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Supplementary Figure 1 

Initial, untrained network dynamics for different (λ0,σ0) values. 

The heat maps show the normalized responses of the recurrent units to a unit pulse delivered at time t=0 to all units. Here, λ0 takes 10 
uniformly-spaced values between 0.8 and 0.98 (columns) and σ0 takes 10 uniformly-spaced values between 0 and 0.4025 (rows). 



 

Supplementary Figure 2 

Normalized responses of the recurrent units in networks trained with strong initial network coupling and no regularization. 

Each plot corresponds to an example trial from one of the six basic tasks. The SIs of the trials are indicated at the top of the plots. Trials 
are ordered by increasing SI from left to right. All trials shown here are from networks trained with λ0=0.96, σ0=0.313, ρ=0. After 
training, all networks shown here achieved a test set performance within 25% of the optimal performance. In Supplementary Figures 2-
5, only the active recurrent units are shown. 



 

Supplementary Figure 3 

Normalized responses of the recurrent units in networks trained with weak initial network coupling and no regularization. 

Each plot corresponds to an example trial from one of the six basic tasks. The SIs of the trials are indicated at the top of the plots. Trials 
are ordered by increasing SI from left to right. All trials shown here are from networks trained with λ0=0.96, σ0=0.134, ρ=0. After 
training, all networks shown here achieved a test set performance within 50% of the optimal performance. 



 

Supplementary Figure 4 

Normalized responses of the recurrent units in networks trained with strong initial network coupling and strong regularization. 

Each plot corresponds to an example trial from one of the six basic tasks. The SIs of the trials are indicated at the top of the plots. Trials 
are ordered by increasing SI from left to right. All trials shown here are from networks trained with λ0=0.96, σ0=0.313, ρ=10

-3
. After 

training, all networks shown here achieved a test set performance within 50% of the optimal performance. 



 

Supplementary Figure 5 

Normalized responses of the recurrent units in networks trained with weak initial network coupling and strong regularization. 

Each plot corresponds to an example trial from one of the six basic tasks. The SIs of the trials are indicated at the top of the plots. Trials 
are ordered by increasing SI from left to right. All trials shown here are from networks trained with λ0=0.96, σ0=0.134, ρ=10
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training, all networks shown here achieved a test set performance within 50% of the optimal performance. 



 

Supplementary Figure 6 

Average normalized activity of recurrent units in an example network trained in the 2AFC task. 

The network shown here was trained with λ0=0.96, σ0=0.313, ρ=0. After training, the network achieved a test set performance within 
0.1% of the optimal performance. As in ref. 16, we divided the recurrent units into left-preferring and right-preferring ones based on 
whether they responded more strongly during correct left choices or during correct right choices. The upper panel shows the average 
normalized responses of the left-preferring units in the correct left and correct right trials, respectively. Similarly, the lower panel shows 
the average normalized responses of the right-preferring units in the correct left and correct right trials. As reported in ref. 16, the 
trained network developed choice-specific sequences in the 2AFC task (cf. Figure 2c in ref. 16). Only the most active 150 units from 
each group are shown in this figure; as always, the original network contained 500 recurrent units. This figure also demonstrates that 
the sequences are consistent from trial to trial, since the sequential activity pattern does not disappear when the responses are 
averaged over multiple trials. 



 

Supplementary Figure 7 

A simplified model of recurrent dynamics. 

A simplified model that only incorporated the ReLU nonlinearity and the mean recurrent connection weight profiles shown in the upper 
panel (with no fluctuations around the mean) qualitatively captured the difference between the emergent sequential vs. persistent 
activity patterns (lower panel, left and right plots respectively). The networks simulated here had 500 recurrent units (only the most 
active 50 units are shown in the lower panel). All recurrent units received a unit pulse input at t=0. The self-recurrence term in the 
recurrent connectivity matrix (not shown in the upper panel for clarity) was set to 1 in both cases. In the sequential case, the off-
diagonal band was set to 0.09 in the forward direction and 0.01 in the backward direction, i.e. Wi,i-1=0.09 and Wi-1,i=0.01. The recurrent 
units did not have a bias term and they did not receive any direct inputs during the trial other than the unit pulse injected at the 
beginning of the trial. 



 

Supplementary Figure 8 

Results for the clipped ReLU networks. 

The clipped ReLU nonlinearity is similar to ReLU except that it is bounded above by a maximum value: i.e. f(x)=clip(x, rmin, rmax), where 

rmin=0 and rmax=100. a SI increased significantly with σ0. Linear regression slope: 0.55∓0.28, R
2
=0.01 (two-sided Wald test, n=280 

experimental conditions, p=0.049). In a-c, solid black lines are the linear fits and shaded regions are 95% confidence intervals for the 

linear regression. b SI decreased significantly with λ0. Linear regression slope: -3.87∓0.66, R
2
=0.11 (two-sided Wald test, n=280 

experimental conditions, p=0.000). Note that this result differs from the corresponding result in the case of ReLU networks, where λ0 did 

not have a significant effect on the SI (Figure 2c). c SI decreased significantly with ρ. Linear regression slope: -418∓64, R
2
=0.13 (two-

sided Wald test, n=280 experimental conditions, p=0.000). d SI as a function of task. Overall, the ordering of the tasks by SI was similar 

to that obtained with the ReLU nonlinearity (Figure 3a). However, note that training was substantially more difficult with the clipped 

ReLU nonlinearity than with the ReLU nonlinearity. Across all tasks and all conditions, ReLU networks had a training success (defined 

as reaching within 50% of the optimal performance) of ~60%, whereas the clipped ReLU networks had a training success of only 

~9.3%. In particular, we were not able to successfully train any networks in the CD task and very few in the 2AFC task. As a 

consequence, some of the differences between the tasks ended up not being significant in the clipped ReLU case. Error bars represent 

mean ∓ standard errors across different hyperparameter settings. Exact sample sizes for the derived statistics shown in d are reported 

in Supplementary Table 1. e, f Recurrent connection weight profiles (as in Figure 6a-c) in conditions where SI>4.8 and in conditions 
where SI<3, respectively. The weights were smaller in magnitude in f, because most of the low SI networks were trained under strong 
regularization. Solid lines represent mean weights and shaded regions represent standard deviations of weights. Both means and 



standard deviations are averages over multiple networks. 

 

Supplementary Figure 9 

Changing the amount of input noise. 

In these simulations, we set ρ=0 and varied the gain of the input population(s), g. g=1 corresponds to the original case reported in the 
main text; lower and higher values of g correspond to higher and lower amounts of input noise, respectively. a Combined across all 

noise conditions, SI increased significantly with σ0. Linear regression slope: 0.76∓0.08, R
2
=0.04 (two-sided Wald test, n=2239 

experimental conditions, p=0.000). In a-c, solid black lines are the linear fits and shaded regions are 95% confidence intervals for the 
linear regression. b λ0 did not have a significant effect on SI (two-sided Wald test, n=2239 experimental conditions, p=0.958). c The 

input gain g slightly increased the SI. Linear regression slope: 0.04∓0.02, R
2
=0.003 (two-sided Wald test, n=2239 experimental 

conditions, p=0.003). d Again, combined across all input noise levels, the ordering of the tasks by SI was similar to that obtained in the 

main set of experiments, where g=1 (Figure 3a). Error bars represent mean ∓ standard errors across different hyperparameter settings 

and noise levels. Exact sample sizes for the derived statistics shown in d are reported in Supplementary Table 1. 



 

Supplementary Figure 10 

Results for the lowest level of input noise (g = 2.5). 

a SI increased significantly with σ0. Linear regression slope: 0.76∓0.18, R
2
=0.05 (two-sided Wald test, n=365 experimental conditions, 

p=0.000). In a-b, solid black lines are the linear fits and shaded regions are 95% confidence intervals for the linear regression. b λ0 did 

not have a significant effect on SI (two-sided Wald test, n=365 experimental conditions, p=0.253). c The ordering of the tasks by SI was 

similar to that obtained in the main set of experiments. Error bars represent mean ∓ standard errors across different hyperparameter 

settings. Exact sample sizes for the derived statistics shown in c are reported in Supplementary Table 1. d, e Recurrent connection 

weight profiles (as in Figure 6a-c) in conditions where SI>4.9 and in conditions where SI<2.8, respectively. Solid lines represent mean 
weights and shaded regions represent standard deviations of weights. Both means and standard deviations are averages over multiple 
networks. 



 

Supplementary Figure 11 

Results for the highest level of input noise (g = 0.5). 

a SI increased significantly with σ0. Linear regression slope: 0.91∓0.21, R
2
=0.05 (two-sided Wald test, n=361 experimental conditions, 

p=0.000). In a-b, solid black lines are the linear fits and shaded regions are 95% confidence intervals for the linear regression. b λ0 did 

not have a significant effect on SI (two-sided Wald test, n=361 experimental conditions, p=0.457). c The ordering of the tasks by SI was 

similar to that obtained in the main set of experiments. Error bars represent mean ∓ standard errors across different hyperparameter 

settings. Exact sample sizes for the derived statistics shown in c are reported in Supplementary Table 1. d, e Recurrent connection 

weight profiles (as in Figure 6a-c) in conditions where SI>4.6 and in conditions where SI<2.3, respectively. Solid lines represent mean 
weights and shaded regions represent standard deviations of weights. Both means and standard deviations are averages over multiple 
networks. 



 

Supplementary Figure 12 

Schur decomposition of trained and random-connectivity matrices. 

a Schur mode interaction matrices for the mean recurrent connectivity patterns shown in Figure 6a-c. Only significant Schur modes with 
at least one interaction of magnitude greater than 0.04 with another Schur mode are shown here. b The corresponding significant Schur 
modes. Networks with more sequential activity (SI>5) have more high-frequency Schur modes than networks with less sequential 
activity (SI<2.5). The random networks are close to normal. 



 

Supplementary Figure 13 

Results from networks explicitly trained to generate sequential activity [AU: We can’t support reference citations in titles. Okay to 
delete the citation to ref. 35 here? Or cite it in the legend.] 

a-b are analogous to Figure 6a-b and show the recurrent weight profiles obtained in trained networks with ReLU and tanh 
nonlinearities, respectively. c-d show example trials for the corresponding networks (trained with the same initial condition). Only 
networks with sequentiality index larger than 5.45 were included in the results shown here. 



 

Supplementary Figure 14 

Circuit mechanism that generates sequential vs. persistent activity in networks with alternative activation functions. 

This figure is analogous to Figure 6a-b, but the results shown are for networks with the exponential linear (elu) activation function (a) 
and networks with the softplus activation function (b). Note that the elu activation function typically produced larger SIs than softplus, 
hence slightly different SI thresholds were used in the two cases to determine low and high SI networks. 

 



 

Figure Exact sample sizes (​n​) Statistical tests 

Figure 3a COMP: 590 
CD: 252 
GDE: 546 
DE-2: 537 
DE-1: 590 
2AFC: 391 

None 

Figure 3c f​=0.25: 27  
f​=1: 19  
f​=2: 8 

Reported in Figure 3 legend. 

Figure 3d COMP: 67 (red & cyan each) 
CD: 27 (each) 
GDE: 54 (each) 
DE-2: 48 (each) 
DE-1: 64 (each) 
2AFC: 48 (each) 

p​=0.140, ​t​=1.484 
p​=0.137, ​t​=-1.511 
p​=0.006, ​t​=-2.963 
p​=0.486, ​t​=-0.700 
p​=0.000, ​t​=-3.866 
p​=0.000, ​t​=-3.769 
All tests are two-sided Welch. 

Figure 3e Combined: 308 (each) p​=0.000, ​t​=-4.259 (two-sided 
Welch) 

Figure 4a COMP: 56 (red & cyan each) 
CD: 12 (each) 
GDE: 30 (each) 
DE-2: 23 (each) 
DE-1: 44 (each) 
2AFC: 46 (each) 
Combined: 211 (each) 

p​=0.000, ​t​=7.349 
p​=0.019, ​t​=2.624 
p​=0.084, ​t​=1.761 
p​=0.497, ​t​=0.684 
p​=0.528, ​t​=0.634 
p​=0.986, ​t​=0.018  
p​=0.000, ​t​=3.589 
All tests are two-sided Welch. 

Figure 4b COMP: 76 (red & cyan each) 
CD: 20 (each) 
GDE: 57 (each) 
DE-2: 57 (each) 
DE-1: 66 (each) 
2AFC: 64 (each) 
Combined: 340 (each) 

p​=0.000, ​t​=16.096 
p​=0.000, ​t​=20.023 
p​=0.000, ​t​=8.825 
p​=0.000, ​t​=8.226 
p​=0.000, ​t​=8.462 
p​=0.189, ​t​=1.322 
p​=0.000, ​t​=13.802 
All tests are two-sided Welch. 

Figure 4c COMP: 71 (red & cyan each) 
CD: 16 (each) 
GDE: 41 (each) 
DE-2: 35 (each) 
DE-1: 39 (each) 

p​=0.960, ​t​=0.050 
p​=0.427, ​t​=-0.805 
p​=0.000, ​t​=-6.996 
p​=0.000, ​t​=-9.835 
p​=0.000, ​t​=-14.816 



2AFC: 43 (each) 
Combined: 245 (each) 

p​=0.028, ​t​=-2.233 
p​=0.000, ​t​=9.021 
All tests are two-sided Welch. 

Figure 5a COMP->2AFC: 56 (each) 
2AFC->COMP: 50 (each) 

p​=0.003, ​t​=-3.084 
p​=0.015, ​t​=-2.470 
All tests are two-sided Welch. 

Figure 5b CD->2AFC: 28 (each) 
2AFC->CD: 20 (each) 

p​=0.200, ​t​=-1.305 
p​=0.002, ​t​=-3.268 
All tests are two-sided Welch. 

Supplementary Figure S8d COMP: 151 
GDE: 36 
DE-2: 48 
DE-1: 42 
2AFC: 3 

None 

Supplementary Figure S9d COMP: 481 
CD: 191 
GDE: 398 
DE-2: 354 
DE-1: 419 
2AFC: 396 

None 

Supplementary Figure S10c COMP: 88 
CD: 41 
GDE: 63 
DE-2: 41 
DE-1: 64 
2AFC: 68 

None 

Supplementary Figure S11c COMP: 74 
CD: 12 
GDE: 66 
DE-2: 71 
DE-1: 75 
2AFC: 63 

None 

 
Supplementary Table 1: Exact sample sizes and test statistics for all derived statistics and 
statistical tests reported in each figure, including the supplementary figures. 
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