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SUMMARY
Neural representations of visual working memory (VWM) are noisy, and thus, decisions based on VWM are
inevitably subject to uncertainty. However, the mechanisms by which the brain simultaneously represents
the content and uncertainty of memory remain largely unknown. Here, inspired by the theory of probabilistic
population codes, we test the hypothesis that the human brain represents an item maintained in VWM as a
probability distribution over stimulus feature space, thereby capturing both its content and uncertainty. We
used a neural generative model to decode probability distributions over memorized locations from fMRI acti-
vation patterns. We found that the mean of the probability distribution decoded from retinotopic cortical
areas predicted memory reports on a trial-by-trial basis. Moreover, in several of the same mid-dorsal stream
areas, the spread of the distribution predicted subjective trial-by-trial uncertainty judgments. These results
provide evidence that VWM content and uncertainty are jointly represented by probabilistic neural codes.
INTRODUCTION

Working memory (WM) extends the duration over which neural

representations are available to guide purposeful behaviors

and supports a wide range of cognitive functions, such as

learning and decision making (Collins and Frank, 2012; Curtis

and Lee, 2010; Wagner, 1999). Although WM is a fundamental

building block of cognition, the neural activity that supports

WM is noisy and resource limited (reviewed in Ma et al., 2014).

Thus, decisions based on WM are inevitably subject to uncer-

tainty (Fougnie et al., 2012; Keshvari et al., 2012; Ma et al.,

2014). Access to the uncertainty in our WM enables us to

use the extent to which we ‘‘trust’’ our memory to make better

decisions. Indeed, people’s reported confidence in their WM

performance correlates with the magnitude of memory errors,

reflecting their ability to track the quality of their memory (van

den Berg et al., 2017; Fougnie et al., 2012; Rademaker et al.,

2012; Samaha and Postle, 2017). Moreover, people incorporate

knowledge of WM uncertainty to improve their decisions in

change detection tasks (Devkar et al., 2017; Keshvari et al.,

2012; Yoo et al., 2020) and post-memory wagers (Honig et al.,

2020; Yoo et al., 2018).

Even though uncertainty plays a key role in supporting WM-

guided behavior, we know little about how WM uncertainty is

represented in the brain. Previous studies have established

that the contents of visual WM (VWM; e.g., the specific remem-
bered orientation, color, motion direction, or spatial location) can

be decoded from activation patterns in visual, parietal, frontal

cortex, and subcortical regions (Albers et al., 2013; Brissenden

et al., 2021; Christophel et al., 2017, 2018; Emrich et al., 2013;

Ester et al., 2013, 2015; Harrison and Tong, 2009; Jerde et al.,

2012; Lee et al., 2013; Lorenc et al., 2018; Rademaker et al.,

2019; Rahmati et al., 2018, 2020; Riggall and Postle, 2012; Se-

rences et al., 2009; Sprague et al., 2014, 2016; Xing et al.,

2013; Yu and Shim, 2017). However, these previous studies de-

coded VWM representations assuming a single point estimate of

the memorized stimulus averaged over many trials. As we moti-

vate next, ignoring both the distribution of decoded estimates

and their trial-by-trial variability limits our ability to test theories

of how neural populations encode VWM content and uncer-

tainty, especially when it comes to links to memory behavior.

Neural population activity is noisy (Faisal et al., 2008; Tolhurst

et al., 1983; Tomko and Crapper, 1974). According to the theory

of probabilistic population codes, the brain knows the generative

model that describes neural population activity as a function of

stimulus features (e.g., location or orientation), including the dis-

tribution of the noise. Using this knowledge would make it

possible to assess theappropriate level of uncertainty associated

with a stimulus feature (Foldiak, 1993; Jazayeri and Movshon,

2006;Maet al., 2006; Sanger, 1996; Zemel et al., 1998), a process

known as ‘‘inverting’’ the generative model. Under this theory, a

population of neurons contains a joint representation of a
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Figure 1. Procedures and working memory performance in experiment 1

(A) Procedures. Participants maintained fixation while remembering the location of the target, presented at a pseudorandom position 12� from fixation.

Thereafter, participants generated a memory-guided saccade to the remembered location. Feedback, in the form of a white dot presented at the actual target

location, permitted comparison with the landing spot following the memory-guided saccade.

(B)We hypothesized that VWM is represented by a probabilistic population code. Per this hypothesis, populations of neurons represent the remembered target as

a probability distribution over stimulus feature values (polar angle of the target in this case). This probability distribution allows a joint representation of the

estimate of the memorized target (mean of the distribution) and the uncertainty of memory (SD of the distribution). Two key predictions stem from this hypothesis:

readout of the mean of the maintained probability distribution guides memory reports, and the SD of the probability distribution forms one’s memory uncertainty.

(C) Example traces of memory-guided saccades for different locations across one scanning run (16 trials). The colored dots evenly spaced on an imaginary circle

represent the target locations.

(D) Memory reports from an example participant plotted against the target location.

(E) Memory error distribution from the example participant in (D).

(F) The variability of memory reports for individual participants (dots), quantified by the SD of the memory error distribution. The black horizontal line shows mean

across participants, and gray shaded interval shows ± SEM.
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stimulus along with uncertainty about the stimulus, and poten-

tially even an entire Bayesian posterior probability distribution

over the stimulus. Probabilistic population coding thus provides

a testable hypothesis for howneural populations jointly represent

a stimulus estimate and the associated uncertainty. In support of

this hypothesis, previous studies reported that the probability

distributions decoded fromneural activitymeasured in visual cor-

tex predict aspects of visual behavior (van Bergen and Jehee,

2019; van Bergen et al., 2015; Walker et al., 2020). Here, we

ask whether higher cognitive processes, such as the itemsmain-

tained by VWM, are also encoded as probability distributions by

neural populations. We hypothesized that similar computational

principles explain how neural populations maintain VWM repre-

sentations. Specifically, we predicted that an item maintained

in VWM is represented as a posterior probability distribution

over the feature space (e.g., location). In this scenario, access

to the content of VWM (e.g., remembered location) would involve

a readout of the mean of the distribution, while memory uncer-
2 Neuron 109, 1–14, November 17, 2021
tainty would be reflected in the width of the distribution (Fig-

ure 1B). The critical direct test of this hypothesis hinges on

whether the parameters of the probability distribution actually

predict the quality and uncertainty of measured memory

behavior.

We measured fMRI blood-oxygen-level-dependent (BOLD)

activity in humans performing two experiments to test each pre-

diction from the above hypothesis. In the experimental design,

we set out to ensure that we measured the uncertainty of VWM

instead of sensory-evoked responses as in previous studies

(van Bergen et al., 2015; Walker et al., 2020). We used a long

memory delay to help isolate our measurements from the stim-

ulus epoch, and we analyzed the BOLD signal corresponding

to a late time window during the delay. Moreover, we conducted

a passive viewing control experiment to make sure that the de-

codable neural signals we observed represent VWM content

and not merely sensory responses. For decoding analysis, we

adapted and inverted a generative model for the BOLD activity
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Figure 2. Generative model used to estimate and decode working

memory representations

(A) Schematic of the generativemodel for BOLD response for spatial VWM (van

Bergen and Jehee; 2021). The tuning function (mean response amplitude as a

function of remembered target location) of each voxel is modeled as a

weighted sum of eight basis functions evenly spanning the entire location

space (0�–360�; note that six are shown here in cartoon depiction). Two

sources of noise are considered: noise arising from each channel, which is

shared across voxels, and noise arising from each voxel independently.

(B) Posterior probability distributions decoded from the memory delay of three

example trials. The decoded memorized location is derived from the circular

mean of the posterior distribution. The decoded uncertainty in memory is

derived from the circular SD of the posterior distribution.

(C) Posterior probability distributions decoded from an example participant’s

primary visual cortex. Each row presents the posterior probability distribution

decoded from the delay period of a single trial, where trials are sorted (from top

to bottom) on the basis of the decoded uncertainty of each trial (from lowest to

highest uncertainty). The posterior distributions are circularly shifted to align to

the target position of each trial (0�).
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(van Bergen and Jehee, 2021; van Bergen et al., 2015). This

yielded, on a trial-to-trial basis, a probability distribution over a

memorized stimulus location from an activation pattern

measured from retinotopic visual, parietal, and frontal cortex.

Although fMRI BOLD activity is subject to measurement noise,

we still predicted that the decoded probability distribution would

bear a resemblance to the one that the brain might use for its de-

cision making. In experiment 1, we demonstrated that we can

reliably decode the content of spatial VWM from BOLD activa-

tion. Moreover, trial-by-trial errors in the decoded positions pre-

dicted behavioral recall errors, revealing a close relationship

between the decoded memory content and memory recall. In

experiment 2, we further established that the decoded uncer-

tainty predicted explicit uncertainty reports when participants in-

trospected the quality of their VWM in a wager task. Our results

support the theory that the brain uses knowledge of the genera-

tive process of neural activity to represent memorized items
probabilistically; in other words, that neural activity multiplexes

the content of VWM and its uncertainty.

RESULTS

Experiment 1
In experiment 1, we used a Bayesian generative model to

decode single-trial VWM representations from neural activation

patterns and assessed how the decoded memory content

related to memory reports. We studied spatial VWM in a mem-

ory-guided saccade task. In each trial, we presented partici-

pants with a brief (500 ms) target dot, followed by a 12 s delay

period (Figure 1A). The polar angle of the target was chosen

pseudo-randomly from 1 of 32 positions that spanned the full cir-

cle. Participants were asked to remember the location of the

target while maintaining central fixation throughout the delay

period. After the delay period, the empty fixation dot was re-

placed by a filled dot serving as the response cue. Upon the

response cue onset, participants reported the remembered po-

sition by making a saccadic eye movement (e.g., Funahashi

et al., 1989; Hikosaka and Wurtz, 1983; Figures 1A and 1B).

Behavioral memory reports were measured as the polar angle

of the saccade endpoint.

We adapted a generative model (van Bergen and Jehee, 2021;

van Bergen et al., 2015) to decode a probability distribution over

the stimulus location (polar angle) from the delay period brain ac-

tivity for each single trial. To focus on VWMmaintenance activity,

we used the averaged BOLD response for each voxel from 5.25

to 12.00 s after the delay period onset as the input to the model.

The generative model described the multivariate voxel response

given a stimulus location by amultivariate normal distribution. To

estimate the mean of this distribution, the model approximated

each voxel’s spatial tuning curve by a weighted sum of eight ba-

sis functions (channels) that evenly tiled visual (polar angle)

space (Figure 2A). For the covariance of the multivariate normal

distribution, the model incorporated the empirical noise covari-

ance estimated by the data and a theoretical noise covariance

matrix that considered two sources of variability: the noise of

each location channel and the noise specific to each voxel (see

STAR Methods). For each trial, we used the circular mean of

the decoded probability distribution to represent the decoded

remembered location.

We first demonstrated that we can decode VWM content from

delay period fMRI signals. We defined four retinotopic visual (V1,

V2, V3, and V3AB), four parietal (IPS0, IPS1, IPS2, and IPS3), and

two frontal (iPCS and sPCS) areas as regions of interest (ROIs)

using population receptive field mapping techniques (Dumoulin

and Wandell, 2008; Mackey et al., 2017). Similar to previous

studies using other decoding methods (Hallenbeck et al., 2021;

Jerde et al., 2012; Rahmati et al., 2018; Sprague et al., 2014,

2016), we found that the remembered stimulus location could

be decoded from the delay period BOLD responses in retino-

topic visual, parietal, and frontal cortex. First, we plotted a distri-

bution of the trial-wise decoding error (decoded location minus

target location; Figure 3A) for each ROI. These decoding error

distributions reliably exhibited a single peak centered near 0�,
indicating the robustness of our decoder (Table S1). We quanti-

fied the existence of decodable VWM information by comparing
Neuron 109, 1–14, November 17, 2021 3
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Figure 3. Working memory content can be

precisely decoded

(A) Decoding performance of an example partici-

pant. For each ROI, the top figure represents the

decoded location as a function of the memorized

target location. The bottom figure is the distribution

of signed decoding error (decoded location minus

the memory target location).

(B) Decoding performance quantified as decoding

variability, the SD of the decoding error distribution.

The filled gray dots represent individual partici-

pants. The empty white dots represent the group

average. The error bars represent ± SEM. Decoding

performance varied significantly across ROIs (per-

mutation one-way repeated-measures ANOVA, F[9,

90] = 32.82, p < 0.001, h2p = 0.77).
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the SD of the decoding error distributions with a null distribution

obtained by a permutation procedure (see STAR Methods). At

the individual participant level, target locations were robustly de-

coded inmost ROIs (Table S2). At the group level, VWMcontents

were decoded in all ROIs (p < 0.001; unless otherwise noted, we

report p values corrected for multiple comparisons across ROIs

via false discovery rate [FDR] with q = 0.05). The SD of the de-

coding error distributions varied significantly across ROIs (per-

mutation one-way repeated-measures ANOVA, p < 0.001, h2p =

0.77; Figure 3B), with smaller SDs in extrastriate cortex regions

V3AB and V3, and IPS0 in intraparietal sulcus, indicating a

more precise decoding performance in these regions. Two re-

gions in the prefrontal cortex, iPCS and sPCS (the putative hu-

man homolog of macaque frontal eye field [FEF]), had the largest

SDs, indicating lower decoding performance in these areas. In

another analysis, we obtained similar results when using the cir-

cular correlation between decoded location and target location

to quantify the decoding performance (Figure S1A; Table S3).

As we are interested inWM,we established that the signals we

decoded cannot be attributed to sensory responses to the target
4 Neuron 109, 1–14, November 17, 2021
stimuli. First, we are modeling the BOLD

responses well into the delay period. Sec-

ond, in a passive viewing experiment, a

subset of participants (n = 3) performed a

discrimination task at central fixation

without the requirement to remember pe-

ripheral targets. Instead, we presented a

highly salient, but irrelevant, flickering

checkerboard at the same locations used

in the WM task for the same duration as

the VWM target stimulus (500 ms).

Compared with the VWM experiment, the

SD of the decoding error distribution (aver-

aged across subjects and ROIs) on the ba-

sis of the same delay period time points

increased from 71� to 130� in the passive

viewing experiment (Figures S2A and

S2B). The near doubling of variability

of the decoding error was only barely

distinguishable from the null distribution

in a subset of ROIs and participants
(Table S2). Moreover, the circular correlation between the de-

coded location and the target location was at zero under passive

viewing for most participants and ROIs (Figure S2C; Table S3).

When we instead decoded stimulus location from earlier time

points with strong evoked sensory signals (0.75–5.25 s from

the delay deploy period onset), we were able to accurately

decode stimulus location (Figures S2D–S2F). Together, these re-

sults indicated that the neural representations of the target only

persisted through the late delayed period when they were

actively maintained in VWM.

So far, we have shown that we can decode the location of the

memorized target. However, if the decoded VWM representation

obtained from the BOLD signal drives behavioral performance,

the decoded VWM representation should contain information

relevant for behavioral memory reports beyond the physical

location of the target. To investigate this issue, we leveraged

our single-trial decoded locations, and we tested the prediction

that (signed) memory error and (signed) decoding errors corre-

late at the trial-by-trial level. That is, we tested whether the direc-

tion of errors in memory and errors in decoding are the same
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Figure 4. Errors in neural decoding of work-

ing memory predict behavioral memory er-

rors in experiment 1

(A) Memory errors plotted against neural decoding

errors of an example participant for three ROIs.

(B) Correlations are computed as circular corre-

lations between the behavioral memory errors and

neural decoding errors. The filled gray dots

represent individual participants. The unfilled

white dots represent the group average. The error

bars represent ± SEM.

(C) Memory errors plotted against decoding er-

rors. The four colors indicate four bins (within each

of 11 participants) sorted by decoding error. The

gray line in each panel represents the best linear

fit. The value at the lower right of each panel is the

Pearson correlation coefficient.
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(e.g., clockwise) with respect to the target. Accordingly, we

computed the trial-wise circular correlation betweenmemory er-

ror and decoding error for each participant and ROI. We found

that the strength of this correlation varied across ROIs (permuta-

tion one-way repeated-measures ANOVA, p < 0.001, h2p = 0.30).

For individual ROIs, we found significant positive correlations in

multiple regions, including V2, V3, V3AB, IPS0, IPS2, and sPCS

(bootstrapping test, p < 0.05; Figure 4B). Following previous

studies using a similar Bayesian decoding approach (van Bergen

and Jehee, 2021; van Bergen et al., 2015), we quantified the cor-

relations by binning the trials on the basis of their decoding er-
rors, computing the memory error of

each bin, and pooling the data across

participants. We observed similar pat-

terns, as significant positive correlations

were observed in multiple ROIs, including

V3, V3AB, IPS0, IPS2, and sPCS (permu-

tation test, p < 0.05; Figure 4C). Overall,

we found that memory behavior was

linked to the neural representations we

decoded, supporting our prediction that

access to the content of VWM involves

a readout of the mean of the population-

encoded probability distribution.

Experiment 2
In experiment 1, participants reported the

remembered location using a memory-

guided saccade, and we quantified per-

formance on the basis of saccade landing

position. We found not only that the pop-

ulation activity encoded the VWM target

location but additionally that errors in

the decoder predicted errors in memory.

Next, we tested the hypothesis that the

population activity encodes a joint repre-

sentation of both memory content and

the uncertainty of their memory. Indeed,

we can reflect on and directly report the

confidence we have in our memory
(Fougnie et al., 2012; Honig et al., 2020; Rademaker et al.,

2012; Yoo et al., 2018). Do these introspective reports reflect

the uncertainty associated with the neural representation, quan-

tified on the basis of the posterior distribution decoded from neu-

ral activation patterns? To test this, in experiment 2, we adapted

our task so that participants were required to explicitly report the

uncertainty of their memory with a wager.

The experimental procedures were similar to experiment 1,

with a fewmodifications. In addition to the filled dot at central fix-

ation, the response cue contained a circular annulus with a

radius matching the eccentricity of the target (Figure 5A).
Neuron 109, 1–14, November 17, 2021 5
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Figure 5. Procedures and working memory performance in experi-

ment 2

(A) The procedures were similar to those of experiment 1 except for a few

modifications. To report the remembered location, the participants gener-

ated memory-guided saccades onto a ring and then reported their memory

uncertainty by adjusting the length of an arc centered at the reported loca-

tion. The trial ended with the onset of the feedback stimulus, a white dot

presented at the target location. Participants earned points only if the target

location was within the arc, and the points they earned decreased with the

arc length. To earn a high score, participants should set shorter arcs when

less uncertain.

(B) The distribution of memory error from one example participant.

(C) The variability of memory reports for individual participants, quantified by

the SD of the memory error distribution. The black horizontal line shows mean

across participants, and gray shaded interval shows ± SEM.

(D) Memory error as a function of reported arc length, binned. Four colors

represent four bins (within each of 14 participants) with increasing arc length.

(E) Behavioral variability as a function of reported arc length. In trials in which

participants reported longer arc lengths, behavioral recall of remembered

positions had larger errors (D; permutation test, p < 0.001) and was more

variable (E; permutation test, p < 0.001).

In (D) and (E), the gray lines represent the best linear fits.
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Participants reported their memory by making a saccade to the

position on the annulus that matched the eccentricity of the

remembered target. Then, participants placed a wager by ad-

justing the length of an arc attached to the reported location

(Honig et al., 2020; Yoo et al., 2018). Participants were instructed

to use the length of the arc to reflect the uncertainty of their mem-

ory. At the end of a trial, a feedback dot was presented at the true

target location. Participants gained points if the target location

was within the arc or otherwise gained zero points. The points

they could gain decreased with the length of the arc, so ob-

servers were motivated to reflect their uncertainty using the arc

length. In order to obtain the highest points, an optimal observer

would increase the length of the arc with higher VWMuncertainty

(Honig et al., 2020; Yoo et al., 2018).

Behaviorally, participants were able to monitor the quality of

their VWM. Both the magnitude of memory errors (Figure 5D;

permutation test, p < 0.001) and the variability of memory reports

(Figure 5E; permutation test, p < 0.001) increased with the re-

ported arc length. For some participants, the reported arc length

varied as a function of target location, with shorter arc lengths

and smaller errors at the cardinal angles (Figure S3A). To eval-

uate whether the participants could track VWM uncertainty inde-

pendent of the target location, we regressed out the effect of

target location (the polar angle between the target to the nearest

cardinal angles) from the arc length. Still, the arc length corre-

lated with the magnitude of memory error and the variability of

memory reports (Figures S3B and S3C), indicating that the par-

ticipants’ ability to track the uncertainty across trials was not

driven solely by the physical locations of the target. In sum, par-

ticipants not only were aware of their memory uncertainty but

used these estimates to inform their wagers.

Next, we tested the hypothesis that these subjective esti-

mates of memory uncertainty are jointly represented in the neu-

ral population activity that encodes the memory itself. To test

this hypothesis, we correlated decoded uncertainty (SD of

the decoded posterior probability distribution) with behaviorally

reported memory uncertainty (arc length, with the effect of

target angle regressed out) at a single-trial level for each partic-

ipant and each ROI. Decoded uncertainty correlated with the

reported arc length significantly in V3AB and IPS1 (bootstrap-

ping test, p < 0.05; Figure 6B). Additionally, we binned each

participant’s trials on the basis of decoded uncertainty and

pooled the data across participants. We found that participants

reported larger arc length in trials with higher decoded uncer-

tainty in V2, V3, V3AB, IPS0, IPS1, and IPS2 (permutation

test, p < 0.05; Figure 6C). These results support the notion

that the uncertainty of VWM can be represented along with

the memorized location by a probabilistic population code,

and the uncertainty encoded in the neural population is used

for explicit uncertainty reports.

In perceptual decision making, people use their knowledge of

their own reaction times when making uncertainty judgments

(Kiani et al., 2014). Thereby, saccade reaction time might implic-

itly track VWM uncertainty in both experiments. Behaviorally,

reported arc length increased with saccade reaction time, indi-

cating an impact of reaction time on uncertainty judgement (Fig-

ure S4A). In terms of fMRI BOLD activity, saccade reaction time

correlated with decoded uncertainty in V3AB and IPS0, when
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Figure 6. Decoded memory uncertainty

predicts subjective memory uncertainty

(A) Reported arc length (subjective VWM uncer-

tainty report) plotted against decoded uncertainty

of an example participant for three ROIs.

(B) Correlations between reported arc length and

decoded uncertainty. The filled gray dots repre-

sent individual participants. The empty white dots

represent the group average. The error bars

represent ±SEM.

(C) Reported arc length plotted against decoded

uncertainty. The four colors indicate four bins

(within each of 14 participants) with increasing

decoded uncertainty. The gray line in each panel

represents the best linear fit. The value at the lower

right of each panel is the Pearson correlation co-

efficient.
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binning trials on the basis of decoded uncertainty in experiment 2

(Figures S4B–S4E).

Regarding the decoded memorized location, the results of

experiment 2 replicate those of experiment 1. VWM contents

were decodable in all the ROIs (permutation test, p < 0.001 for

all ROIs). The precision of the neural decoding error distribution

varied across ROIs (permutation one-way repeated-measures

ANOVA, p < 0.001, h2p = 0.81; Figures S1C and S1D; also see Ta-

bles S4–S6), with the highest precision observed in V3AB and the

lowest precision in iPCS and sPCS (Figure S1D). To further eval-
uate the behavioral relevancy of the de-

codable information, we correlated

(signed) memory error with (signed) de-

coding error. The main effect of ROI on

this correlation was significant (permuted

one-way repeated-measures ANOVA,

p < 0.01, h2p = 0.18). Memory error corre-

lated with the neural error in all the ROIs,

except iPCS (bootstrapping test, p <

0.05; Figure 7B). We obtained similar re-

sults when binning each participant’s tri-

als on the basis of decoding error and

pooled the data across participants

(Figure 7C).

For the analyses presented thus far, we

selected the 750 voxels from each ROI

and participant that showed the stron-

gest location selectivity (see STAR

Methods), thereby equalizing the number

of voxels across ROIs while maximizing

the number of voxels included in analyses

(Figures S5A and S5B). To ensure that our

findings did not depend on the specific

number of voxels, we selected different

numbers of voxels ranging from 32 to

1,250 per ROI, or without any voxel selec-

tion (using all the voxels in each ROI and

participant) and conducted the same

analyses. We found that our results (de-

coding performance in Figure S6; rela-
tionships between the outputs of the decoder and behaviors in

Figures S5C–S5E) were robust with respect to the number of

voxels selected.

Although our model made direct predictions that the decoded

location and decoded uncertainty are reflected inmemory reports

and uncertainty judgments, respectively, there could additionally

exist a relationship between the decoded uncertainty and the vari-

ability of memory reports (van Bergen et al., 2015). Within the

context of spatial VWM, decoded uncertainty did not correlate

with the magnitude of memory error or with the variability of
Neuron 109, 1–14, November 17, 2021 7
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Figure 7. Errors in neural decoding of work-

ing memory predict behavioral memory er-

rors in experiment 2

(A) Behavioral memory error plotted against neural

decoding error of an example participant.

(B) Correlations are computed as circular corre-

lations between the memory error and neural

decoding error. The filled gray dots represent in-

dividual participants. The empty white dots

represent the group average. The error bars

represent ±1 SEM.

(C) Memory error plotted against decoding error.

The four colors indicate four bins (within each of 14

participants) sortedby thedecoding error. Thegray

line in each panel represents the best linear fit. The

value at the lower right of each panel is the Pearson

correlation coefficient. Overall, these results repli-

cate those reported in experiment 1 (Figure 4).
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memory reports (Figure S7). To investigate whether such relation-

ships between decoded uncertainty and memory errors exist at a

cross-subject level, for each participant, we averaged the de-

coded uncertainty across trials. Widespread across multiple

ROIs invisualcortexand IPS,we found thatparticipantswith larger

averaged decoded uncertainty performed worse in the behavioral

memory reports when quantified as their averaged magnitude of

behavioral memory error (Figure 8) or as the SD of their behavioral

error distribution (Figure S8). These results demonstrate a linkage

between theprecisionofVWMneural representation in thesebrain

regions and the precision of behavioral memory reports.
8 Neuron 109, 1–14, November 17, 2021
DISCUSSION

Although it iswell established that thecon-

tents of WM can be decoded from human

brain activity, it remains unknownwhether

and how memory uncertainty is repre-

sented in the brain. Here, inspired by the

theory of probabilistic population codes

(Foldiak, 1993; Jazayeri and Movshon,

2006; Ma et al., 2006; Sanger, 1996), we

tested the hypothesis that the human

brain encodesVWMasaprobability distri-

bution over the remembered feature

space. In two independent experiments

using a generativemodel of neural activity

combined with a multivariate Bayesian

decoder, we tested two central predic-

tions that stem from this hypothesis. First,

after validating that our procedures could

decode the precise contents of VWMdur-

ing a memory retention interval, we

discovered that errors in our neural

decoder predicted the direction and

amplitude of memory errors made later in

the trial. Second, we discovered that the

uncertainty in our neural decoder pre-

dicted the memory uncertainty explicitly

reported by our participants. Together,
these results provide strong evidence that the content of our

WM is a readout of a noisy probability distribution encoded in

the population activity of neurons whose distribution width con-

veys information about memory uncertainty.

The theory of probabilistic population codes was originally

proposed to explain how the brain can jointly represent the es-

timate and the uncertainty of sensory stimuli used during

perception. Per this theory, the brain possesses knowledge

about the generative process of neural activity (Beck et al.,

2008; Foldiak, 1993; Jazayeri and Movshon, 2006; Ma et al.,

2006; Sanger, 1996; Zemel et al., 1998). This knowledge and
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Figure 8. Participants with overall greater decoded uncertainty have less precise working memory

(A) Experiment 1. Each dot represents one participant. The decoded uncertainty (x axis) and the absolute value of memory error (y axis) was averaged across trials

for each participant. The gray lines represent the best linear fit.

(B) Experiment 2.
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the variability in the response of cortical neurons naturally

allow the neural population to represent the probability

distribution over the perceptual stimulus space for any pattern

of neural activity. Neurophysiological experiments measuring

population-level neural responses have found evidence sup-

porting the predictions of probabilistic population codes for vi-

sual perception in non-human primates (Berens et al., 2012;

Graf et al., 2011; Walker et al., 2020). Here, we demonstrate

that probabilistic population codes are not limited to visual

perception but are also used to represent information actively

maintained in WM in support of higher cognition. Our compu-

tational neuroimaging approach—using the knowledge of a
generative model and applying Bayesian decoding on the

observed fMRI activation—mimics how the ‘‘decision maker’’

in the brain performs inference on the basis of its knowledge

of its own generative model and the observed neural activity

during the VWM delay period.

Under the rubric of probabilistic population codes, the fluctu-

ations of both the content and the uncertainty of VWM arise from

the noise in the neural population response that encodes the

memorized stimulus. Thus, it is critical that we can decode

VWM content and its uncertainty on a trial-by-trial basis in order

to study their relationships with behavior. Previous neuroimaging

studies have mostly reported VWM decoding accuracy (or
Neuron 109, 1–14, November 17, 2021 9
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fidelity) per condition, averaged across all trials in the experiment

(e.g., Albers et al., 2013; Christophel et al., 2012, 2018; Emrich

et al., 2013; Ester et al., 2013, 2015; Harrison and Tong, 2009;

Jerde et al., 2012; Lee et al., 2013; Lorenc et al., 2018; Rahmati

et al., 2018; Riggall and Postle, 2012; Serences et al., 2009;

Sprague et al., 2014, 2016; Xing et al., 2013; Yu and Shim,

2017). These indices represent decoding quality aggregated

across many trials, and thus they are inadequate to explain or

to estimate how VWM content and its uncertainty fluctuate

across individual trials.

Unlike previous studies that used simpler linear encoding

models (Brouwer and Heeger, 2009) to decode the content of

spatial VWM (Hallenbeck et al., 2021; Jerde et al., 2012; Sprague

et al., 2014, 2016), we used a generativemodel that improves the

precision of decoding by estimating sources of measurement

and neural noise (van Bergen and Jehee, 2021). In both experi-

ments, we found remarkably precise representations of the

memorized target locations in a widely distributed network of

brain regions, including visual, parietal, and frontal cortex.

Encouraged by the robustness of the decoding, we asked

whether these population responses in fact encoded the mem-

ory, including small spatial errors in memory, rather than the

veridical target locations. On a trial-by-trial basis, we found

that errors in our neural decoder predicted the direction and

amplitude of memory errors (Figure 4). These results indicate

that the neural representations we decoded from the late delay

period preceding the participants’ memory-guided responses,

contain information that affects behaviors beyond that present

in the physical stimulus. Specifically, it strongly suggests that

one’s memory depends on the readout of these population-en-

coded representations. In neurophysiological studies, this type

of correlation (between neural noise and behavioral choices)

has sometimes been used to infer a causal link between neural

responses and behaviors (reviewed in Nienborg et al., 2012)

We observed the strongest correlations in V3AB in dorsal extras-

triate cortex, followed by neighboring regions V3 and IPS0.

These results are generally consistent with neurophysiological

studies of perceptual decisions reporting that choice-related ac-

tivity is weak at best in early sensory cortex, and stronger in

higher tier sensory cortices (Britten et al., 1996; Camarillo

et al., 2012; Dodd et al., 2001; Goris et al., 2017; Nienborg and

Cumming, 2009; Nienborg et al., 2012; Yu et al., 2015).

Next, we leveraged the signal-trial decoding to investigate

the neural basis of VWM uncertainty. As VWM uncertainty is

defined as the width of one’s belief distribution over possible

stimulus values (memorized location) or the subjective sense

of the quality of one’s own memory, uncertainty can fluctuate

across trials even when remembering the exact same stimulus.

In line with previous behavioral studies (Fougnie et al., 2012;

Honig et al., 2020; Rademaker et al., 2012; Samaha and Postle,

2017; Yoo et al., 2018), we found that uncertainty judgements

tracked the quality of VWM on a trial-by-trial basis (Figures

5D and 5E). Importantly, this demonstrates that participants

were aware of the quality of their memory and adjusted their un-

certainty reports in step with their memory fidelity. We also

found that the measured population-encoded responses,

when analyzed with our generative model, stored memory un-

certainty. On a trial-by-trial basis, memory uncertainty decoded
10 Neuron 109, 1–14, November 17, 2021
from the retention interval in V3AB and IPS1 predicted the un-

certainty explicitly reported and used by the participants in

the wagers made later in the trial (Figure 6). Recall that we

also observed strong correlations between decoding error

and memory error in V3AB. Theoretically, an estimate of an

item and the uncertainty of the estimate can be jointly encoded

as a single probability distribution by the same population of

neurons. Our findings suggest that such an efficient mechanism

exists in V3AB to support VWM.

Our theory-guided approach of decoding uncertainty from the

width of a modeled probability distribution is a departure from

previous fMRI studies investigating the neural correlates of un-

certainty or confidence in perception (Bang and Fleming, 2018)

and decision making (De Martino et al., 2013; Lebreton et al.,

2015). These previous studies used linear regression to identify

brain regions whose activity increased (or decreased) with un-

certainty report or confidence rating, thereby identifying the

brain regions that represent uncertainty by a ‘‘rate code’’ (i.e.,

increasing or decreasing averaged response amplitude with

uncertainty or confidence). Perhaps such regions act as a down-

stream decoder and extract the uncertainty information repre-

sented by the neural populations that encode the stimulus fea-

tures, in a way similar to how we decode uncertainty

from voxel activity. How the regions with different coding

schemes for uncertainty—the probabilistic population code re-

ported here and the rate code described in these previous

studies—interact is still an open question.

The decodable VWM signals across nearly all ROIs in both ex-

periments are generally consistent with the notion that the stor-

age of VWM content involves a widespread cortical network

(Christophel et al., 2017; Ester et al., 2015; Hallenbeck et al.,

2021; Lee andBaker, 2016). For spatial VWM, the decodable sig-

nals may hinge on the retinotopic organization of visual, parietal,

and frontal cortex. During the WM delay, participants most likely

attended to the target location covertly (Awh and Jonides, 2001;

Awh et al., 1999; Jerde et al., 2012), increasing the response of

the voxels selective for the memorized and attended location

(Gandhi et al., 1999; Itthipuripat et al., 2019; Kastner et al.,

1999). This is consistent with the findings that the locus of spatial

attention can be decoded by using voxels’ preferred locations

(Brefczynski-Lewis et al., 2009; Datta and DeYoe, 2009). It re-

mains an open question whether, how, and in what contexts

the neural representations of memorized locations and attended

locations are distinguishable.

The quality of VWM representations varies greatly across

different brain regions. In dorsal extrastriate cortex, V3AB and

its neighboring regions IPS0 and V3 showed the highest perfor-

mance in decoding the memorized target locations. The SDs of

decoding error distributions were about one-third of that of the

region with the lowest decoding performance.Moreover, decod-

ing error and decoded uncertainty from V3AB and IPS0 exhibited

the strongest correlations with behavioral memory error and un-

certainty judgement respectively. Thus, these regions could be

most critical for maintaining the content of spatial VWM. These

results converge with recent studies on mental imagery and

episodic memory: Breedlove et al. (2020) built an encoding

model to predict the brain activity corresponding to different

‘‘imagined’’ images. They found higher prediction accuracy in
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higher level visual areas (V3AB and IPS) than in early visual cor-

tex. Similarly, Favila et al. (2020) found that during retrieval of

spatial positions from episodic memory, the spatially localized

memory-evoked responses in extrastriate regions V3AB and

hV4 were more precise than those observed in early visual cor-

tex. Together, their and our results highlight the importance of

the dorsal mid- and high-level visual cortex inmaintaining behav-

iorally relevant information in the absence of bottom-up inputs.

We cannot exclude the possibility that the type of task and stim-

ulus affects which regions exhibit higher decoding performance

or higher correlations with behaviors. The high decoding perfor-

mance in dorsal extrastriate and posterior parietal cortex might

be specific to tasks involvingmaintenance of spatial information.

For other tasks requiring maintenance of different feature values,

other regions may be more critically involved in supporting

behavior (Christophel et al., 2017; Lee and Baker, 2016; Lee

et al., 2013). Indeed, some previous studies investigating WM

for orientation have found decoding accuracy in V1 to be as

high as mid- or high-level visual cortices (Harrison and Tong,

2009; Pratte and Tong, 2014), though orientation representations

have also be found in frontal and parietal regions (Ester et al.,

2015; Yu and Shim, 2017). To understand the generalization of

our results, future studies should directly compare which regions

carry WM representations for different types of stimuli under the

same procedures and with the same decoding algorithms.

Despite the centrality of the prefrontal cortex to WM theory

(Curtis and Sprague, 2021; Sreenivasan et al., 2014), the inferior

and superior branches of the precentral sulcus (iPCS and sPCS)

had the lowest decoding performance, and only in sPCS did de-

coding error correlate withmemory error. In addition, across par-

ticipants the decoding quality from frontal cortex did not predict

howwell a participant performed in the VWM tasks (Figure 8; Fig-

ure S8). We choose sPCS and iPCS as ROIs because in the fron-

tal cortex, they exhibit the clearest retinotopic organization

(Mackey et al., 2017) and the strongest decodable spatial

VWM signals in previous fMRI studies (Jerde et al., 2012;

Sprague et al., 2014, 2016). The sPCS is believed to be the hu-

man homolog of monkey FEF (Blanke et al., 1999; Curtis and

Connolly, 2008), a macaque region known to be critically

involved in spatial VWM (Armstrong et al., 2009; Bruce andGold-

berg, 1985; Sommer andWurtz, 2001), covert attention orienting

(Moore and Armstrong, 2003; Moore and Fallah, 2001), and

saccadic eye movement (Bruce et al., 1985; Tehovnik et al.,

2000). Perhaps surprisingly, our results indicate that compared

with dorsal high-level visual cortex and IPS0, sPCS contained

a quite coarse representation of memorized locations.

In a previous study, van Bergen et al. (2015) developed and

applied the Bayesian decoding method used here to quantify

sensory uncertainty from early visual cortex activation patterns

(voxels pooled across V1, V2, and V3) evoked by visual stimuli.

They found that the uncertainty decoded from early visual cortex

correlated with participants’ behavioral variability and errors in

an orientation estimation task. Here, we did not observe a corre-

lation between the decoded uncertainty and the variability (or er-

ror) of memory reports within individuals (when the individual

participant means were removed) (Figure S7). This discrepancy

might reflect differences in how locations and orientations are

encoded. Perhaps the correlation between decoded uncertainty
and behavioral variability reported by van Bergen et al. (2015) in-

dicates that their observers did not solely use the posterior mean

when reporting orientation. For example, the use of a ‘‘posterior

probability matching’’ strategy (reporting an orientation by draw-

ing a sample from the posterior distribution; e.g., Wozny et al.,

2010) would increase the correlation between uncertainty and

behavioral variability. Uncertainty and error (or bias) would corre-

late if an observer weighted the prior information more when the

uncertainty was high. It is well documented that in orientation

estimation, observers use a prior reflecting the statistics of the

orientations in the natural environment (e.g., more cardinal

than oblique orientations; Girshick et al., 2011; Wei and Stocker,

2015), which is different from the statistics of the orientations

used in van Bergen et al. (2015) (e.g., uniform distribution). In

the case of spatial VWM used here, it is unlikely that observers

used a prior for encoding locations and instead assumed that

objects appeared uniformly at all possible locations (polar

angles).

Contrary to our results, van Bergen et al. (2015) did not

observe a significant correlation between signed decoding error

and signed behavioral error during a perceptual task involving

orientation estimation. They only analyzed ROIs V1, V2, and V3

in early visual cortex. However, we found these early regions

have weaker correlations than higher level regions V3AB and

IPS0, and sometimes the correlations were non-significant (V1

in experiment 1, Figures 4B and 4C; V2 in experiment 1, Fig-

ure 4C). In addition, van Bergen et al. (2015) used an earlier

version of the Bayesian decoder that has a lower decoding per-

formance when directly compared with TAFKAP (van Bergen

and Jehee, 2021). Both the choice of the ROI and the version

of the decoder could contribute to their null results, as well as dif-

ferences in stimuli (orientation versus space) and task (percep-

tion versus memory).

In a number of cortical areas, we observed strong correlations

between participants’ average decoded uncertainty (across all

trials) and their average memory error (across all trials; Figure 8).

Participants who on average represented remembered locations

more precisely in their neural activation patterns (i.e., with lower

decoded uncertainty) were those whose WM was more precise.

This result was consistent across both experiments, and the

result stands when we used an alternative index, the SD of the

distribution of memory errors, to quantify memory precision (Fig-

ure S8). These findings support previous studies that identified

cross-subject correlations between average decoding perfor-

mance and average behavioral performance (Albers et al.,

2013; Christophel et al., 2018; Ester et al., 2013). Overall, the

strong cross-subject correlations we observed demonstrated

that our model-based decoding approach not only provided un-

precedented accuracy of decoding single-trial spatial VWM con-

tent but also extracted features of individuals’ neural circuitry

that constrained individual WM performance. WM abilities pre-

dict a number of cognitive and intellectual functions, suggesting

that it might be a core component upon which many high-level

cognitive abilities depend (Daneman and Carpenter, 1980; S€uß

et al., 2002). Although the neural sources of these individual dif-

ferences inWM remain elusive, our results suggest that the noise

in the population encoding may be an important neural source of

the individual differences in VWM quality.
Neuron 109, 1–14, November 17, 2021 11



ll
Article

Please cite this article in press as: Li et al., Joint representation of working memory and uncertainty in human cortex, Neuron (2021), https://doi.org/
10.1016/j.neuron.2021.08.022
Overall, across two computational neuroimaging experiments,

we demonstrated that humans encode WM representations as a

probability distribution maintained via the activity patterns in pos-

terior parietal and extrastriate visual cortex. These results extend

previous studies identifying probabilistic sensory representations

during perceptual processing and establish that probabilistic pop-

ulation codes are an efficient and general neural coding principle

used to support higher cognitive behaviors such as WM.
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voxel of each ROI. The raw fMRI data are available under restricted access to ensure participant privacy; access can be obtained

by contacting the corresponding authors. The data used to plot figures in this paper (participant means) are provided in the Source

Data file.

All code for data analysis has been deposited in the Open Science Framework https://osf.io/WDJRV (https://doi.org/10.17605/

OSF.IO/WDJRV) and is publicly available as of the date of publication.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Thirteen participants took part in Experiment 1 (two authors). Data of two participants were excluded because the eye tracking data

were too noisy for extracting gaze positions reliably. Nine participants from Experiment 1 and five additional participants joined in

Experiment 2. All participants had normal or corrected-to-normal vision. The experiments were conducted with the written, informed

consent of each participant. The experimental protocols were approved by the University Committee on Activities involving Human

Subjects at New York University, and participants received monetary compensation ($30/hr).

METHOD DETAILS

Procedures
Experiment 1

Participants performed a memory-guided saccade task in the fMRI scanner. Each trial started with the onset of the working memory

target (light gray dot) with a duration of 500 ms followed by a delay period of 12000 ms. Participants were required to remember the

location of the target and hold their gaze at the fixation point at the screen center until the end of the delay period. After the delay

period, the response cue, the fixation point changing from a light gray circle outline into a filled light gray circle, instructing partici-

pants to make a saccadic eye movement to the remembered location. 700 ms after the onset of the response cue, a feedback stim-

ulus (a white dot) was presented at the target location for 800 ms. Participants made a saccade to the feedback dot before moving

their eyes back to the screen center. The intertrial interval was pseudo-randomly chosen to be 6, 9, or 12 s. Each participant

completed 304 to 496 trials (346 trials per participant on average) in 2 to 3 1.5-hr scanning sessions on separate days. Each session

consisted of 9 to 10 runs, eachwith 16 trials whose target had locations evenly spanning the circular space. Participants were allowed

to take a break between runs.
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Experiment 2

The procedures of Experiment 2 were the same as Experiment 1 except the following: In addition to the filled black dot at the

screen center, the response cue contained a dark ring of which radius matching the eccentricity of the target. Participants

made a saccadic eye movement onto the ring when reporting the remembered locations. Upon the detection of the saccade

offset, a dot was presented at participants’ saccade landing location. Participants held a dial in their dominant hands and

were allowed to use the dial to manually adjust the location of the dot if they felt that its location did not match the location

they intended to report (e.g., due to the noisy online gaze position readout). On average, only in 14% of the trials, participants’

final reported location was the same as the location initially marked by the dot. To finalize the memory report, the participants

pressed the button on a button box on the other hand. Upon the button press, an arc centered at the dot (reported location) ap-

peared on the ring. In a post-estimation wager, the participants used the dial to adjust the length of the arc. Spinning the dial

clockwise increased the length of the arc along the ring and vice versa. Participants were instructed to reflect the uncertainty

of their memory on the length of the arc, the longer the arc, the more uncertain. Participants finalized the arc length by pressing

a button and then the feedback stimulus (a white dot) appeared at the true target location. The number of points earned by par-

ticipants for each trial was displayed on the screen along with the feedback stimulus. Participants were rewarded with some

points only if the true target location fell within the arc. The number of points was 100e�0:08d, in which d was the length of the

arc in polar angle (�). That is, the number of points they could gain decreased exponentially with the length of the arc. To gain

more points, an optimal observer should increase the length of the arc with their uncertainty. Participants were well-informed

regarding the structure of the betting game and the policy of reward. Each participant completed 180 to 270 trials (227 trials

per participant on average) in 2 to 3 2-hr scanning sessions on separate days.

Passive viewing control experiment

We scanned a subset of participants (n = 3) on an additional control experiment in which we presented a high-contrast, salient flick-

ering checkerboard stimulus at the same locations as theWM target stimuli while participants performed a demanding discrimination

task at fixation. Trial timing was identical to that used in Experiments 1 and 2. Instead of a dim target stimulus, we presented a full-

contrast flickering checkerboard (0.875 deg radius; 1 cycle/deg spatial frequency; 8 Hz flicker) for 500 ms, followed by a 12 s ‘delay’

period. Throughout the trial, including during the stimulus presentation period, participants carefully attended a rapidly-flashing ‘‘+’’

stimulus at fixation (4 Hz) to detect targets defined by a widening or heightening of the ‘‘+’’ and responding with one button for each

target type.We adjusted the aspect ratio of the fixation discrimination stimulus across scanning runs tomaintain performance�75%.

At the end of the 12 s ‘‘delay’’ period, the fixation task concluded, and participants received feedback about their detection perfor-

mance via green/red/yellow dots (for correct/incorrect/missed responses) presented around fixation. Each of the 3 participants per-

formed 2 sessions of this task, totaling 20-24 runs per participant.

Setup and stimuli
Visual stimuli were presented by an LCD (VPixx ProPix) projector located behind the scanner bore and were viewed by participants

through an angledmirror with a field of view of 52� by 31�. A gray circular aperture with a diameter of 30� was presented on the screen

throughout the experiments. The working memory target was a light gray dot with a diameter of 0.65�. It had an eccentricity at 12�

from the central fixation point and its polar angle was pseudo-randomly chosen from 1 of 32 locations that evenly tiled the full circle

within each run

Eyetracking
For all imaging sessions, we measured eye position using an EyeLink 1000 Plus infrared video-based eye tracker (SR Research)

mounted beneath the screen inside the scanner bore operating at 500 Hz. The camera always tracked the participant’s right eye,

and we calibrated using either a 13-point (Experiment 1, Experiment 2, and the passive viewing experiment) or 5-point (retinotopy)

calibration routine at the beginning of the session and as necessary between runs. We monitored gaze data and adjusted pupil/

corneal reflection detection parameters as necessary during and/or between each run.

Behavioral data analysis
For Experiment 1, we used gaze position estimated from eye position traces as our measurement of VWM performance. We prepro-

cessed raw gaze data using fully-automated procedures implemented within iEye_ts (https://github.com/tommysprague/iEye_ts) to

remove blinks, adjust for drift over the course of a run, recalibrate gaze data trial-by-trial, automatically identify memory-guided sac-

cades, and flag trials for rejection (for behavioral analyses).

We defined blinks as 200 ms before and after periods when pupil size fell below the 1.5th percentile of the distribution across all

pupil size samples of the entire run (396 s). We computed velocity based on smoothed gaze time courses (5 ms standard deviation

Gaussian kernel). We defined saccades based on a velocity threshold of 30 deg/s and a minimum duration of 0.0075 s and 0.25 deg

amplitude. We defined periods between saccades as fixations. We drift-corrected each trial based on the modal fixation position

during the trial period before the go cue appeared. To recalibrate gaze traces on each trial, we found the nearest fixation to the known

target position during the feedback period (800 ms during which target was re-presented and participants were instructed to fixate

this position) and fit a 3rd-order polynomial for each coordinate (X,Y) to map between actual WM position and measured gaze co-

ordinate. We used this polynomial to recalibrate the X and Y traces across all trials within each run.We used trials for whichmeasured
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gaze position was within 2.5 deg visual angle of the feedback target location for fitting the polynomial, but all trials were subjected to

the resulting recalibration.

We quantified WM error based on the endpoint of the large saccadic eye movement toward the remembered position (> 5 deg

amplitude, < 150 ms saccade duration), which we call the ‘primary saccade’, and the final eye position before the feedback stimulus

appeared (‘final saccade’). On trials in which a subsequent corrective saccade is not made before the feedback stimulus appeared,

these positionswere considered identical. For both primary and final saccades, the saccademust have both begun and ended during

the response period. Moreover, we exclude trials in which participants initiate a saccade faster than 100 ms after the response cue

appeared (Mackey and Curtis, 2017).

We flagged trials for exclusion based on: (1) failures of automatic drift correction and/or excessive necessary drift correction

(beyond 2.5 deg), (2) fixation outside a 2.5 deg aperture around fixation during the delay period, (3) ill-defined primary saccade, or

(4) excessive error for primary saccade (> 5 degree visual angle). We included all trials for fMRI data analyses regardless of behavioral

exclusion criteria during model estimation to ensure a balanced sampling of spatial positions, but only included trials with reliable

behavioral estimates for all subsequent analyses including quantifying the decoding performance and correlating decoded results

with behaviors.

The analysis for Experiment 2 was similar to that of Experiment 1, with a few exceptions. As participants were allowed to use the

dial tomanually adjust the remembered location, we used the final dot location after themanual adjustment as the participants’ mem-

ory reports. Different from the definition of excessive error (> 5 degree visual angle) used in Experiment 1, we computed the memory

error and the reported arc length in units of degree polar angle and excluded the trials with memory error exceeding the mean error

plus three standard deviations. The same exclusion criterion was applied to the trials with excessive reported arc length.

For both experiments, when quantifying participants’ behavioral memory error (Figures 1, 4, 5, and 7), we computed the error as the

(signed) difference between the reported location and WM target position in polar angle.

Retinotopic mapping and the identification of region of interest (ROI)
Each participant was scanned for one 1.5-2 hour fMRI session for retinotopic mapping. The experimental procedures followed those

reported by Mackey et al. (Mackey et al., 2017). Participants maintained fixation at the screen center while covertly tracking a bar

aperture sweeping across the screen in discrete steps and in four directions: a vertical aperture moving from the left to the right,

or from the right to the left of the screen; a horizontal aperture moving from the top to the bottom, or from the bottom to the top

of the screen. The bar aperture was divided into three rectangular segments (defined as a central segment and two flanking seg-

ments) with equal sizes, each containing a random dot kinematogram (RDK). Participants’ task was to discriminate in which one

of the two flanking segments, the motion direction of the RDK was in the same direction as the one within the central segment.

The dot motions of all the three segments changed with each discrete step. Participants reported their answer by a button press

before the bar moved into the next step. The coherence of the random dot motion was staircased in order to keep the difficulty of

the task at about 75% accuracy. Each session contained eight to nine runs. In each run, the bar aperture swept across the screen

12 times, and each swept consisted of 12 discrete steps. The four sweeping directions were interleaved and randomized within each

run.While Mackey et al. (Mackey et al., 2017) presented different bar widths in different scanning runs, here we interleaved 3 different

bar widths during the same run.

We fit a population receptive field (pRF) model with compressive spatial summation to the BOLD time series of the retinotopicmap-

ping data for each participant (Dumoulin andWandell, 2008; Kay et al., 2013) after smoothing on the surface (5 mm FWHMGaussian

kernel). We visualized on the cortical surface the voxels’ preferred phase angle and eccentricity estimated by the pRF model. To

define the ROIs, we set a threshold to only include voxels with greater than 10% response variability explained by the pRF model.

We then drewROIs by visual inspection, primarily by identifying reversals of the voxels’ preferred phase angle on the cortical surface.

We define bilateral dorsal visual ROIs V1, V2, V3, V3AB, IPS0, IPS1, IPS2, IPS3, iPCS and sPCS, each with a full visual field

representation.

MRI acquisition
MRI data were acquired on a Siemens Prisma 3T scanner with a 64-channel head/neck coil. We collected functional imaging for the

working memory experiments and the passive viewing experiment with 44 slices and a voxel size of 2.53 mm (4x simultaneous-multi-

slice acceleration; FoV 200 3 200 mm, no in-plane acceleration, TE/TR: 30/750 ms, flip angle: 50 deg, Bandwidth: 2290 Hz/pixel;

0.56 ms echo spacing; P/ A phase encoding). Intermittently throughout each scanning session we acquired pairs of spin-echo im-

ages in the forward and reverse phase-encoding direction with identical slice prescription and no simultaneous-multi-slice acceler-

ation (TE/TR: 45.6/3537 ms; 3 volumes per phase encode direction). These pairs are used to estimate a field map used to correct for

local spatial distortions. The slice prescription was approximately parallel to the calcarine sulcus and covered most of the occipital

lobe and the parietal lobe, with the exception of ventral temporal poles and ventral orbitofrontal cortex in some participants. The func-

tional imaging data for retinotopic mapping was acquired in a separate session at a higher resolution, with a slice prescription

spanning 56 slices (4x simultaneous multislice acceleration) and a voxel size of 23 mm (FoV 2083 208 mm, no in-plane acceleration,

TE/TR: 36/1200 ms, flip angle: 66 deg, Bandwidth: 2604 Hz/pixel (0.51 ms echo spacing), P/A phase encoding).

For each participant, in the retinotopic mapping session, we also collected 2 or 3 T1 weighted whole-brain anatomical scans

(MPRAGE sequence; 0.8 mm3).
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MRI data preprocessing
T1-weighted anatomical images were segmented, and cortical surfaces were constructed using Freesurfer (v6.0). Functional data

(EPI time series) of both the retinotopic mapping experiment and the VWM experiments were preprocessed by customized scripts

using functions provided by AFNI. We applied B0 field map correction and reverse-polarity phase-encoding (reverse blip) correction

to the functional data. Spatial smoothing (5 mm FWHM on the cortical surface) was only applied to the retinotopic mapping data. All

the functional data were motion-corrected (6-parameter affine transform), aligned to the anatomical images, projected onto the

cortical surface, then re-projected into volume space. This process incurs a small amount of smoothing along vectors perpendicular

to the cortical surface, but no additional smoothing was applied. When possible, all linear and nonlinear spatial transformations were

concatenated into a single transform operation to minimize additional smoothing. Linear trends were removed from the time series.

For the VWM experiments, the time series of each voxel was first converted into percentage signal change for each run, and then

normalized (z-score) across time points within each run.

QUANTIFICATION AND STATISTICAL ANALYSIS

Generative model
We decoded the content of WM using a generative model proposed by van Bergen et al. (2015) and van Bergen and Jehee (2021).

Specifically, we used the method named TAFKAP described in (van Bergen and Jehee, 2021). Note that this Bayesian decoding

approach allows us to concurrently read out memorized location and memory uncertainty from the same decoded probability dis-

tribution. Other decoding methods (e.g., linear regression, like inverted encoding models IEM; Sprague et al., 2018) can decode

memorized locations but do not concurrently provide a theoretically-grounded representation of uncertainty. Here, in this and the

next section we briefly describe the critical components of the model and the model-fitting procedures. In the generative model,

the multivariate voxel response given the stimulus location (polar angle) was modeled as a multivariate normal distribution. The

average response (mean) of each voxel given a stimulus was determined by its tuning function (voxel response as a function of polar

angle). The voxel tuning function was approximated by a weighted sum of eight basis functions that evenly tiled the location space.

The basis functions are raised sinusoidal functions

fðsÞk = bcosðs� fkÞc8

where bc represents half-wave rectification and fk is the center of the kth channel. The response of ith voxel bi given a stimulus s is

then modeled as

biðsÞ =
X8

k =1

WikðfkðsÞ + hkÞ+ yi

whereW is a weighting matrix that determines the weights of each basis function for each voxel. Here, two sources of variability are

considered. First, h is the noise specific to each basis function. This noise was carried over into each voxel by the weightingmatrixW.

It modeled the noise shared across voxels with similar voxel tuning functions. The model assumed that h follows a zero-mean normal

distribution whose covariance matrix is a constant noise magnitude multiplied with an identity matrix h � Nð0;s2IÞ. Second, y rep-
resents the noise specific to each voxel. The model assumed that the voxel-wise noise follows a zero-mean normal distribution

y � Nð0;SÞ. The covariance matrix of this distribution is approximated by a rank-one covariance matrix plus a diagonal matrix

S = rttT + ð1� rÞI+ttT

where + represents Hadamard product, element-wise product between two matrices. Thus, based on this generative process, the

theoretical covariance matrix of the multivariate response of the voxels given a stimulus s is

U0 = rttT + ð1� rÞI+ttT + s2WWT

The first two terms of the theoretical covariance matrix consider a simple form of covariance as a weighted sum between a diagonal

matrix (where t is a vector representing the standard deviation of the noise of each voxel) and a rank-one covariance matrix. The last

term captures the covariance depending on the tuning functions of the voxels (i.e., the voxels selective for similar locations have

higher covariance; see derivations in (van Bergen et al., 2015)).

In addition to the theoretical covariance matrix, the model also considered the empirical sample covariance

Usample =
1

Ntrain

�
B�cWG

��
B�cWG

�T

where B is the training data andG is the response of the basis functions given the training set stimuli. Thus, for each training dataset,

we assumed that the voxel activity pattern followed a multivariate normal distribution.

pðbjsÞ � NðWfðsÞ;UÞ
U= lU0 + ð1� lÞUsample
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When the number of variables (voxels) is larger than the number of observations (trials), the sample covariance is not invertible. To

ensure an invertible and stable estimation of the covariance matrix, here the covariance matrix was modeled as the sample covari-

ance matrix ‘‘shrunk’’ (Ledoit and Wolf, 2004) to a target covariance matrix, the theoretical covariance matrix U0. The degree of

shrinkage is determined by a free parameter l (see details in (van Bergen and Jehee, 2021)).

Model fitting and decoding
For each voxel, we averaged the z-normalized percentage signal change of the BOLD time-series over a time window at 5.25 to

12.00 s from the delay onset. This (time-averaged) voxel response corresponding to the delay period was the input to the model.

To let the ROIs we compared have the same number of voxels, for each ROI we first selected the voxels that exhibited the strongest

location selectivity. For each voxel within an ROI, we performed a one-way ANOVA on the training dataset (so the testset was not

used for voxel selection) using the 32 target locations as a categorical independent variable and the voxel response as the dependent

variable. For each ROI, we selected 750 voxels with the largest F value. These voxels were used for training the model, and later for

decoding the data in the testset. The results we reported were robust with respect to the number of voxels selected: We varied the

number of voxels selected (per ROI) across a wide range (from 32 to 1250 voxels), and found that the patterns of all the critical indices

were robust with respect to the number of voxels selected (Figures S5 and S6).

For each participant and each ROI, after selecting the voxels, we trained a Bayesian decoding model using TAFKAP (van Bergen

and Jehee, 2021), and decoded spatial positions using a leave-one-run-out cross-validation procedure. During the training phase the

model used all the trials, except those from one held out run, to estimate the free parameters of the generativemodel. TAFKAP used a

method called ‘‘bootstrap aggregating’’ or ‘‘bagging’’ to take the uncertainty of model parameters into account. Bagging is a special

case of model averaging. By bootstrapping, the trials in the training dataset were resampled with replacement for multiple times to

generate many bootstrap resampled datasets. Each resampled dataset had the same number of trials as the training dataset. For

each resampled training dataset j, a set of free parameters qj was estimated by ordinary least-squares. Each trial in the testset

(the held out run) was then decoded based on Bayes rule. For each trial in the testset, the posterior probability of the stimulus given

the multivariate voxel response b was computed as

pðs��b; qjÞ = pðb��s; qjÞpðsÞR
pðb��s; qjÞpðsÞds

We assumed the prior pðsÞ to be a uniform distribution and we approximated the continuous posterior probability function by sam-

pling 1000 steps evenly spanning the location space. The normalization factor in the posterior was computed by numerical integra-

tion. Note that for each trial in the testset, decoding was performed multiple times based on the parameters estimated using each

resampled training dataset. The decoding results were averaged across all resampled training datasets to obtain one decoded pos-

terior probability distribution

pbagðsjbÞ = 1

Nbootstrap

X
j

pðs��b; qjÞ
We then numerically estimated the circular mean of the posterior to represent the decoded location, and the circular standard de-

viation of the posterior to represent the uncertainty of the remembered location. The number of bootstrap resampled dataset gener-

ated (Nboostrap) was determined by a stopping criterion based on Jensen-Shannon divergence (see details in (van Bergen and

Jehee, 2021)).

Statistical analysis
We tested whether the decoding error distributions (Figure 3A; Figure S1C) departed from a uniform distribution by a (permutation-

based) V test (Berens, 2009), which is a circular variable equivalent of the Rayleigh test with the alternative hypothesis that the de-

coding error distributions had means centered at zero degree (polar angle). For each participant and each ROI, we computed the V

statistics and compared it with the null distribution, obtained by randomly permuting the target location and then recomputing the

decoding errors and their V statistics for 2000 times. The results of the V test are reported in Tables S1 and S4.

Decoding performance was quantified by two indices: the standard deviation of the decoding error (the decoded location minus

the target location in polar angle) distribution (Tables S2 and S5), and the circular correlation between the decoded location and the

target location (Tables S3 and S6). For each subject and ROI, we computed the standard deviation of the decoding error distribution

and compared it with the null distribution. We obtained the null distribution by randomly permuting the target location and then re-

computing the standard deviation of the decoding error for 2000 times. At the group level, we conducted the same permutation pro-

cedure to obtain the null distribution of the group-averaged standard deviation of the decoding error distribution. The same statistical

procedures were applied to the circular correlation.

To relate decoding outputs to behaviors we conducted two sets of statistical tests in parallel (1) We conducted non-parametric

bootstrapping to test the significance of the single-trial correlations reported in both experiments, including the circular correlation

between the decoding error and memory error (Figures 4B and 7B), the correlation between decoded uncertainty and reported

arc length (Figure 6B), the correlation between decoded uncertainty and saccade reaction time (Figures S4B and S4D), and the
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correlation between decoded uncertainty and themagnitude ofmemory error (Figures S7A andS7D). For eachROI, we computed the

correlation (or circular correlation) between the two variables in interest for each participant and averaged the correlation coefficients

across participants. We then resampled the correlation coefficients (with replacement) and computed the averaged correlation co-

efficients. We repeated this procedure for 2000 iterations to obtain a bootstrapped distribution of the averaged correlation coeffi-

cients. The percentage of the iterations in this distribution that was higher or lower than zero was used to compute (two-tailed)

p-values. (2) Following the statistical tests conducted in the previous studies applying the same Bayesian decodingmethod (van Ber-

gen and Jehee, 2021; van Bergen et al., 2015), we also computed binned-correlation for statistical analysis (Figures 4C, 6C, and 7C;

Figures S4C, S4E, S7B, S7C, S7E, and S7F). For each participant, the trials were sorted into four bins with increasing decoding error

or decoded uncertainty. Thememory error or reported arc lengthwas then computed for each bin.We then pooled data points across

participants (four data points per participant) after removing the mean of each participant. For visualization, we added the grand

means back to the data when plotting binned correlations. Pearson correlation coefficients were then computed based on the pooled

data. We compared the correlation coefficients to the null distribution obtained by permuting the data points in the pooled dataset.

We conducted permutation ANOVA to test the effect of ROI on decoding performance (Figure 3B; Figure S1) and error correlations

(Figures 4B and 7B). The F-statistic computed from the original data was compared to the null distribution of F-statistics, which was

obtained by randomly permuting the ROI labels and calculating the F-statistic for 2000 times. We used a false-discovery rate (Ben-

jamini–Hochberg procedure) for correction of multiple comparisons (the number of ROIs) with q = 0.05. We reported adjusted p

values unless otherwise specified.
e6 Neuron 109, 1–14.e1–e6, November 17, 2021


	NEURON15779_proof.pdf
	Joint representation of working memory and uncertainty in human cortex
	Introduction
	Results
	Experiment 1
	Experiment 2

	Discussion
	Supplemental information
	Acknowledgments
	Author contributions
	Declaration of interests
	References
	STAR★Methods
	Key resources table
	Resource availability
	Lead contact
	Materials availability
	Data and code availability

	Experimental model and subject details
	Method details
	Procedures
	Experiment 1
	Experiment 2
	Passive viewing control experiment

	Setup and stimuli
	Eyetracking
	Behavioral data analysis
	Retinotopic mapping and the identification of region of interest (ROI)
	MRI acquisition
	MRI data preprocessing

	Quantification and statistical analysis
	Generative model
	Model fitting and decoding
	Statistical analysis





