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ScienceDirect
Research on artificial intelligence and research on human

intelligence rely on similar conceptual foundations and have long

inspired each other [1,2�]. However, achieving concrete synergy

has been difficult, with one obstacle being a lack of alignment of

the tasks used in both fields. Artificial intelligence research has

traditionally focused on tasks that are challenging to solve, often

using human performance as a benchmark to surpass [3–7]. By

contrast,cognitive science and psychology have movedtowards

tasks that are simple enough to allow for detailed computational

modeling of people’s choices. These divergent objectives have

led to a divide in the complexity of tasks studied, both in

perception and cognition. The purpose of this paper is to explore

the middle ground: are there tasks that are reasonably attractive

to both fields and could provide fertile ground for synergy?
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The challenge of aligning tasks between fields
Research on artificial intelligence and research on human

intelligence rely on similar conceptual foundations and

have long inspired each other [1,2�]. However, achieving

concrete synergy hasbeen difficult, with one obstacle being

a lack of alignment of the tasks used in both fields. Artificial

intelligence research has traditionally focused on tasks that

are challenging to solve, often using human performance as

a benchmark to surpass [3–7]. By contrast, cognitive science

and psychology have moved towards tasks that are simple

enough to allow for detailed computational modeling of

people’s choices. These divergent objectives have led to a

divide in the complexity of tasks studied, both in percep-

tion and cognition. The purpose of this paper is to explore

the middle ground: are there tasks that are reasonably

attractive to both fields and could provide fertile ground

for synergy?
1 Traditionally, state space complexity refers to the number of all possib
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In perception, object recognition has emerged as a central

task for aligning the studies of biological and machine

vision. For biological vision, object recognition is a core

task used to understand representations of visual stimuli

in the ventral stream and specifically the infero-temporal

cortex [8,9]. In machine vision, object recognition has

proven to be an equally fruitful test bed [10,11]. This

alignment of tasks has led to great synergy, for example in

the form of comparisons between cortical activity and the

activity of units in trained neural networks [12,13].

In this paper, we focus on planning, which we roughly

define as anycognitiveprocess in which thedecision-maker

mentally simulates future states, actions or outcomes in a

decision tree. These decision trees can often become

exponentially large, and strategies for efficiently searching

decision trees and making fast and accurate decisions are of

interest for artificial intelligence and cognitive psychology.

In the artificial intelligence of planning, the game of chess

has long taken center stage, from Shannon [14] to Deep-

Blue [4] to AlphaZero [7]. The cognitive psychology of

chess has lagged behind. Chase and Simon advocated for

chess as a “standard task environment” similar to Drosoph-

ila in genetics [15]. Researchers have attempted to measure

depth of thought in chess through clever experimental

methods such as board reconstruction [16], “thinking

aloud” [15,17], playing under cognitive load [18] or time

pressure [19–21]. Overall, however, the prominence of

chess as an experimental paradigm in cognitive science

has declined. One potential reason for this decline is the

difficulty of developing a computational model for human

chess play, and a simpler game is needed.

In the following sections, we will reflect on the notion of

task complexity and review sequential decision-making

tasks that have been used in computational cognitive

science to test hypotheses about planning. We will then

examine candidate tasks for aligning human and machine

planning, and set an agenda for how such alignment could

be achieved.

Defining task complexity
The complexity of a decision-making task can be defined

in multiple ways. We focus on state space complexity, the

number of different states that a decision-maker can

reach in any sequence of actions starting from the initial

state.1 We choose this metric since it is often easy to

compute or approximate, and in practice closely matches

with intuitive notions of task difficulty. In two-player
le game states, we count only non-terminal states.
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games, state space complexity is often correlated with

game tree complexity [22]. Using state space complexity,

however, ignores important elements of difficulty, such as

how easily people can learn the task rules, or whether the

task requires managing uncertainty, learning models of

one’s opponent, and potential symmetries in the state or

action space. A more principled complexity metric mea-

sures the size of a compressed state space, with abstracted

states and actions, which preserve as much as possible the

task structure [23,24]. Therefore, the exact numbers

should be taken as only a rough quantification of the

intuitive notion of complexity (Table 1).

Tasks used to study human planning
The study of human planning is rich and has used many

experimental tasks. A core challenge across tasks is that

researchers can only observe people’s decisions, and not

the cognitive processes (planning algorithms) that gener-

ated them. A principled method to infer planning algo-

rithms is by fitting a computational model to individual

player’s choices. Here, we review a selection of tasks that

have been used to study human planning within a compu-

tational framework. The tasks are roughly sorted by

increasing state space complexity.

Solway and Botvinick task (Figure 1a). [27��] This paper

used a task in which participants choose between up to

4 consumer items that they previously ranked by desir-

ability. Crucially, they presented items in two groups

on either side of a computer  screen, and participants

reported their choice sequentially, by first selecting a

group and afterwards an item within that group. This

task is equivalent to navigating a decision tree with up
Table 1

Tasks and their complexities. Artificial intelligence studies tend

to focus on complex tasks, whereas cognitive scientists favor

simplicity. State space complexity for chess and go are taken

from [25] and [26]

Task State space

complexity

Human

cognition

studies

AI studies

Solway and

Botvinick task

3 [27��]

Daw et al.

“two-step” task

3 [28]

Gläscher et al. task 5 [29]

Wunderlich et al. task 7 [30]

Callaway et al. task 920 [31]

Snider et al. task 66 [32��]
Huys et al. task 2 to 128 [33]

[34]

Four-in-a-row 1.2 � 1016 [35��] [36]

Chess �1047 [16] [14]

[15] [4]

[37] [7]

Go 2.1 � 10170 [6]
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to 3 internal nodes, and Solway and Botvinick found

that people’s behavior can be captured by noisy evi-

dence integration, which treats each path through the

decision tree as a competitor in a bounded accumula-

tion process.

Daw et al. task (Figure 1b) [28] In the two-step task,

participants make a sequence of two binary choices. In

the first decision stage, the participant might choose

between stimuli A1 and A2. Stimulus A1 usually (on

70% of trials, labelled “common” transitions) leads to

the state B, and stimulus A2 to state C. However, occa-

sionally (on 30% of trials, “rare” transitions), A1 leads to

C, or A2 to B. In the second stage, participants make

another choice between two stimuli, which yields a

monetary reward with some probability. The reward

probabilities fluctuate slowly, so participants have to

constantly adapt the values they associate with the stimuli

and adjust their policy accordingly.

The two-step task has state space complexity 3 (1 first-

level state and 2 second-level states). This simplicity is

intentional, as the two-step task is the simplest task that

distinguishes model-free and model-based learning.

(However, it has been argued that sophisticated model-

free learning can masquerade as model-based learning in

this task [39].) Specifically, when an agent receives a

reward at a second-level state, a model-based learner

takes into account whether it arrived there through a

“common” or “rare” transition, whereas a model-free

learner does not. This task has been used to demonstrate

that people use a mixture of model-based and model-free

learning [40,28], that the relative usage of each system

depends on the reliability of their respective predictions

[41] in an on-line cost-benefit analysis [42], and that

people’s arbitration between these systems changes

under cognitive load [43] or when they receive a dopa-

mine precursor [44].

Gläscher et al. task (Figure 1c) [29]. Their task preceded

the two-step task and differed from it in two ways: first,

there are 4 second-level states, and each combination of a

first-level choice and a “common” or “rare” transition

leads to a different state. Second, instead of a second-

level state leading to a reward with some probability, the

choice leads probabilistically to a third state, and then

deterministically to a reward. These modifications

allowed Gläscher et al. to dissociate neural correlates of

reward prediction errors and state prediction errors.

Wunderlich et al. task (Figure 1d) [30] In this variant of

the two-step task, the transitions from the first to second

level were made by an adversarial computer agent, creat-

ing a two-player game. This allowed them to study the

computational processes underlying forward planning by

searching for neural correlates of values of individual

branching steps in a minimax decision tree.
www.sciencedirect.com
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Figure 1
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(f) (g)(e)

Solway and Botvinick (2015) Wu nderlich et al. (2012)
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etc. (12 levels) etc. (up to 8 levels)

Daw et al. (2011) Glascher et al. (2010)

Huys et al. (2012)Callaway et al. (2015)
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Decision trees in some tasks used to study human planning. Each node represents a task state. Solid arrows indicate transitions that are under

the subject’s control, dashed arrows transitions that are not.
Callaway et al. task (Figure 1e) [31,45��] To more directly

measure the planning process, they employed a process

tracing method inspired by the “Mouselab” paradigm [46].

Participants navigate a directed graph, in which each node

is associated with a reward. Although all nodes and edges of

the graph are always visible to the participant, rewards are

only revealed when the participant clicks or hovers over the

corresponding node. The sequence in which participants

choose to reveal rewards provides insight in the cognitive

process by which participants plan their actions. Although

the paradigm scales in principle to arbitrary graphs, Call-

away et al. study graphs with up to 20 nodes.

Snider et al. task (Figure 1f). [32��] Participants watch a

triangular grid of 12 rows of variable-sized disks scroll

down a touchscreen, and at each downward step, parti-

cipants control whether the grid moves right or left by

pointing with a stylus. Thus, the participant traces out a

trajectory through the grid of disks, and they receive

reward proportional to the size of all disks on that trajec-

tory. To plan optimally, participants have to navigate a

decision tree with 66 internal nodes, making this one of

the most complex tasks in which human planning has

been quantitatively modeled.

Huys et al. task (Figure 1g) [33] Participants make a

sequence of up to 8 binary decisions, through which they
www.sciencedirect.com 
traverse a graph of 6 states. Each transition incurs a reward

that can be either positive or negative, and the task is

designed such that the optimal policy requires taking

large negative rewards to obtain later positive rewards.

This task has been used to study how people prune

decision trees following a large loss [33], how they decom-

pose a task into a hierarchy of subtasks [34], and to

develop planning algorithms that optimally trade off

speed and accuracy [47].

Candidate tasks for aligning human and
machine planning
Most cognitive science studies use tasks with single-digit

state space complexity, and studies with more complex

tasks are relatively rare. By contrast, AI researchers study

games many orders of magnitude more complex. To

connect these fields, we argue for tasks with an interme-

diate level of complexity. In particular, we propose a task

that we have studied ourselves, namely four-in-a-row.

Even apart from the objective of aligning fields, cognitive

scientists might have a good reason to study tasks of

intermediate complexity: there likely is a categorical

difference in algorithms people use for simple and com-

plex tasks. When the number of states in a task exceeds

10-20, it becomes implausible that people are able to

represent all states in working memory and exhaustively
Current Opinion in Behavioral Sciences 2019, 29:127–133
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search the tree [48]. Instead, working memory constraints

may force people to use tree search algorithms with

constant memory and computational time requirements,

such as Monte Carlo Tree Search [49] or heuristic search

[50]. This possibility should make such tasks interesting

to cognitive science.

Four-in-a-row. To study human planning with exponen-

tially large decision trees, we studied human decision-

making and learning in two-player deterministic game. In

this game, two players compete to create four-in-a-row on

a 4-by-9 board (Figure 2a). This game, part of the family

of (m, n, k) games [36] is considerably more complex than

most cognitive science tasks, as it contains 1.1812 � 1018

non-terminal states.

We were able to predict individual participants’ choices

on individual moves with a computational model that

combines a feature-based heuristic for state evaluation, a

best-first search algorithm for planning, and feature drop-

out as a mechanisms for lapses of attention (Figure 2b).

Moreover, this model could generalize from predicting

people’s in-game decisions to predicting their choices on

a two-alternative forced-choice task, board evaluations,

response times and eye movements. Finally, by fitting the

model parameters to data from participants in consecutive

sessions, or when with limited allotted thinking time, we

found large and robust effects of expertise and thinking

time on people’s policy, and in particular the estimated

size of their mental decision trees (Figure 2c–d).

Mazes and grid worlds. Mazes and grid worlds are an

important collection of tasks used to study human and

machine planning. These tasks have been used to study

human [51] and animal reinforcement learning [52], or to

develop and benchmark novel reinforcement learning

algorithms [53,54]. Planning has been studied in the

motor domain using a space similar to a grid world [55].
Figure 2
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map of the probabilities that a heuristic search model fitted to one individua

search model allows us to estimate the size of the tree built by human play

Panels (B-D) adapted from [35��].
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However, grid worlds are far from a representative

sequential decision-making task, as the decision tree

contains many transpositions (different action sequences

leading to the same state) and cycles. Therefore, these

tasks often have relatively low state space complexity and

lend themselves uniquely to be solved by dynamic pro-

gramming algorithms [53] that use memory proportional

to the number of states. Since we focus on tasks for which

forward planning at decision time is necessary to curtail

the complexity, mazes and grid worlds may not be an

ideal unifying task.

Atari games. Another recent proposal for a task to study

deep neural networks and their relation to human intelli-

gence are Atari games and in particular the game Frostbite
[2�]. Deep Q-learning networks can learn these games [5]

and outperform human players, but training them

requires an exceedingly large amount of simulated games.

One reason for this slow learning is that these networks

are often initialized randomly, whereas people approach

Atari games with strong inductive biases [56]. Although

we are excited to see a convergence of cognitive and AI

research on Atari games, as a paradigm to study forward

planning they might prove too difficult.

What it means to align human and machine
intelligence
Similarities and differences between human and machine

intelligence have been much discussed [2�,13,57,58].
Here, we focus on what we believe to be necessary

conditions for alignment between studies of human

and machine planning in a given task, in particular what

requirements an AI algorithm needs to satisfy to be a

successful cognitive model.

We believe that understanding human cognition requires

a computational model which makes predictions for indi-

vidual participants’ choices on single trials, in multiple
200
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s to get four in a row. (b) Board position with overlaid in false color a

l’s play predicts for that individual’s next move. (c-d) The heuristic

ers as they learn across sessions (c) or have different time limits (d).
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experimental conditions. A computational model may

take the form of an explicit algorithm that people men-

tally execute, or a neural network. In either case, the

model should include a description of how its policy

changes after each experienced episode.

The main requirement for a computational model to be

successful is that, when presented with the same stimuli

that a participant experienced in a given condition in a

task, its trajectory through policy space should match that

participant’s trajectory. This requirement encompasses

several conditions that are difficult for AI algorithms to

satisfy:

1. The model’s trajectory should start from a policy that

matches people’s inductive biases in people’s deci-

sion-making [2�,56,59,60], and converge to one that

matches people’s behavior including their task

performance.

2. The model should improve on the task at the same rate

as human participants.

3. Finally, the model needs to satisfy these requirements

for each individual participant in different experimen-

tal conditions, forcing it to match not just one trajec-

tory but also capture individual differences in partici-

pant’s trajectories.

One method to constrain individual variability is to con-

struct models with a small number of parameters, which

limits the set of policies the model can express to a low-

dimensional manifold. This is the strategy employed by

traditional computational cognitive science: the model is

carefully chosen so that all participant’s policies lie on its

manifold, and policy trajectories can be translated to

trajectories in a small space of parameters.

Another method would be to use infinitely expressible

models such as deep neural networks, but include hyper-

parameters in their dynamics or initial policy, to match

different people’s trajectories with minimal adjustments.

Although developing an AI algorithm that satisfies these

conditions on even a single task will be challenging, doing

so would enable a “cognitive psychology of artificial

intelligence” [61�], in which researchers subject AI algo-

rithms to new psychological experiments. For example,

one can characterize changes in the AI’s policy trajectory

in response to manipulations of the input data or con-

straints on its use of memory or computational time.

These changes can then be compared to the changes

in humans doing the same experiments. We believe that

this approach will deepen understanding of the corre-

spondence between human and machine intelligence.
www.sciencedirect.com 
Conclusion
We have argued that to align studies of artificial intelli-

gence with studies of human intelligence, there needs to

be a focus on finding tasks that are of interest to both

fields. In doing so, both fields might have to compromise a

little. Cognitive scientists might have to go out of their

comfort zone in terms of experimental control and theo-

retical tractability: suitable tasks are likely orders of

magnitude higher in complexity than common in cogni-

tive science, and human behavior is likely far from opti-

mal. AI researchers might have to settle for tasks that

might not be the most challenging in terms of achieving

high task performance but that offer more opportunities

for systematic analysis of learned policies and linking

those to human cognition. While chess might be too

complex from both an experimental and modeling point

of view, simpler tasks such as four-in-a-row might fit the

bill. Once a suitable task has been chosen, we have laid

out an agenda for using experimental manipulations in

that task to reach a deeper understanding of the corre-

spondence between human and machine intelligence.
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