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Abstract

This study aimed to characterize the developmental trajectories
of different cognitive component processes underlying plan-
ning decisions. Participants (ages 8-25 years) completed a
planning task called Four-in-a-row. We used computational
modeling to distinguish between three cognitive component
processes of planning: planning depth, heuristic quality, and
attentional oversights, each of which three contributed to bet-
ter playing strength, but differed in their developmental tra-
jectories. Specifically, from early to mid-adolescence, heuris-
tic quality rapidly improved and contributed to better playing
strength. From mid to late-adolescence, planning depth in-
creased and supported better playing strength. Fewer atten-
tional oversights were associated with better playing strength
and this relation did not show age differences. Together, these
results reveal sequential development of the cognitive compo-
nent processes underlying planning, with early refinement of
heuristic strategies, and gradual increases into young adult-
hood in the number of considered future actions, states, and
outcomes. These findings provide a more complete account of
the development of planning and its component processes.

Keywords: Development; Planning; Decision-making; Rein-
forcement learning

Introduction

Planning is a form of decision-making that involves the men-
tal simulation of potential futures. Everyday life frequently
requires planning for achieving short- and long-term goals,
from selecting the most efficient commute home to making
sound investment choices. Planning is a complex construct
that has several cognitive component processes. To evaluate
a potential sequence of actions, one must identify and attend
to relevant features of the current state, and mentally simulate
potential actions and their future consequences within work-
ing memory (Sutton & Barto, 2018). While a large devel-
opmental literature has demonstrated that planning improves

from childhood well into early adulthood (Albert & Stein-
berg, 2011; Korkman, Kemp, & Kirk, 2001; McCormack &
Atance, 2011), prior studies have not yet characterized the de-
velopment of the component processes that underlie planning
within a single task.

In recent years, there has been a growing focus on charac-
terizing the computations underlying planning using simple
decision-making tasks that are amenable to detailed math-
ematical modeling (Daw, Gershman, Seymour, Dayan, &
Dolan, 2011; Huys et al., 2012). The paradigmatic exam-
ple is the Two-Step Task (Daw et al., 2011), a reinforcement
learning task which dissociates model-based and model-free
decision-making (Drummond & Niv, 2020), and has been
used in developmental studies of planning (Decker, Otto,
Daw, & Hartley, 2016; Potter, Bryce, & Hartley, 2017; Vaghi
et al., 2020). However, a shortcoming of the two-step task
is that it only requires thinking two steps ahead, making the
resulting decision tree small enough to exhaustively explore.
The simplicity of this task (as well as other widely used tasks
such as the Tower of London) limits their capacity to evoke
the complex strategies characteristic of real-world planning,
in which decision trees are typically too large for exhaus-
tive search to be feasible (van Opheusden & Ma, 2019). In
planning tasks with large decision trees, the values of inter-
mediate states are often uncertain and have to be evaluated
through heuristic means. (Sutton & Barto, 2018). Addition-
ally, tasks with a small number of distinct states or that only
allow for a few actions in a given state, will have a limited
ability to dissociate component processes of planning such
as the ability to evaluate states, think ahead, and attend to
state features. As a result, there is a need for a sufficiently
rich planning paradigm in which age-related changes in these
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component processes can be examined. The current study
uses a child-friendly game — the Four-in-a-row task (van
Opheusden, Galbiati, Kuperwajs, Bnaya, & Ma, 2021) —
and a corresponding computational modeling framework to
formally quantify the development of complex planning and
its cognitive component processes.

Methods

Participants and procedure

Participants were 8 to 25 years old (n = 156), uniformly dis-
tributed across age and gender. Participants were fluent in
English and reported no color blindness, learning disability,
or neurodevelopmental or psychiatric disorders. Participants
were instructed that they would receive a $15 Amazon gift
card plus a performance-based bonus for participation; in re-
ality, all participants were compensated with a $17 gift card to
ensure that bonuses were not unethically biased toward older
participants. Parental permission and child assent were ob-
tained prior to participation. The study took place online.
Participants completed the Four-in-a-row Task, followed by
age-appropriate assessments of individual differences in fluid
reasoning, daily life impulsive choices and future orientation
using the Matrix Reasoning Item Bank (MaRs-IB (Chierchia
et al.,, 2019; Nussenbaum, Scheuplein, Phaneuf, Evans, &
Hartley, 2020)), Barratt Impulsiveness Scale - Brief (BIS-
Brief (Steinberg, Sharp, Stanford, & Tharp, 2013)), and the
Future Orientation Scale (FOS (Steinberg et al., 2009)), re-
spectively. Parents were allowed to assist children 11 years or
younger with reading BIS-Brief or FOS questions. This study
was approved by the Institutional Review Board at New York
University IRB-FY2016-1194).

Four-in-a-row

The Four-in-a-row Task is a variant of Tic-Tac-Toe. The
player and computer opponent alternate placing tokens on
a 4-by-9 board (Fig 1A), and the first to complete four in
a row (horizontally, vertically, or diagonally) wins. If no
player wins before the board fills, the game is drawn. This
board size allows for many winning opportunities, while be-
ing sufficiently small to be experimentally and computation-
ally tractable. The task was programmed in JavaScript and
played in a web browser. The computer opponents were cali-
brated to human play to create a wide range of difficulty lev-
els, which were then used in a staircasing algorithm to ap-
proximate a 2 win to 1 loss ratio (see below). The task began
with brief written instructions followed by a comprehension
check to ensure that participants understood all three winning
Four-in-a row orientations (i.e., diagonal, horizontal, and ver-
tical). This quiz took the form of three multiple choice ques-
tions, in which participants were shown final game states and
asked to indicate the winner of the game. If the response
was incorrect, the instructions were repeated. After the quiz,
the main task started, consisting of 35 games. Simulations
demonstrated that 35 games were sufficient to reliably esti-
mate the computational model parameters. The task has ap-

proximately 1.2 x 10'® non-terminal states — a state space
complexity that far exceeds tasks commonly used in cogni-
tive science (van Opheusden & Ma, 2019). Yet, this task has
proven to be amenable to rigorous computational modeling
(van Opheusden et al., 2021).

The computer opponents’ algorithm was similar to our
main model (see below). We created 200 computer opponents
that all used the same algorithm but with different parameters.
We started by fitting the model on all participants in labora-
tory experiments from (van Opheusden et al., 2021), resulting
in 1650 agents. We then ran an all-versus-all tournament be-
tween these 1650 agents and ranked their performance using
the Elo system (see below). Finally, we selected 200 agents
such that their Elo ratings uniformly covered an interval rang-
ing from slightly weaker than the worst human players to
slightly stronger than the best. We fine-tuned this interval
in pilot experiments. We divided the set of 200 agents into 20
categories, with 10 agents per category. We matched partic-
ipants with computer opponents using a two-win-to-one-loss
staircase, starting at category 2. That is, when a participant
won two consecutive games, the category of their opponent
in the next game increased by one. When a participant lost,
the category decreased by one, and after a draw the category
was kept keep the same. An opponent was randomly selected
from the 10 agents within that category.

We estimated the depth of planning from a participant’s
moves using the computational model in (van Opheusden et
al., 2021). This model combines a heuristic value function
with best-first search. The value function V (s) assigns values
to board states s. We use a weighted linear sum of features

4
V(s) = ;)w,»fi(s), (1)

where f; denote the features and w; their weights. We use 5
features: center, connected 2-in-a-row, unconnected 2-in-a-
row, 3-in-a-row and 4-in-a-row. The center feature measures
how close to the center of the board a player’s pieces are dis-
tributed, and the other 4 features count how often the corre-
sponding patterns occur on the board (Fig. 1B).

The evaluation function guides the construction of a de-
cision tree (Fig. 1D), using a best-first search algorithm
that focuses computational resources by exploring promis-
ing branches of the decision tree first. More precisely, given
a partially constructed decision tree, the algorithm decides
which node to consider next by exploring the principal vari-
ation, that is, the sequence that results if both players choose
the highest-value moves in the current tree. The algorithm ex-
pands the final node in this principal variation, evaluates can-
didate moves using the value function defined above, back-
propagates the result according to the minimax rule, and con-
tinues to the next iteration. After each iteration, the model
has a probability 7y to terminate search, and make the move
that is best according to its current tree.

The model contains additional components which improve
its ability to match human data. First, we include a pruning
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rule: when expanding a node, we prune all candidate moves
whose value differs from the best by more than a threshold .
To account for variability in people’s choices, we add three
sources of noise. First, before constructing the decision tree,
we randomly drop features at specific locations and orienta-
tions with a probability J; these features are omitted during
the calculation of V(s). This mechanism is intended to ac-
count for random attentional oversights. Second, during tree
search, we add Gaussian noise to V() at each node. Finally,
we also include a generic lapse rate A. For details on the com-
putational model, see (van Opheusden et al., 2021).

Model-derived metrics There are four model-derived met-
rics: Playing strength (Elo ratings), planning depth, heuris-
tic quality, and feature drop rate. To estimate a participant’s
playing strength from games against computer opponents,
we used the Elo system (Elo, 1978), implemented using
the publicly available Bayeselo algorithm (https://www.remi-
coulom.fr/Bayesian-Elo/). This algorithm treats the problem
as a Bayesian parameter estimation problem, with a model
that specifies the probability of a win/loss as a logistic func-
tion of the rating difference of the players. The algorithm
takes as input a database of game results and estimates all rat-
ings. Constant offsets to all players’ ratings do not affect the
predictions of the algorithm. Individual players’ Elo ratings
are sufficiently precise that they can be used as a metric for
playing strength. Planning depth was estimated as follows:
After fitting the parameters of our main model for a given
participant, we ran the model forward in generative mode. In
each position, we generated 100 simulations using the fitted
parameters. In each simulation, we recorded the depth of the
principal variation (sequence of moves considered best); we
then averaged across simulations and positions. The result
is the planning depth estimate for that participant. Heuristic
quality was defined as the correlation between V (s, w) and the
objective value (1 for wins, —1 for losses, O for draws), across
a pre-generated set of observed game states s. The heuristic
quality only depends on the feature weights in the model, and
not on the parameters of the tree search algorithm. The fea-
ture drop rate is simply the parameter & in the model.

Analyses

Age-related differences in model-derived metrics and re-
lation with Elo To test the relation between age and the
model derived metrics, we used robust regression models
with bisquare weighting for outliers. We tested both linear
and polynomial age effects and report the results for the best
fitting age model. We also used robust regression models
to predict Elo ratings using planning depth, heuristic quality,
feature drop rate, and their interaction with age.

Model stability To assess parameter estimate stability, we
follow the methods described in van Opheusden et al. (2021)
by calculating the correlation between parameter estimates
of independent fits. While the parameter estimates between
the two independent fits should be correlated, they can-

not be identical because the model fitting algorithm pro-
vides stochastic estimates of the log-likelihood and there-
fore returned stochastic parameter estimates (van Opheusden,
Acerbi and Ma, 2020).

Results
Descriptive statistics

With age, participants took longer on average to make a
move (Spearman rho correlation between decision time and
age: p =0.234, p = 0.003) and made more moves per game
(p =0.200, p = 0.012). On average, participants completed
the task in 16.17 minutes (sd = 5.54). Task completion time
correlated with age such that older participants took longer
(p = 0277, p = 4.55-107%). Opponent category stabilized
over games for all ages, which suggests that the staircasing
algorithm converged within the 35 games. Most participants
answered all comprehension questions correctly on the first
attempt (n = 138; n = 16 made one mistake and n = 2 made
more than one mistake). Age did not significantly correlate
with the number of correct answers on the comprehension
questions (p = 0.136, p = 0.089), suggesting that younger
participants also comprehended the task well.

Age-related differences in model-derived metrics

We found that performance on the planning task improved
with age, as shown by an age-related improvement in Elo rat-
ings, especially during early adolescence (linear age effect
B=58.46, p=8.55- 108,95% CI [37.93; 78.99], quadratic
age effect B = -30.77, p = 6.06-1073, 95%CI[-52.62; -8.92])
(see Fig.2A). As a result of the five-fold cross validation
method, each subject had five estimates of planning depth,
heuristic quality, and feature drop rate. The average of each
metric per subject was therefore used as a dependent vari-
able in the regression models. We found that planning depth
monotonically improved with age (B = 0.83, p = 1.45-107°,
95%CI[0.50; 1.16]), while heuristic quality showed a polyno-
mial age effect, suggesting that age-related improvements in
heuristic quality emerged most strongly between childhood
and early adolescence (linear B = 0.03, p= 5.37-1077, 95%
CI[0.02; 0.04]; quadratic: B=-0.02, p =2.32. 1073, 95% CI[-
0.03; -0.01]). Feature drop rate did not significantly change
with age (B = 0.00, p = 0.884, 95% CI[-0.02; 0.02]).

Relation between Elo and model-derived metrics

We found that planning depth and heuristic quality in-
deed showed age-dependent effects on Elo ratings (Fig.2B).
Specifically, planning depth became more predictive of Elo
ratings with age (interaction between planning depth and age
B = 3517, p = 1.19-107%, 95% CI[17.59, 52.75]), while
heuristic quality became less predictive of Elo ratings with
age (interaction between age heuristic quality and age B =
-38.82, p = 1.48-107>, 95% CI[-55.94, -21.70]). These find-
ings suggest developmental changes in the contribution of
these component processes to solving planning problems,
with greater reliance on heuristic quality at younger ages, and
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Figure 1: Four-in-a-row planning task and computational model re-printed from van Opheusden et al. (2021) with permission.
A. Example board position in the Four-in-a-row game. Two players, black and white, alternate placing pieces on the board.
The first player to achieve 4-in-a-row wins the game. In this position, black is about to win by moving on the 3rd square in the
bottom row (open circle, mouse cursor). B. Features used in the heuristic function. Features with identical colors are constrained
to have identical weights. The model also includes a central tendency feature and a 4-in-a-row feature. C. Illustration of the
algorithm. Illustration of the heuristic search algorithm. Black is to move (left image). After considering two candidate moves
for black and evaluating the resulting positions using V(s), the highest-value move (V = 2.3) is selected on the second iteration
and expands this node with three candidate moves for white. The algorithm backpropagates the lowest value (V = 0.3), as this
is the worst possible move for black. That value is compared against its alternatives in each intermediate node of the tree, to
decide in which direction to expand the tree in the algorithm’s next iteration. D. Actual decision tree for one simulation in one
position for one participant, after parameter fitting. Red: principal variation, the sequence of most promising moves for both
players. In this example, the depth of planning is 5. Different branches are evaluated to different depths.

gradually expansion of the decision tree size with age. In
addition, lower feature drop rate was associated with better
playing strength (main effect B = -38.19, p = 9.60-10~°%, 95%
CI[-54.65, -21.73]) and this relationship did not differ signif-
icantly with age (interaction effect B = -4.07, p = 0.615, 95%
CI[-20.04, 11.90]), confirming that, across participants, fewer
attentional oversights predicted better playing strength.

We performed post-hoc analyses to better understand the
interaction effects between age and planning depth and age
and heuristic quality on Elo ratings. We therefore created
age groups to examine how each of these metrics contributed
to Elo ratings within an age group. We applied Bonferroni-
Holm corrections for multiple comparisons. We found that
heuristic quality was significantly predictive of Elo ratings for
the 8-12 year olds (B = 87.46, p = 6.98-107>, 95% CI[46.96,
127.95]), but planning depth and feature drop rate were not
(planning depth B = 10.23, p = 0.608, 95% CI[-29.61, 50.07];
feature drop B = -33.50, p = 0.110, 95% CI[-75.01, 8.03]).
For the 13-17 year olds, heuristic quality remained a signifi-
cant predictor of Elo ratings (B = 55.03, p = 5.95-107%, 95%
CI[24.97, 85.10]). Feature drop rate additionally became a
significant predictor (B = -43.44, p = 0.634-1073, 95% CI[-
74.03, -12.86]), but not planning depth (B =-7.22, p = 0.622,
95% CI[-36.50, 22.05]). For 18-25 year olds, heuristic qual-

ity was no longer significantly predictive of Elo ratings (B =
-11.97, p=0.250, 95% CI[-32.64, 8.70]). Instead, for this age
group planning depth was most predictive of Elo (B = 72.49,
p=1.61-10"%, 95% CI[-51.06, 93.92]) followed by feature
drop rate (B=-31.55, p=0.005, 95% CI[-52.98, -10.12]). To-
gether, these results further support an age-related shift in the
use of the cognitive component processes that underlie plan-
ning decisions, with heuristic refinement during childhood to
increasingly dominant reliance on expanding the decision tree
towards young adulthood.

Model stability

All parameter estimates were positively correlated between
independent fits in our entire sample as well as for each
age group (Fig. 3A). Importantly, the correlations were not
smaller for younger age groups than for adults, suggesting
that the parameter estimates were stable across fits and age.
In addition, the correlations between different model derived
metrics were in expected directions, and not strong, suggest-
ing that there was no strong trade-off between the metrics
(Fig. 3B).

Individual differences

Age and fluid reasoning were positively correlated (Spear-
man’s p = 0.301, p = 1.80-107%). Robust mediation anal-
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A. Elo ratings and model-derived metrics
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Figure 2: A. Elo ratings and Model-derived metrics per age bin (in years). Age was a continuous variable in the main anal-
yses; bins are for visualization purposes. Line represents the median per group and the errorbars show the bootstrapped 95%
confidence interval of the median. B. Elo rating as a function of the model-derived metrics per age bin. Lines show the robust
regression fit and the bootstrapped 95% confidence interval. In all plots light green = children (8-12 years old), green = adoles-
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metrics shows no strong parameter trade-off.

yses with fluid reasoning as a mediator were performed on
model-derived metrics demonstrating evidence of age-related
change (i.e., planning depth and heuristic quality) using 5000
bootstrapped replicates. While fluid reasoning partially medi-
ated the relationship between age and heuristic quality (boot-

strapped total effect 0.162, p = 2.40-10~%), the relationship
between age and heuristic quality remained significant (boot-
strapped direct effect 0.135, p = 1.61-1073), confirming that
heuristic quality improved with age. Fluid reasoning also
partially mediated the relationship between age and planning
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depth (bootstrapped total effect 0.359, p = 2.88-107%), again
not fully accounting for the age-related changes seen in plan-
ning depth (bootstrapped direct effect 0.295, p = 4.83-10-%).
Together, these results suggest that the age-related changes in
heuristic quality and planning depth were not fully explained
by individual variation in fluid reasoning, supporting the in-
terpretation that they are unique measures.

As expected, self-reports showed an increase in daily life
future orientation with age (p = 0.374, p = 1.661-107°) and
a decrease in impulsive choices, albeit to lesser extent (p =
-0.177, p = 0.027). However, we did not find a relation be-
tween either measure and any task metrics (all p > 0.156)
after controlling for age. This suggests that the Four-in-a-row
model-derived metrics capture different cognitive processes
than those indexed by these self-report measures.

Discussion

Measuring planning ability is notoriously complex as it re-
lies on heuristics, forward reasoning, and attention (Ward and
Morris, 2004). Here we used a novel task called “Four-in-
a-row” and a computational model, previously used only in
adult participants (van Opheusden & Ma, 2019)), to assess the
developmental trajectories of these distinct cognitive compo-
nents. Four-in-a-row has a larger state space than existing
planning tasks, which makes it impossible to make a decision
by reasoning about all the steps needed to reach a goal state,
including reasoning backwards from a goal state. Thereby,
Four-in-a-row is a planning task with increased ecological va-
lidity for real-world complex planning problems.

As expected, Four-in-a-row playing strength, as measured
by Elo ratings, improved with age. By fitting a best-first-
search computational model, we found distinct developmen-
tal trajectories of cognitive component processes that ac-
counted for this improvement. Specifically, at younger ages
(approximately early to mid-adolescence), we observed a
rapid improvement in heuristic quality, which contributed to
better playing strength. In contrast, planning ability showed
stronger improvement and supported better playing strength
at older ages (approximately mid to late-adolescence). Fewer
attentional oversights were associated with better playing
strength and did not show age differences. Together, these
results suggest an order in which the use of cognitive com-
ponent processes of planning develop into, during, and out
of adolescence, starting by first refining the heuristic strate-
gies, then gradually increasing the number possible future
actions, states, and consequences considered towards young
adulthood.

To further examine the uniqueness and novelty of the
model-derived metrics, we assessed to what extent variation
in planning depth and heuristic quality could be explained by
individual differences in fluid reasoning (the capacity to apply
logic to solve problems in new situations), future orientation,
and impulsivity. We focused our analyses on planning depth
and heuristic quality, as these showed age-related changes.
As expected based on previous studies (Cattell, 1987; Ferrer

& McArdle, 2004; Albert & Steinberg, 2011), fluid reason-
ing and future orientation increased with age, while impul-
sivity decreased. Neither planning depth nor heuristic quality
was correlated with self-reported future orientation or impul-
sivity. Moreover, fluid reasoning only partially mediated the
developmental changes in both planning depth and heuristic
quality. These results complement a prior study in which fluid
reasoning was found to be an important component process of
model-based learning (Potter et al., 2017). Finding that fluid
reasoning only partially mediated the relation between age
and planning depth is consistent with the notion that planning
crucially involves thinking ahead about future states, actions,
and outcomes (i.e. planning depth), which is not part of fluid
reasoning.

Our findings contribute to the growing literature on the
development of model-based decision-making and reinforce-
ment learning (for review see (Drummond & Niv, 2020)).
Model-based decisions are more prevalent when playing
Four-in-a-row than model-free decisions, as participants of-
ten encounter novel states in this task. Of all the states our
participants encountered, on average 88.7% (sd = 2.0%) were
unique states that the participant did not observe before. It
is particularly important to understand age-related change in
model-based decision-making, as several recent studies sug-
gest that it shows a more protracted development than model-
free learning (Decker et al., 2016; Palminteri, Kilford, Cori-
celli, & Blakemore, 2016; Potter et al., 2017) (but see (Smid,
Kool, Hauser, & Steinbeis, 2020). Our findings make novel
contributions to this literature by examining planning in a
large state-space and revealing distinct developmental trajec-
tories of the component processes that underlie planning.

Taken together, the current study investigated the develop-
mental trajectories of heuristic quality, planning depth, and
feature drop rate in a single planning task. Established as-
sessments of complex planning traditionally rely on courser
outcome measures such as accuracy or decision times, which
would be affected by developmental changes in any of the
underlying cognitive components, and thus unable to disso-
ciate their contributions. In the future, our approach may
be useful for the study of psychiatric disorders, as planning
deficits are prevalent in a wide range of disorders, includ-
ing ADHD, OCD, and schizophrenia (Harrier & DeOrnellas,
2005; Kofman, Gidley Larson, & Mostofsky, 2008; Nigg,
Blaskey, Huang-Pollock, & Rappley, 2002; Morris, Rushe,
Woodruffe, & Murray, 1995). Further research is needed to
identify how our model-derived metrics relate to other cog-
nitive mechanisms. Planning depth for example, likely relies
on working memory to remember the consequences of possi-
ble moves (Gilhooly, 2005). Nevertheless, our findings move
the field of cognitive development towards a more complete
account of the development of planning and its component
processes.
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