variability of the 
decision variable (i.e. an increase in 𝜎 from valid (filled star) to invalid (open star) conditions). Here, we assume an increase from 𝜎val = 1 to 𝜎inv = 2
(where the decision variable distributions across conditions are pictured in panel D). Adherents to the fixed criterion assumption believe that the 
absolute criterion remains fixed as 𝜎 increases (purple line, panel A). This corresponds to a decreasing relative criterion (i.e. a more “liberal” relative 
criterion) as variability increases (purple curve, panel B). An observer might alternatively scale their criterion by the square root of the variance 
(orange, panel A). This would similarly account for the empirical finding of a monotonically decreasing (i.e. more liberal) relative decision criterion in a 
high-𝜎 compared to a low-𝜎 condition (orange curve, panel B). Lastly, the Bayes-optimal solution (Appendix A) entails optimal sensitivity of the 
absolute decision variable k as 𝜎 increases (green line, panel A), which corresponds to a fixed relative criterion in a 𝜎-normalized space (green line, 
panel B). (C) Visualizing the space of possible absolute criterion and decision variable variance ratios that satisfy the IARF. Any combination of 
parameters below the green optimal line would satisfy the IARF. The fixed criterion observer posited by Rahnev (purple) is given by the purple line with 
a fixed criterion ratio of 1. Any point above the purple line would violate the fixed criterion assumption. An observer who scales their measurement 
criterion by the square root of the noise level (orange) also satisfies the IARF and serves as just one of many possible examples of suboptimal, 
non-fixed models that do so. Anything between the opt line and fixed line suggests a shifting criterion in the correct direction which falls short of the 
optimal magnitude. The gray zone represents combinations where invalid noise is smaller than valid noise, which we assume is not possible. The zone 
below the fixed line, where invalid criterion is lower than the valid criterion, while unlikely, would still be consistent with the IARF. (D) Shifts in the 
decision criteria from valid (top) to invalid (bottom) conditions in an example case where 𝜎val = 1 and 𝜎inv = 2. Decision variable distributions are given 
by the black curves. The decision criteria used to separate category 1 from category 2 are given by vertical lines of their respective colors. The decision 
variable distributions and decision criteria can be expressed in a normalized, relative space (lower x-axis), in which the Bayes-optimal decision 
criterion is fixed at 0. They can also be expressed in an absolute decision variable space, which we assume to be equal to degrees in a coarse 
discrimination task. In absolute decision variable space, the fixed criterion model suggests a decision criterion (purple) which stays fixed from valid to 
invalid conditions (resulting in a relative decision criterion which is said to shift leftward). Here we show a fixed criterion observer which happens to 
be optimal in the valid condition, but those observers which set a single suboptimal criterion for both valid and invalid conditions is also fixed.

in Rahnev 2011) because we do not know the mapping between 
the experimenter-set contrast and the observer’s internal decision 
variable for detection. Importantly, we have no way of knowing 
how attention changes the decision variable. Therefore, in detec-
tion tasks, we cannot say how changes in either physical stimulus 
contrast or attention lead, over many trials, to changes in 𝜇 or 𝜎 in 
decision variable space.

Simple orientation discrimination tasks (i.e., coarse discrimi-
nation between -45

∘
 and 45

∘
 or fine discrimination between -2

∘

and 2
∘
) also fall victim to the mapping problem because there 

are alternative decision variable axes that subjects may plausi-
bly use other than orientation. If the subject’s decision variable 
were faithful to orientation, each unit on the decision variable axis 
would correspond to a different orientation in degrees (where the 
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Challenging the fixed-criterion model of perceptual decision-making  7

half-way point between -45
∘
 and 45

∘
 is an orientation of 0

∘
). This 

could be implemented by reading the difference in firing rates 
between two neural populations, each of which is maximally 
responsive to the stimulus orientation corresponding to the one 
of the two stimulus values. In general, however, we are unable to 
rule out any such scheme that involves a decision variable, which 
is low at one extreme (corresponding to stimulus 1), high at the 
other extreme (corresponding to stimulus 2), and monotonically 
increasing. And any such axis could be implemented by the dif-
ference in firing rates between two neural populations (Δ𝑟), where 
each population fires maximally for their preferred stimulus fea-
ture. For example, an alternative possibility to orientation is that 
the subject’s decision variable reflects a graded linear interpola-
tion in pixel space between -45

∘
 and 45

∘
 (where the half-way point 

in the decision variable space reflects an equal superimposition 
of an image of -45

∘
 and 45

∘
), with two populations maximally sen-

sitive to either extreme. In simple discrimination tasks, we are 
unable to rule out the former scenario in favor of the latter nor 
are we able to rule out nonlinear variations of either scenario that 
preserve a monotonic mapping.

We suggest that the most promising approach for encouraging 
observers to use a particular axis is to present a “continuum” of 
stimuli along the desired decision variable axis and to ask subjects 
to categorize the stimuli into one of two learned category “distribu-
tions”. For example, subjects could categorize an oriented Gabor 
as drawn from one of two overlapping normal distributions with 
different means (e.g. ±5

∘
) and the same standard deviation (e.g. 8

∘
), 

as was done in (Rahnev 2021). In requiring subjects to distinguish 
between distributions of orientations (and not merely two fixed 
orientations, as in traditional discrimination tasks), these tasks 
provide stronger justification for the assumption that the deci-
sion variable is in fact identical to orientation, since orientation 
is the simplest plausible variable that accurately reflects strength 
of evidence for category delineation.

Zak et al. (2012) and Rahnev (2021) both addressed the issue 
of decision variable identifiability using external noise. These 
studies, along with Kontsevich et al. (2002), recognized that the 
experimenter’s lack of knowledge about the observer’s internal 
noise distribution limited the interpretability of the findings of 
Gorea and colleagues (Gorea and Sagi 2000, 2001) that first led to 
the notion of a unified criterion. They provide examples of how 
experimenters can identify an observer’s absolute decision crite-
rion using a task in which external noise is significantly greater 
than internal noise, making internal noise a negligible component 
of the observer’s internal response variance. Both studies gener-
ally observed flexible but suboptimal criterion adjustment, which 
they referred to as “criteria attraction”, rather than a single, fixed 
criterion, though with some variability across observers in Zak 
et al. Observers who were informed about the experimental design 
had behavior that was closer to optimal than those who were not 
informed (Zak et al. 2012), indicating the importance of ensuring 
that an observer’s knowledge matches experimenter assumptions 
when evaluating the optimality of behavior (Rahnev and Denison 
2018).

In sum, we propose that we can only pin down 𝜇 if we can 
assert a one-to-one mapping between a known physical stim-
ulus space and an unobservable decision variable space. It is 
important to seek a task design where subjects are as limited 
as possible to using only the decision variable mapping intended 
by the experimenter. One way to achieve this is by using an 
external noise approach: presenting a continuum of stimuli along 
the desired decision variable axis and asking subjects to identify 

stimuli as belonging to different category distributions along this
axis.

Requirement 2: Built-in incentive to shift the 
decision criterion based on uncertainty
Secondly, even if we had full knowledge of the mapping between 
a stimulus feature and the subject’s decision variable, an addi-
tional condition for resolving the effect of uncertainty on the 
decision (Qamar et al. 2013, Ma et al. 2011, Keshvari et al. 2012, 
Trommershauser et al. 2011, Ma 2012, Zhou et al. 2020, Yoo et al. 
2021). For instance, in any discrimination or categorization task in 
which the category distributions are symmetric and offset (e.g. the 
internal measurement distributions for the two categories have 
the same variance and means +/- 𝜇), the optimal decision variable 
is at the intersection point of the two internal measurement distri-
butions. This point stays the same as uncertainty changes (Fig. 2) 
panel A, so observers have no incentive to shift their decision 
criterion. In this situation, we would not expect differences in 
kinv and kval from an optimal observer. (See Denison et al. (2018), 
Appendix 1.) In trying to falsify the notion that observers do not 
shift their criterion, it is important to provide through task design 
the incentive to shift. Thus, to study whether uncertainty affects 
decision criteria, a task should provide an optimal observer with 
an incentive to shift their decision criterion when uncertainty
changes.

The embedded category task
The “embedded category” task (Fig. 2, panel B; (Qamar et al. 2013); 
(Denison et al. 2018); (Adler and Ma 2018)) meets both criteria 
for distinguishing between a fixed and flexible criterion. To infer 
attention-dependent shifts in k based on measurements of d′ and 
c, we have outlined that it is necessary to know either 𝜇 or 𝜎 and to 
provide a task structure that incentivizes observers to respond to 
increasing uncertainty by shifting k—the embedded category task 
succeeds on both counts.

In the embedded category task, observers categorize a stimu-
lus drawn from one of two distributions (categories) with the same 
mean but different standard deviations (Fig. 2, panel B). For exam-
ple, in an orientation categorization version of this task, observers 
would categorize a given orientation as drawn from either a nar-
row distribution (category 1) or a broad distribution (category 2), 
both centered around horizontal (0 degrees). When the orientation 
of the test stimulus is near horizontal, it is more likely to belong to 
category 1, whereas when the orientation is far from horizontal, it 
is more likely to belong to category 2. 

This task structure avoids the indeterminate mapping prob-
lem because orientation is the only plausible decision variable—it 
varies continuously from trial to trial and serves as the sole basis 
for category delineation. Since 𝜇 is known in physical units, and 
since 𝜇 is not expected to change when we manipulate the uncer-
tainty of the stimulus by changing its physical contrast (Qamar 
et al. 2013, Adler and Ma 2018) or level of attention (Denison et al. 
2018), it is therefore possible for us to infer the absolute criterion 
k from task performance.

Moreover, the embedded category task, by virtue of having 
unequal category stimulus variance, incentivizes subjects to shift 
their decision boundary as measurement uncertainty increases 
(see Fig. 2, panel B). The optimal decision boundary should 
shift with changes in uncertainty, satisfying our second require-
ment (Fig. 2, panel B, green line). Therefore, by plausibly fixing 
𝜇 and 𝜎 and by incentivizing an uncertainty-dependent decision 
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8 J. L. Lee et al.

Figure 2. (A): Standard signal detection theoretic task. For discrimination or categorization tasks in which the category distributions are symmetric 
and offset (e.g. where category 1 produces an internal decision variable distribution with mean −𝜇 and variance 𝜎 and where category 2 produces a 
distribution of mean 𝜇 and equal variance 𝜎), there is typically no incentive for the optimal observer to shift their decision criterion as trial-to-trial 
variability increases. The optimal decision criterion continues to bisect the means of the two category distributions, thus failing to provide an optimal 
observer with an incentive to shift their decision criterion as uncertainty changes. (B): The embedded category task. In a variant of the standard 
fine-discrimination task, observers categorize an oriented stimulus drawn from one of two orientation distributions: a narrow distribution (category 1) 
or a broad distribution (category 2), both centered around horizontal (0 degrees), such that when the orientation of the stimulus is near horizontal, it is 
more likely to be from category 1. As variance increases from the valid to invalid condition, decision criteria may stay fixed (purple), adjust flexibly 
(e.g. square root relation, orange), or adjust optimally (green).

boundary, Denison et al. satisfy both minimum requirements for 
resolving the question of whether the absolute criterion, k, is 
fixed (Fig. 2, panel B, purple line) or flexible (Fig. 2, panel B, green 
line).

To briefly summarize Denison et al.’s results, they find that k
was not fixed but instead adjusted flexibly based on level of uncer-
tainty, in line with previous findings that the decision criterion is 
broadly sensitive to uncertainty (Qamar et al. 2013, Denison et al. 
2018, Adler and Ma 2018) [see Denison et al., 2018, figure 4]. How-
ever, the degree to which the criterion shift is suboptimal is still 
very much an open question, and studies like Rahnev (2021) have 
begun to describe the phenomenon in more detail.

Similar results have been found in peripheral viewing tasks. For 
instance, Zhou et al. (2020) asked subjects to make decisions about 
the co-linearity of horizontal lines at varying peripheral eccentric-
ities (i.e. at varying degrees of sensory uncertainty). In line with 
much of the probabilistic perception literature, the study suggests 
that subjects perform nearly optimally in setting decision criteria 
to correspond to each level of visual eccentricity (i.e. each level 
of uncertainty), suggesting that uncertainty-dependent criterion-
setting may also be involved in subjective inflation of visual per-
ception at the periphery. This poses a challenge to Solovey et al., 
2015, in which the authors only put forward a fixed criterion model 
to explain the phenomenon (Solovey et al. 2015)).

Other potential designs
The embedded category task is far from the only experimental 
design that can meet the two task requirements to test whether 
decision criteria are sensitive to attention-dependent uncertainty 

(or other forms of uncertainty more broadly). The question can be 
answered by modifying existing experimental designs. For exam-
ple, an auditory-visual cue combination task in which subjects 
are asked to report the location of an object, and in which uncer-
tainty is manipulated via valid or invalid cuing, should help shed 
further light on the question of flexible criteria. This is because, 
unlike a standard 2AFC detection or coarse discrimination task, 
the uncertainty manipulation should map to the observer’s deci-
sion variable space in a fairly predictable way (i.e. we should not 
expect inattention to systematically warp the observer’s internal 
decision space if that decision variable reflects spatial location) 
and because unequal measurement variance between the sensory 
modalities is expected to result in a shift in criterion as uncer-
tainty is manipulated. Here, the unequal measurement variance 
caused by differences in reliability between visual and auditory 
information would play an analogous role to the unequal category 
variances in the embedded category task. Cue combination tasks 
typically involve estimates over a continuous variable (e.g. loca-
tion) but can be converted into a decision-making task through 
comparison of that estimate to a standard cue (e.g. is the stimu-
lus to the left, right, or straight ahead, relative to a standard cue?). 
There is a paucity of research in the cue combination domain 
that manipulates uncertainty through attention rather than a 
stimulus-driven manipulation (e.g. manipulations cue reliability). 
Cue combination tasks with an attentional manipulation paired 
with neural recording can also help shed light on the neural under-
pinnings of criterion-setting (for instance, a variant of Gu et al. 
(2008)). Additionally, some of the studies in which people use 
trial-to-trial sensory uncertainty information without trial-to-trial 
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Challenging the fixed-criterion model of perceptual decision-making  9

feedback may be suitable for modification to probe the effects 
of attention-dependent uncertainty on observer estimates and 
decision criteria.

Introducing unequal rewards between the two categories could 
also introduce an incentive to shift the decision criterion under 
increased uncertainty. The basic design could be similar to White-
ley and Sahani (2008), in which observers did a left–right cate-
gorization task under unequal rewards for left and right. Rather 
than manipulating reward, one could fix the rewards for either 
choice (while keeping them unequal) and manipulate attention. If 
attention acts only on the sensory noise level 𝜎, then the reward-
maximizing criterion will be attention-dependent. The same effect 
would be obtained by assigning different base rates (prior proba-
bilities) to the two categories (Morales et al. 2015). However, these 
manipulations introduce an extra ingredient and further assump-
tions compared to the embedded category task. In these tasks, 
observers need to both learn the prior or reward information and 
combine that information with the likelihood. Only then would 
they have the potential to appropriately adjust their decision 
criterion as a function of attention-dependent uncertainty.

Conclusion
In this paper, we have shown that the fixed-criterion model of 
subjective inflation requires re-thinking in light of evidence that 
decision criteria flexibly adjust according to uncertainty. Both 
fixed and flexible criteria are consistent with Rahnev et al.’s empir-
ical findings, and indeed an infinite set of relations between the 
observer’s trial-to-trial decision variable and decision criterion 
could account for these results. Moreover, we have shown that not 
all task designs are suitable for demonstrating flexible criterion-
setting because multiple plausible decision variable mappings 
may exist for a given task. Using an embedded category task 
design which allows for the presentation of intermediate stimuli 
along the desired feature axis encourages observers to use orien-
tation rather than any other stimulus feature as the basis for their 
decision variable. A distinct advantage of distribution-based cate-
gorization tasks is that we can make better assumptions about the 
𝜇 and 𝜎 of the observer’s internal decision variable distributions 
to make better inferences about the absolute decision criterion k. 
Moreover, if we are interested in investigating the sensitivity of an 
observer’s decision criterion to attention-dependent uncertainty, 
we should prefer experimental designs where there is an accuracy 
incentive for observers to shift their criterion as the trial-to-trial 
variance of their decision variable changes. Denison et al.’s embed-
ded category task met these requirements and yielded evidence 
for attention-dependent uncertainty. This finding should be incor-
porated into future models of subjective inflation. An important 
future experimental direction is to develop a perceptual “detec-
tion” task, more aligned with those used to investigate subjective 
inflation, that meets the requirements described in this paper and 
assess anew whether perceptual criteria are fixed or flexible.

Code
MATLAB code for reproducing the figures in this paper is available 
at https://github.com/WeiJiMaLab/fixed-flexible-criterion.

Appendix A Optimal Bayesian observer
Under what condition is the IARF satisfied by a Bayesian observer? 
Bayesian models are a subset of signal detection theoretic models 
in which the criterion is not any arbitrary number, but is instead 
set to maximize expected accuracy (or another form of expected 

utility). A Bayesian observer uses particular pre-existing beliefs 
about the world to make inferences. If these beliefs are correct—
i.e. reflect the true generative model of the observations—then 
expected accuracy will in fact be maximized. In the present 
section, we will treat that case; in the following section, we will 
allow for wrong beliefs.

Let us say that on a given trial, the measurement of the stimu-
lus is xtrial. The Bayesian observer uses knowledge of the generative 
model defined by Equations (1) and (2) to make the best possi-
ble judgment about the stimulus s given xtrial. The “best possible” 
judgment here means the one that will maximize accuracy over 
many trials. This requires choosing the category (“present”, 𝑠 = 𝜇
or “absent,” s = 0) with the highest posterior probability. To for-
malize this, we define the Bayesian observer’s internal decision 
variable d as the log posterior ratio 

This can be written as the sum of the log likelihood ratio and 
the log prior ratio: 

Reporting the stimulus with the highest posterior probability 
means reporting “present” when d > 0, or in other words, when 
𝑥trial > 𝜇

2 . Comparing this with Eq. (5), we find that the optimal 
Bayesian criterion is 

We now apply this equation to the comparison between valid 
and invalid conditions: 

Since experimenters ensure that d′ is matched between the 
valid and invalid conditions, this is equivalent to 

This does not satisfy the IARF, Eq. (19), since that is a strict 
inequality. Stated plainly, Rahnev’s empirical findings suggest that 
people are not Bayes-optimal in the task, which the authors rightly 
emphasize. As measurement noise increases, observers do not 
adjust their decision criterion by the Bayes-optimal amount—
adjustments fall short of this magnitude.

Additionally, we can easily rule out another general class of 
suboptimal models: If 𝑘 = 𝛼𝜇 or 𝑘 = 𝛼𝜎, where 𝛼 is an arbitrary 
constant, then the IARF is also not satisfied.

Appendix B Bayesian observer with wrong 
beliefs
So far, we have considered an optimal Bayesian observer who 
holds correct beliefs about the generative model. While such an 
observer is not consistent with the data, a Bayesian observer who 
holds incorrect beliefs about the generative model might still be. 
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10 J. L. Lee et al.

Such an observer is said to have “model mismatch”—their inter-
nal model of the world is mismatched in some way to the task’s 
true generative model. A Bayesian observer with model mismatch 
will of course be, strictly speaking, “suboptimal”. Suboptimali-
ties in inference have been proposed to account for variability in 
human behavior in other contexts (Beck et al. 2012, Drugowitsch 
et al. 2016, Shen and Ma 2016). Specifically, we allow here that an 
observer may have wrong beliefs about 𝜇, 𝜎, and 𝜋, the prior proba-
bility that the stimulus is present. We denote the observer’s belief 
about the stimulus value when the stimulus is present by ̃𝜇, their 
belief about noise level by 𝜎̃, and their belief about the probabil-
ity that the stimulus is present by ̃𝜋. Then, Eq. (A. 2) for the log 
posterior ratio (d) becomes

Eq. (B. 4) indicates that for the Bayesian observer, the criterion 
is not free but is fully determined by the parameters that describe 
the observer’s beliefs over the structure of the world. The invalid 
and valid Bayesian criteria are 

We now examine the circumstances under which a Bayesian 
observer with wrong beliefs sets criteria that satisfy the IARF, Eq. 
(19). For such an observer, the IARF can be rewritten as 

There are many combinations of ̃𝜋, ̃𝑑′
inv, ̃𝑑′

val, 𝜎̃
′
inv, and 𝜎̃′

val for which 
Eq. (B. 11) holds. A few special cases are of interest.

Special Case 1
Firstly, if the observer uses the correct 𝜎s and the correct value of 
the prior, ̃𝜋 = 0.5, then LPR = 0 and Eq. (B. 11) becomes 

Thus, wrong beliefs about sensitivity could be solely respon-
sible for Rahnev’s findings. Even though experimenters matched 
d′ across conditions, it may be the case that subjects incorrectly 
believe their sensitivity to be higher for the valid compared to the 
invalid conditions.

Special Case 2
Secondly, if the observer correctly believes that ̃𝑑′

val = ̃𝑑′
inv, but 

holds incorrect beliefs about either or both 𝜎s, then Eq. (B. 11) 
reduces to 

This means that the noise level in the valid condition (the lower 
noise level) is overestimated by a greater factor relative to its true 
value than the noise level in the invalid condition. (Or, equiva-
lently, the noise level in the invalid condition is underestimated by 
a greater factor than the noise level in the valid condition.) Thus, 
wrong beliefs about internal noise in either or both conditions 
could also be solely responsible for Rahnev’s findings.

Special Case 3
Thirdly, if the observer uses the correct 𝜎s but ̃𝜋 is not necessarily 
equal to 0.5, and they incorrectly believe that ̃𝑑′

val > ̃𝑑′
inv, then Eq. 

(B. 11) becomes 

Since d′s are positive, and since ̃𝜋 ≤ 0.5 results in a LPR ≤ 0, this 
condition is always satisfied when ̃𝜋 ≤ 0.5. However, it also holds 
for higher values of ̃𝜋, up to a limit determined by the believed 
d′s. An analogous scenario with opposite signs arises when the 
observer uses the correct 𝜎s but incorrectly believes that ̃𝑑′

val < ̃𝑑′
inv.

We conclude, firstly, that within the Bayesian framework, there 
are multiple sets of wrong beliefs that can account for Rah-
nev’s findings without positing a fixed decision criterion. Secondly, 
even within the Bayesian framework, Rahnev’s findings do not 
imply that the criterion is the same between the invalid and valid 
conditions.
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