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Abstract

Models in cognitive science are often restricted for the sake of
interpretability, and as a result may miss patterns in the data
that are instead classified as noise. In contrast, deep neural
networks can detect almost any pattern given sufficient data,
but have only recently been applied to large-scale data sets
and tasks for which there already exist process-level models
to compare against. Here, we train deep neural networks to
predict human play in 4-in-a-row, a combinatorial game of in-
termediate complexity, using a data set of 10,874,547 games.
We compare these networks to a planning model based on a
heuristic function and tree search, and make suggestions for
model improvements based on this analysis. This work pro-
vides the foundation for estimating a noise ceiling on massive
data sets as well as systematically investigating the processes
underlying human sequential decision-making.

Keywords: neural networks; machine learning; sequential
decision-making; planning; behavioral modeling

Introduction

The standard approach to computational modeling in psy-
chology involves handcrafting a model and specifying free
parameters that may be adjusted to produce behaviors con-
sistent with empirical data (Busemeyer & Diederich, 2010;
Daw et al., 2011). Model predictions are then evaluated us-
ing the parameter values that achieve the best match to the
data. Based on these evaluations, the model is iteratively
amended to reduce remaining errors. Whether a specific
change is accepted or not is usually based on model com-
parison techniques, balancing the tradeoff between complex-
ity and goodness of fit. While this methodology yields in-
terpretable models because all innovations are implemented
by the researcher, it provides no guidance for when to stop
searching for candidate models or what changes to try. Thus,
there is no way to distinguish whether the unexplained vari-
ance represents natural variability in human behavior or could
be explained by a crucial change to the model. Even if it
can be determined that the model needs improvement, adjust-
ments are usually based on intuition and manual engineering.

Here, we address these limitations by using deep neural
networks to fit large-scale human behavioral data. Deep neu-
ral networks make minimal assumptions about underlying
cognitive mechanisms and have sufficient capacity to repre-
sent virtually any computational process (Siegelmann & Son-
tag, 1995; LeCun, Bengio, & Hinton, 2015). Training a net-
work to predict human behavior in a particular task allows

the network to detect patterns in the data without requiring
11

Figure 1: Example board position in 4-in-a-row. The left is
the laboratory version of the task, while the right is the gam-
ified version used on the Peak platform. Two players, black
and white or yellow circles and green stars, alternate placing
pieces on the board, and the first player to connect four pieces
in any orientation wins the game.

human understanding of these patterns. After training, the
network can be used to judge whether there is still room for
model improvements and, if so, in which situations these im-
provements should be made. Similar logic has been applied
in recent work that leverages deep learning to discover al-
gorithms underlying human decision-making (Agrawal, Pe-
terson, & Griffiths, 2020; Peterson, Bourgin, Agrawal, Re-
ichman, & Griffiths, 2021) and categorization (Battleday, Pe-
terson, & Griffiths, 2020). One potential problem with this
approach is that neural networks are so flexible that they run
the risk of overfitting. To circumvent this, we use a large data
set for training. This contrasts with previous efforts that use
more complicated recurrent neural networks in much simpler
tasks with less data (Dezfouli, Griffiths, Ramos, Dayan, &
Balleine, 2019) and thus require regularization methods to
ameliorate this problem.

We apply this approach to 4-in-a-row, a combinatorial
game of intermediate complexity, to improve a model of hu-
man planning. First, we outline our methods for training these
neural networks and show that our best network approaches a
satisfactory upper bound on predictive power while matching
human behavior well. We then compare the network to an
interpretable cognitive model of human planning and discuss
implications for improving this model based on our results.

In J. Culbertson, A. Perfors, H. Rabagliati & V. Ramenzoni (Eds.), Proceedings of the 44th Annual Conference of the Cognitive Science
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Figure 2: Neural network architecture. The board is represented as a 2 x 4 x 9 tensor filled with zeros where there are no pieces
and ones where there are pieces. One matrix encodes the user’s pieces, and the second encodes the Al agent’s pieces. The
board representation is flattened to a 72 dimensional vector, and then passed into a series of hidden layers. Each hidden layer
contains a fully connected layer, a nonlinearity, another fully connected layer, and then adds the input from the skip connections.
Finally, the fully connected output layer has 36 units and is passed through a softmax function, which gives the probability that
the model assigns to the human player selecting each position of the board. In addition to varying the number of hidden layers
in the network, the number of units per fully connected layer is also varied when testing different networks.

Task and data set

Our task is a variant of tic-tac-toe, in which two players alter-
nate placing tokens on a 4-by-9 board (Figure 1). The objec-
tive is to get four tokens in a row horizontally, vertically, or
diagonally. From a broader cognitive science perspective, the
game, which we call 4-in-a-row, is at a level of complexity
which far exceeds tasks commonly used in psychology, pro-
viding rich human behavior for which computational model-
ing is still tractable (van Opheusden & Ma, 2019). The game
has approximately 1.2-10'® non-terminal states, and can be
leveraged to study the interplay between different reinforce-
ment learning systems (Kuperwajs, van Opheusden, & Ma,
2019), the nature of expertise (van Opheusden et al., 2021),
or comparisons between human and machine learning. Im-
portantly, a cognitive model exists for this task, which pro-
vides a strong starting point for further model development.

Additionally, we partnered with Peak, a mobile app com-
pany, to implement a visually enriched version of 4-in-a-row
on their platform (https://www.peak.net), which users
play at their leisure in their daily environment. We are cur-
rently collecting data at a rate of approximately 1.5 million
games per month, and here we use a subset consisting of
10,874,547 games from 1,234,844 unique users collected
between September 2018 and April 2019. In this version
of the task, users always move first against an Al agent im-
plementing a planning algorithm, with parameters adapted
from fits on previously collected human-vs-human games
(van Opheusden et al., 2021).

Methods
Data representation

Our networks take a tensor representation of the current board
state and return a probability distribution for the next move
over all board positions. The predictions for different board
positions are independent of each other. We encode each
board as two 4 x 9 binary matrices. The first matrix has ones
indicating the location of the user’s pieces, while the second
4 x 9 matrix has ones marking where the Al agent’s pieces
are located. Unoccupied locations contain a zero in both ma-
trices. Thus, the input to each network is 2 x 4 x 9, and the
output of the network is a 36 dimensional vector, with each
element representing a corresponding index of the board.

Network architecture

The architecture for our networks consists of an input layer
that feeds into several hidden layers followed by an output
layer (Figure 2). The input layer flattens the 2 x 4 x 9 board
into a 72 dimensional vector and projects it to the number
of dimensions used by the hidden layers with a fully con-
nected layer. Each hidden layer consists of two fully con-
nected layers with a rectified linear function between them
and skip connections. These skip connections add the input of
the hidden layer to its output without transformation, and aid
in avoiding the vanishing gradient problem (He, Zhang, Ren,
& Sun, 2016). The output layer is a fully connected layer that
projects from the dimensionality of the hidden layer to the
output with 36 units corresponding to the log probabilities
for each board position. During training, we systematically
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Figure 3: Planning model specification. (A) Features used in
the heuristic function. Features with identical colors are con-
strained to the same weights. (B) Illustration of the best-first
search algorithm. In the root position, black is to move. After
expanding the root node with two candidate moves for black
and evaluating the resulting positions using the heuristic func-
tion, the algorithm selects the highest value node (V =2.3) on
the second iteration and expands it with two candidate moves
for white. The algorithm evaluates the resulting positions,
and backpropagates the lowest value (V = 0.3), since white
is the opponent. This will be compared against alternatives in
each intermediate node of the tree to decide in which direc-
tion to expand the tree on the next iteration.

vary the number of hidden layers as well as the number of
units in each fully connected layer.

On most boards, some moves are illegal because the cor-
responding square is occupied by pieces on the board. These
moves can be eliminated as potential predictions a priori. To
accomplish this, we subtract a large value from the output at
occupied locations. The final softmax operator applied af-
ter this always sets the corresponding outputs to exactly 0
and normalizes the probability distribution over all open po-
sitions. This also nulls all gradients for the occupied positions
such that the values at the these positions are ignored for gra-
dient backpropagation and learning during training.

Prior work used deep convolutional networks to predict hu-
man moves in Go (Sutskever & Nair, 2008; Clark & Storkey,
2015), and we initially tested similar architectures in our task.
However, we consistently found that the convolutional net-
works performed worse than the fully connected layers in
preliminary training runs. Therefore, we decided to move for-
ward using only fully connected networks.

Training

We partition the data into three sets: 90% for training
(9,787,093 games), 5% for validation (543,727 games), and
5% for testing (543,727 games). The validation set was used
to monitor learning and experiment with hyperparameters.
We use stochastic gradient descent for training and reduce the
learning rate by a factor of 10 if the loss associated with the

validation set was stagnant for a few epochs. All layers had
their biases initialized to 0 and weights drawn from a normal
distribution with mean 0 and standard deviation 0.01, and we
use a batch size of 128.

Planning model

The main goal of this work is to compare these neural net-
works with our current best interpretable planning model
trained on the same task (van Opheusden et al., 2021),
and subsequently make suggestions for how to improve the
model. The model of interest combines a heuristic func-
tion (Figure 3A), which is a weighted linear combination of
board features (Campbell, Hoane Jr, & Hsu, 2002), with the
construction of a decision tree via best-first search (Figure
3B). Best-first search iteratively expands nodes on the prin-
cipal variation, or the sequence of actions that lead to the
best outcome for both players given the current decision tree
(Dechter & Pearl, 1985). To allow the model to capture vari-
ability in human play and make human-like mistakes, we add
Gaussian noise to the heuristic function and include feature
dropout. For each move the model makes, it randomly omits
some features from the heuristic function before it performs
search. Such feature omissions can be interpreted cognitively
as lapses of selective attention (Treisman & Gelade, 1980).
During search, the model also prunes the decision tree by re-
moving branches with low heuristic value (Huys et al., 2012).

While fitting the model, we estimate the log probability of
a move in a given board position with inverse binomial sam-
pling (van Opheusden, Acerbi, & Ma, 2020), and optimize the
log-likelihood function with Bayesian adaptive direct search
(Acerbi & Ma, 2017). To fit parameters for the entire train-
ing, we evaluate the log-likelihood on 10,000 trials, randomly
sampled for each evaluation, which yields an unbiased and
sufficiently precise estimate of overall performance. For test-
ing, we ran 100 repetitions to estimate the log-likelihoods for
each move and 200 simulations in each board position to get
a probability distribution over potential moves.
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Figure 4: Scaling up the neural network achieves an upper
bound on goodness of fit. Log-likelihood on the test data set
as a function of the number of hidden layers and number of
units per hidden layer in each network.
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Figure 5: Summary statistics as validation of the neural network’s performance. Each statistic is averaged by move number for

moves made by users (black circles), the neural network (blue lines), or random moves (green dashed lines).

Results
Network evaluation

In order to ensure a reasonable estimate on the data’s noise
ceiling, we trained a total of 25 networks. Networks vary
along two dimensions: the number of hidden layers and the
number of units per layer, spanning a range from 5 to 80
layers and 200 to 4000 units. We continued scaling up the
networks until the log-likelihood on the test data reached a
plateau, meaning that additional increases in either dimension
would not lead to significant increases in performance (Fig-
ure 4). This leads to the largest network achieving a negative
log-likelihood of 1.866 per move and a prediction accuracy
of 41.71% on the test data. As the largest network repre-
sents a satisfactory upper bound on predictability for the data
set, we continue to analyze it in the remainder of the paper.
We validate that this network’s log-likelihoods per move are
highly correlated with the networks that are one step smaller
in either direction, further supporting our conclusion that our
results would not radically change with larger networks.
Comparing the neural network’s predictions to human
choices is challenging because the data is high-dimensional
and discrete, so we interrogate it via two methods. The first
is the entropy of the network’s output distributions, which we
analyze by move number. Positions in the early game are
harder to predict because they consist of fairly empty boards
where no player can immediately win the game, and therefore
result in higher entropy for the network’s output distribution.
Conversely, positions in the middle and late game are much
easier to predict as there are less alternatives and more pieces
to inform decision-making, leading to lower entropy for the
network’s output distribution. These positions are also more

likely to contain winning moves.

Second, we compute a set of summary statistics that char-
acterize human play in 4-in-a-row. For each move made by
each user, we compute the distance from the chosen square to
the center of the board, the distance to pieces owned by that
user, the distance to pieces owned by the opponent, the dis-
tance to the center of mass of that user’s pieces, the distance
to the center of mass of the opponent’s pieces, the number
of that user’s pieces on the 8 squares neighboring the chosen
square, and the number of opposing pieces on neighboring
squares. We also indicate whether with their chosen move,
the user creates a threat to win on the next move or parries
a threat from their opponent. We compute these statistics
for moves made by the network in the same positions en-
countered by human players and for random moves. Figure
5 shows the average of these summary statistics aggregated
across all users in the test set as a function of move number.
This analysis probes systematic patterns in the time course of
people’s games, for example a tendency to start playing near
the center of the board and gradually expand outwards. For
all summary statistics, people deviate considerably from ran-
dom, and the neural network matches the data almost exactly.

Model comparison and improvements

We compare predictions between the neural network and the
planning model to search for potential improvements that will
better capture human behavior. The model achieves a nega-
tive log-likelihood of 2.178 and accuracy of 34.06% on the
test data, which is worse than the network’s performance. We
show that the network’s predicted log-likelihood per move is
typically higher than that of the model (Figure 6A) and that
the model’s average accuracy per move throughout the course
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number for the neural network (blue) and planning model (orange), averaged across the test set. The gray region denotes the
net difference in prediction accuracy between the neural network and the planning model. (C) Representative board positions
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move, and the dashed circle indicates the planning model’s predicted move.

of games is lower than the network’s (Figure 6B). This pro-
vides us with a space of board positions to explore for model
improvement, namely positions in which the network cor-
rectly predicts human moves while the model does not.

Inspecting these boards and their corresponding predic-
tions yields several interesting patterns that the model can-
not readily account for (Figure 6C). The first is an opening
bias, where users are more likely to play on the left side of
the board and in the corners. There is no strategic reason for
making these types of moves, but the network detects these
preferences nonetheless. A similar pattern is tiebreak predic-
tions, where users select between two moves that are nearly
equally good. In these positions, the network tends to have
a preference for the move that was actually played by hu-
mans, whereas the model essentially assigns equal probability
to both moves. A third difference is feature weighting, where
users prefer creating certain features on the board to others.
Feature weights are already a mechanism in the model, but
some of the feature tradeoffs that the network can predict ex-
hibit complex preferences: the example in Figure 6C shows a
position in which a move connecting three pieces is selected
over a move which connects two pieces in multiple directions.
Finally, we find evidence that the network correctly predicts
offensive and defensive play. That is to say, given a move
which creates threats or features for the user and one which
defends against an opponent’s threats or blocks their features,
the network often correctly predicts which move to make at a
higher rate than the model.

One potential concern is that the neural network was not
necessary to identify patterns that the planning model is over-
looking, because direct comparisons between the model and
human behavior was sufficient to detect these. However, such
direct comparisons are not an expedient solution because hu-
man behavior contains substantial randomness. Even with

the size of our data set, most board positions beyond the early
game were only encountered once by human players. Thus,
many of the 2,725,151 moves where the planning model pre-
dicted that a different move was more likely than the one
that humans actually made represent unpredictable random
human behavior rather than a failure of the planning model.
To select moves that could have been predicted more accu-
rately, prior work suggests the use of a powerfully predictive
model like the neural network we use here (Agrawal et al.,
2020). By pooling information across board positions, the
neural network can produce a better estimate of the differ-
ence between the model and the true human policy and can
thus give better guidance for model improvements. Indeed,
the largest differences between the planning model and the
neural network are more interpretable than the largest differ-
ences between the planning model and the data (Figure 7).
Board positions that result in a high Kullback—Leibler (KL)
divergence between the output distributions of the model and
the network result in patterns that fit into the categories out-
lined in Figure 6C. Board positions that result in a low log-
likelihood for the planning model are often not predicted well
by the network either, and largely seem to be human errors in
gameplay such as overlooking an immediate win or making
a random move. Therefore, we argue that direct comparisons
between model and data for individual positions are indeed
noisy and that the network’s predictions are a better guide for
model improvement.

Discussion

In this paper, we trained deep neural networks to predict hu-
man moves in 4-in-a-row using a large-scale data set. We en-
sured that these networks estimate a reasonable upper bound
on how well any model can explain human behavior by in-
crementally scaling up the networks, and then validated that
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network, as well as the negative log-likelihood of the human move for the model and the network. The format for the board

positions is the same as for Figure 6C.

the best network captures general trends in human play. This
provided us with a model that was able to predict human de-
cisions more accurately than an interpretable planning model
without requiring manual engineering. We then explored the
positions in which the neural network was more accurate than
the planning model, leading to several candidate mechanisms
that could be implemented in order to improve the model.

More generally, our work provides a framework that is use-
ful for cognitive scientists to employ in model construction,
particularly in large-scale experiments. The planning model
described here has already undergone rigorous testing against
alternatives. Human choices in 4-in-a-row seem to be consis-
tent with a broad class of planning algorithms, as long as they
contain a feature-based evaluation function, tree search, prun-
ing, and attentional oversight. The current model is a repre-
sentative of this class which balances simplicity with predic-
tive power. The process for finding this model was based
on manual adjustments and intuition for the game, and uti-
lizing neural networks to discover missing features may have
greatly expedited this search. Nonetheless, our results sug-
gest mechanisms that have not been previously considered.

What do the mechanisms that we identify as potential
model improvements tell us about planning and human cog-
nition? One takeaway is that people have inherent biases,
meaning that they consistently prefer one out of many equiv-
alent solutions to problems when there is no rational reason to
do so. Humans display such systematic biases in many tasks,
and the literature on these biases and how to model them
may be informative to structure the biases players show in
4-in-a-row (Griffiths, Chater, Kemp, Perfors, & Tenenbaum,
2010). Technically, such biases could be incorporated into the
planning model fairly easily by simply increasing the proba-
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bility that the tree search algorithm explores the alternatives
humans prefer. Our feature weighting finding suggests that
people’s heuristic functions may be more sophisticated than
a simple sum of features, accounting for complex tradeoffs
between pieces on the board depending on the context of the
board position. Further, we observed in earlier studies that
individuals seem to evaluate positions differently, as feature
weights vary when the planning model is fit to each partici-
pant. Adjusting the heuristic function to be more human-like
and account for nuanced individual differences is a challenge,
but the size of the data set paired with the neural network’s
predictions can guide this process. Finally, offensive and de-
fensive play point to differences in planning strategies that
could potentially be captured by scaling advantages for the
player and the opponent relative to each other. The network
is able to predict when humans play aggressively or not, but
investigating how it does so remains a question for further ex-
ploration. While these specific features of gameplay are tied
to 4-in-a-row, they point to the interaction between heuris-
tic evaluations and forward search. These are fundamental
aspects of human planning, and uncovering more sophisti-
cated implementations for either process may provide princi-
ples that generalize across planning tasks. In future work, we
plan to integrate these results into the planning model.
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