The role of sensory uncertainty in simple contour integration
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1 Analysis of learning

We found no main effect of learning across sessions on participants’ accuracy in the collinearity task, as
shown in S1 Fig (two-way repeated-measures ANOVA with Greenhouse-Geisser correction; Fi2.49,17.4) =
0.859, ¢ = 0.828, p = 0.462, 1712) = 0.109). There is a significant main effect of eccentricity (F(2.28,16.0) =
62.4, ¢ = 0.761, p < 0.001, nﬁ = 0.899), which is expected from the experimental manipulations. We also
found no significant interaction between session and eccentricity (F(3.44,24.1) = 0.624, € = 0.382, p = 0.627,
7712) = 0.082). These analyses suggest that participants quickly learnt the task and their performance was
stationary across sessions.
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S1 Fig. Analysis of learning across sessions. Accuracy across four sessions (chance probability
= 0.5). Error bars indicate Mean + 1 SEM across subjects, with retinal eccentricity level plotted as
separate lines. We found no significant change in performance across sessions.

2 Model specification

2.1 Bayesian model

In each trial, an observer utilizes the noisy measurements x,xg of the true stimuli y;,ygr to produce
an estimate of the collinearity state C. Under the Bayesian model, the observer accounts for sensory
uncertainty when deciding whether a measured offset between the line segments is due to non-collinearity
or to sensory noise by computing the log posterior ratio d(zr, zr) (Eq S1) of the two competing hypotheses
so that the probability of answering correctly is maximized,

p(C=1)
0)
Having no direct knowledge of the true vertical positions, the observer marginalizes over y;, and yg. This
gives rise to the following expression for d(z,zRr),
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where N (x| W, 02) is the probability density of a normal distribution with mean y and variance o2, and
we left out the y-dependence of o2(y) for notational simplicity.
The Bayesian decision rule is to report “collinear” when d(xzr,zg) > 0,
A 1 ifd>0
C_{O ifd<0 (83)

The boundary equality d(zr,zr) = 0 defines a curve in (zr,, zg)-space, which we visualize in Fig 3B of
the main text for several values of o2.



2.2 Fixed-criterion model

We also tested a non-Bayesian model in which the observer applies a fixed, uncertainty-independent
decision boundary  (Fig 3A in the main text). The estimated collinearity state is determined as follows,

A 1 if Azl >k
¢= {O if |Az| <k (S4)
This is equivalent to using a decision variable d(zp,zr) = |xp — r| — K. This model describes the

strategy in which the observer uses only the measurements of the line segments, and reports collinearity
if the measured offset is within a fixed threshold k.

2.3 Linear heuristic model

Our third main model is a non-Bayesian probabilistic model in which the decision boundary is represented
by a linear function of sensory noise (Fig 3C in the main text),

A 1 i |Az| > ko + K10y
¢= {O it |Ax| < ko + K104 (85)
This is equivalent to using a decision variable d(zp,xzr) = |z — r| — ko — k10,. This observer

accounts for uncertainty but not in the optimal way.

2.4 Response probabilities

The probability of reporting collinearity given stimuli y;, and yg and eccentricity level y is then equal to
the probability that the measurements fall within the boundary defined by the model M,

Py (C =1 !yL,yR,ai) = //p(é =1|zr, xr, M)p(zLlyr)p(zrlyr)drrdrr
(S6)

= // N(zp;yn, o) N (xr;yr, 02)dzrdeg.
dy (zp,2Rr)>0

Eq S6 generally does not have an analytical solution for an arbitrary decision rule das(zr,xr), in which
case we estimated the response probabilities via numerical integration on a grid.

2.5 Lapse rate

For all models, we fitted a lapse rate A for each subject. We define a lapse as a trial in which the subject
randomly reports collinearity or non-collinearity, each with a probability of 0.5.
Adding the lapse rate to Eq S6 we obtain

DM Japse ((7 =1 IyuyR,aﬁ) ==X pu (C” IyLi,yRi,ai) + % (ST7)

2.6 Height judgment task model

During the height judgment task, the observer reports whether the right line segment is higher than the
left line segment. The observer’s decision C' = “right higher” or C' = “left higher” depends only on the
sign of the offset between measurements Ax = xr — x, which in turn depends on the offset between the



true vertical positions of the stimuli Ay = yg — yr at the current eccentricity level. The decision rule is
simply to report “right higher” when Az > 0 and vice versa,

~ | “right higher” if Az >0 (S8)
~ | “left higher” if Az <0
The response probability is therefore
p(C = “right higher”|Ay) = /p(é’ = “right higher”|Az)p(Az|Ay)dAx
(59)

= /X(Ax > 0)N (Ax; Ay, 202)dAx,

where x(-) is the indicator function which is equal to 1 when the argument is true, 0 otherwise.

3 Model recovery analysis

To ensure our models are distinguishable, and as a further validation of our model fitting pipeline, we
performed a model recovery analysis which verifies that the fitted models are matched to the data-
generating model for simulated data. In this analysis, we considered our three main models: Fixed,
Bayes and Lin.

We first generated 50 synthetic datasets from each of these three models using parameter vectors
randomly drawn from the posterior samples of a randomly drawn subject obtained through MCMC
sampling, so as to represent ‘typical’ observers. Following this procedure, we generated 150 datasets in
total (3 generating models x 50 simulated observers). We then fitted all models to each generated dataset
via maximum likelihood estimation for computational tractability. Here we used the Akaike Information
Criterion (AIC) as the metric for model comparison, and computed the fraction of times that a model
wins the model comparison for a given generating model (S2 Fig). We did not use LOO scores for model
comparison due to the impracticality of performing MCMC on all synthetic datasets and models, as we
found AIC scores and LOO scores to be highly consistent for our models and datasets (see main text).

On average, 90.0% of the 150 datasets were successfully recovered. This result suggests that our main
models are distinguishable, and also validates our model fitting pipeline.

4 Posterior distributions of model parameters

In our analyses, we first performed maximum-likelihood estimation for every model and every subject.
We then followed up with MCMC sampling, using the MLE solutions as starting points for the MCMC
chains. This procedure enabled us to not only obtain point estimates of model parameters for each subject
but also samples from the posterior landscapes of all model parameters (examples shown below).
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S2 Fig. Model recovery analysis. Each square represents the fraction of datasets that were best
fitted from a model (columns), for a given generating model (rows), according to the AIC score. The light
shade of the diagonal squares indicates that the true generating model was, on average, the best-fitting
model in all cases, leading to a successful model recovery.
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S3 Fig. Posterior distribution landscapes. From left to right, the figure shows the posterior distri-
butions of the model parameters obtained via MCMC for the three main models (Bayes, Fixed, and Lin,
respectively), for a representative subject. In each panel, the plots represent the 1-D marginal posterior
distributions of each parameter (on the diagonal), and 2-D marginal posteriors for every parameter pair

(below the diagonal).



