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Working memory (WM) plays an important role in action planning
and decision making; however, both the informational content of
memory and how that information is used in decisions remain
poorly understood. To investigate this, we used a color WM task in
which subjects viewed colored stimuli and reported both an
estimate of a stimulus color and a measure of memory uncertainty,
obtained through a rewarded decision. Reported memory uncer-
tainty is correlated with memory error, showing that people
incorporate their trial-to-trial memory quality into rewarded deci-
sions. Moreover, memory uncertainty can be combined with other
sources of information; after inducing expectations (prior beliefs)
about stimuli probabilities, we found that estimates became shifted
toward expected colors, with the shift increasing with reported
uncertainty. The data are best fit by models in which people
incorporate their trial-to-trial memory uncertainty with potential
rewards and prior beliefs. Our results suggest that WM represents
uncertainty information, and that this can be combined with prior
beliefs. This highlights the potential complexity of WM representa-
tions and shows that rewarded decision can be a powerful tool for
examining WM and informing and constraining theoretical, compu-
tational, and neurobiological models of memory.
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Working memory (WM), the storage and manipulation of
information on a short timescale, is essential for many

cognitive processes. For instance, individual differences in WM
predict both intelligence and academic success (1–3). To un-
derstand WM, research has largely focused on examining the
capacity and limitations of WM (4, 5), epitomized by such
memory paradigms as delayed estimation (6–8), in which par-
ticipants report a guess of a stimulus feature after a delay. In real
life, however, WM information is used not only to make esti-
mates of stimuli features, but also to make decisions and take
actions. For example, when deciding when to cross the street, a
person must remember from a glance the position and velocity of
cars. Since a mistake in this decision is costly, and memories are
noisy, WM information ought to be combined with information
about potential rewards (getting to one’s destination sooner) and
costs (getting hit by a car) of the decision. In doing so, it is useful
to know how reliable or, conversely, how uncertain one’s mem-
ory is. If one is uncertain about the speed of an oncoming car, it
would be wise to wait a little longer to avoid a high-cost collision.
Uncertainty in WM is rarely studied, however. There is evi-

dence that individuals know something about the quality of their
WM representations (9–11); for example, people can report which
items from a set of stimuli they remember better (9). Beyond this,
people know their uncertainty on a trial-to-trial level; when people
make explicit reports of confidence in memory decisions, the
amount of response error correlates with the reported confidence
on each trial (10, 11). This could be explained by memory confi-
dence being a function of internal fluctuations in underlying
memory quality (12).
Confidence ratings are not necessarily a reflection of memory

uncertainty (13, 14), however, and may be produced through a

different mechanism from those used to make decisions under
uncertainty (15, 16). Thus, to observe memory uncertainty, ex-
perimenters might not want to rely on explicit reports of un-
certainty alone, but rather use paradigms in which people are
incentivized to make decisions that implicitly incorporate
memory uncertainty.
Integrating such WM uncertainty information into decisions

would be highly adaptive; for example, when crossing the street
at rush hour, when cars are likely to appear quickly, an observer
ought to have a higher standard of certainty that a car is far away
before crossing. Perceptual research has shown that people can
improve their perceptual decisions by incorporating their un-
certainty with other sensory information (17), rewards (18–20),
or prior beliefs (21). However, although there may be a close
connection between perceptual and WM representations (22–
24), much less is known about the role of WM uncertainty in
decisions. People combine WM reliability and peripheral sensory
information to plan reaching movements (25) and perform
nearly optimally in change detection tasks when items vary in
reliability (26); however, in both perception and memory, these
studies typically manipulate uncertainty by varying the encoding
precision of stimuli (and thus the resulting memory uncertainty).
This is done by manipulating the reliability of stimuli by varying
such properties as contrast, density, and visual eccentricity.
Nonetheless, participants can use cues about such attributes as a
proxy for memory uncertainty without implicitly representing
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memory uncertainty (27, 28). In the present study, we aimed to
show that even in the absence of explicit uncertainty manipula-
tions, WM represents a trial-to-trial measure of uncertainty that
is used in subsequent decisions.

Results
Experiment.To explore howWM information is taken into account
in decisions, we modified a common WM paradigm, delayed es-
timation (6–8), to include a rewarded decision designed to reflect
memory uncertainty. The experiment consisted of a sequence of
memory trials in which participants viewed four colored circles
and after a delay reported an estimate of the color of a certain
probed circle. After responding, they were prompted to draw a
symmetric “arc” around their estimate (Fig. 1A). We refer to this
as the “arc size,” measured as half of the symmetric reported arc.
If the true stimulus color was within the bounds of the arc (“hit”),
the participant received points, which decreased linearly (100 to 0;
“hit” points = 1 arc size/180; “miss” points = 0) as a function of arc
size; otherwise, they received zero points (“miss”). This rule cre-
ates a trade-off between the probability of receiving a reward (as
the arc grows, the stimulus is more likely to be inside it), and the
magnitude of reward (as the arc grows, points from a hit de-
crease). Participants received monetary and time rewards based
on points obtained, incentivizing them to use memory uncertainty
when reporting arcs (Methods).
Furthermore, to test whether WM uncertainty could be inte-

grated with other knowledge, we introduced expectations about
stimuli colors. In two of the four experimental sessions, stimuli
colors were drawn from a uniform stimulus distribution, while in
the other two, colors were drawn from a von Mises (circular
normal) distribution. Participants were taught the distributions
through extensive training (SI Appendix, section S1A). In this
experiment, combining WM uncertainty with the provided reward
rule and the stimulus distribution would yield a greater reward.

Uniform Stimulus Distribution. We first examined sessions with a
uniform stimulus distribution. Participants produced two responses:
errors (defined as the circular distance between stimulus and esti-
mate, in degrees) and arc sizes (Fig. 2 A and B). Arc size is positively
correlated with absolute estimation error on a single-trial level
(“error–arc size correlation,” mean ± SEM across participants, rs =
0.31 ± 0.029, t(11) = 10.2, P = 6.1 × 10−7) (Fig. 2C), such that
riskier decisions (smaller arcs) were associated with smaller errors

and vice versa. This shows that people know their trial-to-trial
memory quality, consistent with the idea that WM represents
memory uncertainty. However, accurate reports of memory quality
do not necessarily imply that this uncertainty is stored in WM.
One possibility is that people use information about stimulus

features as a proxy for uncertainty (27, 28). For instance, if an
observer knows that they encode the color pink poorly, they
could set a larger arc on trials with a pink stimulus. To test this,
we simulated error–arc size correlations from the null hypothesis
that correlation is caused by stimulus color (SI Appendix, section
S1B). Observed correlations (rs = 0.31 ± 0.029) are far larger
than the mean simulated correlations (mean ± SEM, rnull = 0.010 ±
0.040; P < 10−9 for all participants). We repeated this analysis
for two other potential confounding factors, the dispersion of the
colors within a display (rnull = 0.016 ± 0.0068; P < 10−9 for all
participants) (29) and the distance in color space from a probed
color to the nearest nonprobed item (rnull = 0.0063 ± 0.0082; P <
10−9 for all participants) (30), as well as several others (SI Ap-
pendix, section S1B). All confounding factors predicted much
lower correlations than those observed (Fig. 2D). This suggests
that there is sizeable uncertainty due to internal processes (9), and
that participants’ knowledge of memory quality is not explained by
remembering stimulus properties (31).
The error–arc size correlation also could be explained by an

observer’s limited knowledge of their uncertainty. For instance,
even if there were no internal representation of uncertainty, an
observer could know something about their memory quality
simply by being aware of “lapse trials” in which they had low
precision (e.g., blinking during stimulus presentation). In this
case, the correlation would be caused by a mixture of normal
trials (lower error, lower arc) and low-precision trials (higher
error, higher arc) in which the observer knows they did not en-
code the stimulus. To explore this possibility, we built compu-
tational models of this task.
These models are variants of a Bayesian decision model built

on top of a variable precision encoding model (Fig. 1B). In these
models, stimuli are encoded as memories with a memory preci-
sion that varies across trials. We assume that the observer knows
their encoding noise, represented as memory uncertainty, which
they combine with their memory to build a posterior distribution.
Stimulus estimates are noisily sampled from the posterior. Arc
sizes are obtained by calculating the expected utility of each
response given a memory and the reward rule and sampling from
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Fig. 1. Experimental design. (A) Trial procedure. Participants viewed four colored stimuli. After a delay, they estimated the color of a probed stimulus on a
color wheel and then drew a symmetric arc around their estimate. If the stimulus value fell outside of the arc, the participant received 0 points (“miss”); if it
fell within (“hit”), the number of points received was a decreasing linear function of arc size. (B) Diagram of model structure.
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this distribution with (softmax) noise. We further assume that on
each trial, the observer has a certain probability of “lapsing” and
failing to encode the stimulus. In this case, the observer responds
as if they had no memory information. This model (designated
the Known model; six parameters) fits the data qualitatively well
(Fig. 3 A–C); however, we tested modifications to the model to
examine how memory uncertainty may contribute to arc reports.
Models were compared using 10-fold cross-validated log-
likelihood (LLcv) to account for differences in model complex-
ity, with data reported as the mean LLcv difference from the
best-fitting model followed by a bootstrapped 95% confidence
interval in brackets. Importantly, this approach automatically
penalizes overfitting, allowing more parsimonious models to
perform better than flexible models.
We compare the Known model to alternatives in which

encoding noise is not known. While we use the term “not
known,” this model also includes the possibility that people know
their uncertainty but do not use it in the response. The No
Knowledge (seven parameters) model assumes that the observer
does not know their encoding noise and uses a fixed uncertainty
to set an arc. Although the observer does not know their
encoding noise, they know when they are lapsing. This allows the
model to predict a relationship between error and arc size
without any knowledge of encoding precision. The Limited
model (eight parameters) assumes that observers partially know
their encoding noise; uncertainty is zero or a fixed value
according to whether encoding noise exceeds a threshold (Fig.
3D). The Known model outperforms the No Knowledge
(ΔLLcv = −7.8 [−15.1 −1.6]) and Limited (ΔLLcv = −9.1 [−15.7
−2.7]) models (Fig. 3E). Furthermore, to confirm our assump-
tion that precision is variable across trials, we compare the
known model with a fixed precision model (32) in which
encoding noise is always the same (SI Appendix, section S1D).
This model performs poorly (ΔLLcv = −19.4 [−26.8 −13.0]),
supporting previous results indicating that encoding precision is
variable (9, 33). It is worth noting that there exist models be-
tween the Known and Limited models that were not tested, such
as other forms of partial knowledge of uncertainty, which can be
explored in future work. Nonetheless, our findings highlight that

models without knowledge of encoding noise perform poorly,
suggesting WM uncertainty as a causal factor of both estimation
errors and arc responses.

Von Mises Stimulus Distribution. To test whether people could
combine their WM uncertainty with prior information, we ma-
nipulated the stimulus distribution in two of the four experi-
mental distributions to be a von Mises (circular normal)
distribution, with a fixed width and a different mean for each
participant. Repeating the previous analyses on the Von Mises
stimulus distribution trials yielded consistent results (SI Appen-
dix, section S3B). Participants were trained to learn the stimulus
distribution (SI Appendix, section S1A), inducing prior beliefs
about stimuli. Despite training, we found that participants
underestimated the prior width (std = 60°) by reporting a width
of 52.42°. Optimally incorporating these prior beliefs with
memory uncertainty (using Bayes’ rule) would confer a perfor-
mance advantage; for instance, if the color remembered were
both highly uncertain and improbable given the believed stimu-
lus distribution, then a more accurate estimate could be made by
shifting the response toward more frequent colors (SI Appendix,
section S2A). This predicts that responses incorporating prior
information should be attracted toward the most frequent color.
Validating this, responses on the left (−) of the most frequent

color (0) have rightward error (+) and vice versa (Fig. 4A). We
quantify this by multiplying the error by the sign of the stimulus
on that trial to obtain the directional shift toward (+) or away
from (−) the prior. The mean shift toward the prior is positive,
showing that stimulus estimates are attracted to the prior mean
(mean shift = 3.1° ± 1.38, two-tailed Wilcoxon signed-rank test,
P = 0.034) (11). Importantly, the amount of shift toward the
prior mean is correlated with arc size, suggesting that people
incorporate prior and memory information in proportion to their
memory uncertainty [mean ± SEM, rs = 0.080 ± 0.025, t (11) =
3.3, P = 0.0077] (Fig. 4B). This shift–arc size correlation is not
explained by confounding factors (stimulus color, rs = 0.0034 ±
1.10; dispersion of items, rs = 0.010 ± 0.0076; distance to closest
item, rs = 0.0019 ± 0.0059). In addition, the correlation is not
driven by differences in stimulus and prior color driving both
shifts and arc size, as reported arc sizes were not influenced

Fig. 2. Arc size reports correlate with error and reflect trial-to-trial knowledge of memory quality. Behavioral data from uniform stimulus distribution trials
(black) and von Mises stimulus distribution trials (blue) are shown. Here and elsewhere, error bars represent mean ± SEM across participants. (A) Histograms of
circular estimation error in 24° bins. (B) Histograms of arc size in 12° bins. “Arc size” refers to one-half of the size of the reported arc. (C) Error and arc size,
plotted in 15 quantile bins. For each participant, we separated the data into 15 quantiles of arc size and calculated the mean arc size and absolute estimation
error per quantile. For each quantile, we then calculated the mean ± SEM of these averages across participants and plotted the point at the horizontal
coordinate equal to the mean of the quantile centers. Error is correlated with arc size, suggesting trial-to-trial knowledge of memory quality. (D) Comparison
of the observed error–arc size correlation coefficient to the null distribution expected if the correlation were driven solely by stimulus properties, dispersion of
colors in a display, or distance to the most similar color in a display. The boxplot shows the 5th, 25th, 50th, 75th, and 95th percentiles. The observed cor-
relation values fall far outside of the null distribution, indicating that they cannot be driven solely by stimulus color.

Honig et al. PNAS Latest Articles | 3 of 7

PS
YC

H
O
LO

G
IC
A
L
A
N
D

CO
G
N
IT
IV
E
SC

IE
N
CE

S

D
ow

nl
oa

de
d 

by
 g

ue
st

 o
n 

A
pr

il 
3,

 2
02

0 

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1918143117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1918143117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1918143117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1918143117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1918143117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1918143117/-/DCSupplemental


by whether this distance was small or large [split-half, t (11) = −0.21,
P = 0.84]. Furthermore, the correlation of response error with the
prior error (i.e., deviation of the prior relative to the stimulus)
showed a stronger correlation (0.39) for less confident trials than for
confident trials [0.22; t (11) = 3.72, P = 0.003] compared with a split-
half analysis. This is direct evidence of a greater influence of the
prior when reported uncertainty is high (34).
To understand how prior and memory information are in-

corporated, we take the model that best explains the uniform
stimulus distribution data (Known model) and add prior be-
liefs to it, jointly fitting the model on uniform and von Mises
stimulus distribution data. However, introducing a prior in-
troduces two issues: how the observer combines prior and
memory information and the observer’s prior beliefs about the
stimulus.
An optimal observer would incorporate prior information into

their decision. Specifically, they would use Bayes’ rule to com-
bine the likelihood (and associated memory uncertainty) and the
prior beliefs to obtain a posterior. However, observers may just
ignore prior information. Furthermore, observers could use prior
information with some kind of limited knowledge of memory
uncertainty, for instance, the knowledge low-precision (lapse)
trials. In the absence of memory information (lapse trial), the
optimal thing for an observer to do would be to respond at the

prior mean. In this way, the observer could avoid combining
prior information and memory uncertainty by using prior infor-
mation to respond when highly uncertain (lapsing). The observer
then would still have a shift–arc size correlation. We represent
this possibility by testing a model in which the observer uses prior
information when lapsing but otherwise ignores the prior.
Models are represented with two letters, the first indicating
whether prior information is used in nonlapse trials (“Y” for yes,
“N” for no) and the second indicating whether prior information
is used in lapse trials (“Y” for yes, “N” for no) (Fig. 4C). In this
framework, an observer who uses the prior with memory un-
certainty in both lapse and nonlapse trials is designated YY,
while an observer who ignores the prior is NN and an observer
who only uses prior information during lapse trials is NY. We
test the opposite model in which the observer combines prior
information and memory uncertainty but responds randomly
when lapsing (YN) for completion.
Furthermore, participants may have incorrect internal beliefs

about the stimulus distribution (SI Appendix, section S2B). Our
models allow for this possibility by allowing the prior width to be
a free parameter, κw, which is fitted to individual participants. To
validate this, we tested a nested case of the YY model, where the
observer knows the true stimulus distribution (TT; κw = 1.422; 60°).
The YY model fits better than TT (ΔLLcv = −25.3 [−31.9 −16.4]),

Fig. 3. Model comparison, uniform stimulus distribution sessions. (A–C) Known model predictions, plotted with the same conventions as in Fig. 2. (D)
Schematic representation of the relationship between encoding noise and memory uncertainty in tested models. Known, observers know their encoding
precision perfectly; no knowledge, observers have no access to encoding precision and instead assume a fixed memory uncertainty (free parameter); limited,
observers have limited knowledge of encoding precision and represent it as either 0 (when below a threshold) or a fixed value (both free parameters). (E)
Model comparison using 10-fold LLcv. Dots indicate individual participant differences between each model and the known model. Circles and error bars
represent mean and 95% bootstrapped confidence interval. Negative numbers represent a worse fit than the known model. The known model fits the best;
results are consistent using the Akaike information criterion or the Bayes information criterion (SI Appendix, section S3A).
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suggesting that participants incorrectly learned or represented the
stimulus distribution (inferred κw = 0.3024; 111.7°).
Comparing the YY, YN, NY, and NN models, we see that the

YY model has the most overall predictive power. The NN model
performs poorly (ΔLLcv = −15.1 [−21.7 −10.0]) (Fig. 4D), sug-
gesting that participant responses incorporate prior information.
When looking at how prior information is incorporated, the YN
and NY models perform only slightly worse than the YY model.
While this could suggest that all models are inadequate de-
scriptors of the data, the relatively large log-evidence differences
across participants (Fig. 4D) suggest that perhaps different par-
ticipants are best explained by different strategies of combining
prior and memory information. Furthermore, we show that
models generate different predictions for participant behavior
using model recovery analyses (SI Appendix, section S3 G and
H), which suggests potential individual differences in strategy.
To examine this, we applied a hierarchical model of the model

evidence, Bayesian model selection (35), which assumes that
participants use different models and estimates the frequency of
models in the population. Fitting this hierarchical model returns
model frequencies that favor the YY, NY, and YN models but
do not predict that any model is best represented in the pop-
ulation (SI Appendix, section S2C). While it is important to note
that this analysis has a small sample size, this hierarchical model
describes the data better than any single model (Bayes factor =
5.74 × 104), consistent with the suggestion that people may have
different strategies of combining prior and memory information
(SI Appendix, section S2C).

Discussion
We know that people can accurately report the quality of their
own memories (9, 10) and incorporate stimulus reliability into
memory decisions (25, 26); however, this does not necessarily
imply that WM represents uncertainty. We show that people’s
knowledge of memory quality cannot be explained by stimulus
display factors or limited knowledge of encoding precision,
suggesting that WM represents memory uncertainty. Our mod-
eling suggests that spontaneous fluctuations in memory un-
certainty are common causes of both estimation errors and arc
sizes in this task. Future models of WM and decision making will
need to incorporate task-relevant WM uncertainty.
Furthermore, when provided with prior information about

stimuli probabilities, the data are best described by models in
which this information is combined with WM uncertainty,
showing that WM uncertainty can be combined with other
sources of information. We propose two strategies of doing this:
using prior information only when highly uncertain or combining
prior and memory uncertainty information with Bayes’ rule.
Overall, the data are best described by a hierarchical model in
which different people use different strategies of prior and
memory uncertainty combination. This suggests that people are
capable of combining prior information with memory un-
certainty, although not all individuals may do so. Our model of
prior use is one of a class of prior use strategies; there are many
models in this family that we did not test, such as switching be-
tween likelihood and prior (36). Further work is needed to
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understand the exact strategies by which prior and memory un-
certainty information are combined and how they may vary
across individuals.
While we present evidence that WM contains a representation

of memory uncertainty that can be combined with other sources
of information, how this is implemented in the brain remains an
open question. In our models, we assume that memories are
probabilistic representations similar to von Mises distributions,
yet there are many ways in which probabilistic information could
be represented in WM. One implementation is probabilistic
population coding, in which continuous probability distributions
over feature space can be represented in a population of neurons
(37–39). However, it is possible that a more limited form of
probabilistic information is stored, such as several samples of a
stimulus, from which a memory uncertainty can be inferred (40,
41). Determining how WM uncertainty is represented will re-
quire further work. Regardless of how the WM representation is
structured, our findings highlight that current models of WM
must be consistent with the idea that WM representations con-
tain not only an estimate of the stimulus, but also a measure of
memory uncertainty that can be used in subsequent decisions.
This work highlights how studying WM as a system integrated

with decision making can yield new insights into the capacity and
representational nature of WM. By requiring participants to
reason about memory contents and manipulating the conditions
under which these decisions were made, we show that WM
representations contain a trial-level representation of probabi-
listic information, which is incorporated into subsequent decisions.
This approach contrasts with that of many WM paradigms that
aim to minimize decision elements to examine WM in isolation
(i.e., delayed estimation). However, there is no such thing as a
“pure” WM task—even simple paradigms involve reasoning about
stored information. Furthermore, not only does WM involve de-
cision making, but decisions in the real world often involve WM
(e.g., crossing the street, picking up objects). This has been rec-
ognized in reinforcement learning and behavioral economics, in
which task-relevant WM processes contribute to sequential value-
based decisions (42–44), risky decisions (45, 46), and delay dis-
counting (47, 48). Thus, we suggest that models and theory should
focus on understanding memory decision stages instead of mini-
mizing their contribution. Studying WM in tasks with more de-
cision elements could reveal how the WM system functions
realistically in parallel with other systems. Rather than treating
WM storage capacity and decision making as separate fields of
inquiry, we suggest that an attempt to bridge these fields together
is necessary to understand WM as a full and integrated system.

Materials and Methods
Data and Code Availability. All experimental and model code and other data
related to this paper are available in Open Science Framework (49).

Participants. Twelve individuals (seven females; mean age, 21.75 y; range, 19 to
28 y) participated in four 40- to 60-min sessions of this experiment. Partici-
pants were recruited with flyers posted at New York University. Each par-
ticipant provided informed consent, and this study conformed to the
Declaration of Helsinki and was approved by the New York University
Committee on Activities Involving Human Subjects.

Stimuli. The experiment was coded in MATLAB using PsychToolBox (50) and
performed on a 40.9 × 32.5 cm Dell 1907FPC LCD monitor (1,290 × 1,025
resolution, 75-Hz refresh rate) at a viewing distance of 40 cm. Participants
were shown colored dots (1.26° radius) of eccentricity 6.3°. Dot colors were
sampled, with replacement, from a color space consisting of 360 equidis-
tant colors using the CIE L*a*b (centered at L = 54, a = 18, and b = 8; radius
of 59; available in mem_toolbox) (51). Stimulus and background luminance
were roughly 30 cd/m2 and 35 cd/m2, respectively. In sessions 1 and 4, colors
were sampled with equal probability (uniform distribution). In sessions
2 and 3, colors were drawn from a von Mises distribution with a random
mean and fixed concentration parameter of 1.422 (60° circular SD).

Participants were trained to learn these distributions (SI Appendix,
section S1A).

Trial Procedure. On each trial, participants were shown four colored dots for
100 ms. After a delay of 1,000 ms, they reported (with a mouse and color
wheel) the color of a randomly probed dot. After reporting their estimate,
participants also made a rewarded decision. There was a 1,000-ms interval
between trials.

Rewarded Decision. Participants made a rewarded decision, incentivized to re-
flect memory uncertainty. After reporting a stimulus estimate, participants ad-
justed the size of a symmetric “arc,” similar to a confidence interval, around the
estimate to obtain a reward (18). If the true color was within the bounds of their
arc, then the participant received points inversely and linearly related to the size
of the arc (points = (180 − A)/A where A is the size in degrees of one-half the
symmetric arc). If the true color was outside the arc, they received 0 points.

Performance Incentivization. Participants received points on a scale of 0 to 100
and completed the experiment either after achieving 18,000points total or after
1 h had elapsed. Participants completed on average 1,206 (range, 904 to 1461)
trials with 645 (range, 556 to 795) uniform stimulus distribution trials and 561
(range, 348 to 645) von Mises stimulus distribution trials. Participants were paid
$10 per session and received a completion bonus of $10, as well as performance
bonuses based on the summed points from three random trials (0 to $3).

Statistics. Correlations are Spearman correlations (mean and SEM reported). To
evaluate whether the mean correlation is nonzero, we used two-tailed t tests
on the Fisher-transformed coefficients. Bootstrapped confidence intervals used
the bias-corrected and accelerated percentile method (10,000 samples).

Model.We assume that stimuli are encoded as noisy memories (represented by
a von Mises distribution), with an encoding precision, κ, that varies between
trials, represented by a gamma distribution (two free parameters) (9, 33, 52).
We assume the observer knows their encoding precision, represented as
memory uncertainty, κ*, the width of the likelihood. The likelihood is com-
bined with prior beliefs using Bayes’ rule, generating a posterior distribution.

To obtain an estimate, we assume that observers sample from a noisy
representation of the posterior where noise is represented by a free pa-
rameter exponent (53). We assume that the probability of an arc size is a
softmax function of the expected utility, with a free temperature parameter
representing decision noise. The expected utility is computed by multiplying
the reward utility of an arc, U(hit), by the probability of getting that reward,
p(hit). To account for different risk attitudes across individuals, we assume that
the utility of a correct response is equal not to the amount of points obtained,
but rather to the points transformed by raising them to a power, α, repre-
senting risk attitude (54). p(hit) is the integral of the posterior under the area
covered by the arc. For computational tractability, we approximate this by
assuming that in each trial, the observer integrates around the mean of their
posterior instead of around their reported estimate, making the arc size de-
pendent only on the width of the posterior (SI Appendix, section S2C). A lapse
process is also implemented such that on every trial there is a probability, λ
(free parameter), that the participant will have no information about the
stimulus. In this case, the estimate is a random sample from a uniform distri-
bution, and the arc size is determined by the expected utility of this uniform
distribution. Complete equations are provided in SI Appendix, section S1C, and
fitted parameters and predictions are available in SI Appendix, section S3G.

Implementation and Validation. Models are coded in MATLAB with tools from
circ_toolbox (55). We compared models using k-fold (k = 10) LLcv, summed
across folds. Since participants performed different numbers of trials, to
limit the influence of participants with more trials than the group average,
we averaged the per-trial LLcv and multiplied by the mean number of trials
across participants. Each model has between five and nine free parameters
that are fit to each participant using maximum likelihood estimation, opti-
mized through 50 randomly started runs of the Bayesian adaptive direct
search algorithm (56). Removing the utility nonlinearity, the decision noise
or lapse rate significantly worsens model fit (SI Appendix, section S3C). Pa-
rameters and results are consistent across stimulus distributions and when
the arc size is excluded from fitting (SI Appendix, section S3 E and F).
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