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Abstract

Optimal sensory decision-making requires the combination of uncertain sensory signals
with prior expectations. The effect of prior probability is often described as a shift in the deci-
sion criterion. Can observers track sudden changes in probability? To answer this question,
we used a change-point detection paradigm that is frequently used to examine behavior in
changing environments. In a pair of orientation-categorization tasks, we investigated the
effects of changing probabilities on decision-making. In both tasks, category probability was
updated using a sample-and-hold procedure: probability was held constant for a period of
time before jumping to another probability state that was randomly selected from a predeter-
mined set of probability states. We developed an ideal Bayesian change-point detection
model in which the observer marginalizes over both the current run length (i.e., time since
last change) and the current category probability. We compared this model to various
alternative models that correspond to different strategies—from approximately Bayesian to
simple heuristics—that the observers may have adopted to update their beliefs about proba-
bilities. While a number of models provided decent fits to the data, model comparison
favored a model in which probability is estimated following an exponential averaging model
with a bias towards equal priors, consistent with a conservative bias, and a flexible variant of
the Bayesian change-point detection model with incorrect beliefs. We interpret the former as
a simpler, more biologically plausible explanation suggesting that the mechanism underlying
change of decision criterion is a combination of on-line estimation of prior probability and a
stable, long-term equal-probability prior, thus operating at two very different timescales.

Author summary

We demonstrate how people learn and adapt to changes to the probability of occurrence
of one of two categories on decision-making under uncertainty. The study combined psy-
chophysical behavioral tasks with computational modeling. We used two behavioral tasks:
a typical forced-choice categorization task as well as one in which the observer specified
the decision criterion to use on each trial before the stimulus was displayed. We formu-
lated an ideal Bayesian change-point detection model and compared it to several
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alternative models. We found that the data are explained best by a model that estimates
category probability based on recently observed exemplars with a bias towards equal prob-
ability. Our results suggest that the brain takes multiple relevant time scales into account
when setting category expectations.

Introduction

Sensory decision-making involves making decisions under uncertainty. Furthermore, optimal
sensory decision-making requires the combination of uncertain sensory signals with prior
expectations. Perceptual models of decision-making often incorporate prior expectations to
describe human behavior. In Bayesian models, priors are combined with likelihoods to com-
pute a posterior [1]. In signal detection theory, the effect of unequal probabilities (signal pres-
ent vs. absent) is a shift of the decision criterion [2].

The effects of prior probability on the decision criterion have been observed in detection
[2-4], line tilt [5], numerosity estimation [6, 7], recognition memory [8], and perceptual cate-
gorization [9] tasks, among others. These studies generally use explicit priors, assume a fixed
effect, and treat learning as additional noise. However, there are many everyday tasks in which
the probability of a set of alternatives needs to be assessed based on one’s past experience with
the outcomes of the task. The importance of experience has been demonstrated in studies
examining differences between experience-based and description-based decisions [10, 11] and
in perceptual-categorization tasks with unequal probability, in which response feedback leads
to performance that is closer to optimal than observational feedback [12, 13]. While these stud-
ies demonstrate the importance of experience on decision-making behavior, they do not
describe how experience influences expectation formation. The influence of experience on the
formation of expectations has been demonstrated for learning stimulus mean [14-17], vari-
ance [14, 18], higher-order statistics [19], likelihood distributions [20], the rate of change of
the environment [15-17, 21-23], and prior probability [24, 25]. Here, we add to previous work
by investigating how one’s previous experience influences probability learning in a changing
environment.

In the previous work on probability learning by Behrens et al. [24], participants tracked the
probability of a reward to learn the value of two alternatives. This is a classic decision-making
task that involves combining prior probability and reward. In contrast, we are interested in
perceptual decision-making under uncertainty, in which prior probability is combined with
uncertain sensory signals. We might expect differences in strategy between cognitive and per-
ceptual tasks, as cognitive tasks can be susceptible to additional biases. For example, partici-
pants often exhibit base-rate neglect (i.e., they ignore prior probability when evaluating
evidence) in cognitive tasks [26] but not in perceptual tasks [2]. On the other hand, Behrens
et al. [24] found that participants’ behavior was well described by an optimal Bayesian model,
in that observed learning rates quantitatively matched those of a Bayesian decision-maker car-
rying out the same task. A more recent study by Zylberberg et al. [25] examined probability
learning under uncertainty in a motion-discrimination task. In this study, probability was esti-
mated from a confidence signal rather than explicit feedback. Additionally, probability was
changed across blocks, allowing participants to infer a change had occurred. Here, we examine
probability learning when feedback is explicit and changes are sudden.

To investigate probability learning in uncertain conditions, we designed a perceptual cate-
gorization task in which observers need to learn category probability through experience.
Since our goal was to examine low-level perceptual and decision-making processes, we used a
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highly controlled experimental environment. To prevent the use of external cues (e.g., the start
of a new block indicating a change in probability) probabilities were changed using a sample-
and-hold procedure. This approach has been used in decision-making [21, 22, 24] and motor
domains [18] to examine behavior in dynamic contexts. Observers completed both a covert-
and overt-criterion task, in which the decision criterion was implicit or explicit, respectively.
The overt task, previously developed by Norton et al. [16], provided a richer dataset upon
which to compare models of human behavior. We determined how observers tracked category
probability in a changing environment by comparing human behavior to both Bayesian and
alternative models. We find that a number of models qualitatively describe human behavior,
but that, quantitatively, model comparison favored an exponential averaging model with a bias
towards equal priors and a flexible variant of the Bayesian change-point detection model with
incorrect beliefs about the generative model. Although model comparison did not distinguish
between these models, we interpret the exponential model with a conservative bias as a sim-
pler, more biologically plausible explanation. Our results suggest that changes in the decision
criterion are the result of both probability estimates computed on-line and a more stable, long-
term prior.

Results
Experiment

During each session, observers completed one of two orientation-categorization tasks. On
each trial in the covert-criterion task, observers categorized an ellipse as belonging to category
A or B by key press (Fig 1A). On each trial in the overt-criterion task, observers used the mouse
to rotate a line to indicate their criterion prior to the presentation of an ellipse (Fig 1B). The
observer was correct if the ellipse belonged to category A and was clockwise of the criterion
line or if the ellipse belonged to category B and was counter-clockwise of the criterion line.
The overt-criterion task is an explicit version of the covert-criterion task developed by Norton
etal. [16]. The overt-criterion task provides a richer dataset than the covert-criterion task in
that it affords a continuous measure and allows us to see trial by trial changes in the reported
decision criterion, at the expense of being a more cognitive task. In both tasks, the categories
were defined by normal distributions on orientation with different means (ug = y5 + A8) and
equal standard deviation (o¢); the mean of category A was set clockwise of the the mean of cat-
egory B and a neutral criterion would be located halfway between the category means (Fig 1C).
The difficulty of the task was equated across participants by setting A0 to a value that predicted
a d’ value of 1.5 based on the data from the initial measurement session (see Methods). All data
are reported relative to the neutral criterion, Zyeytral = (s + Us)/2.

Prior to testing, observers were trained on the categories. Only the covert-criterion task was
used for training (see Section 6 in S1 Appendix). During training, category probability was
equal (77 = 0.5) and observers received feedback on every trial that indicated both the correct-
ness of the response (tone) and the generating category (visual). As a measure of category
learning, we compute the probability of being correct in the training block and averaged across
sessions. All observers learned the categories to the expected level of accuracy (p(correct) =
0.74 + 0.01; mean + SEM across observers), given that the expected fraction of correct
responses for an ideal observer with d’ = 1.5 and equal priors over categories is 0.77. As an
additional test of category learning, immediately following training observers estimated the
mean orientation of each category by rotating an ellipse. Each category mean was estimated
once and no feedback was provided. There was a significant correlation between the true and
estimated means for each category (category A: r = 0.82, p < 0.0001; category B: r = 0.97,

p < 0.0001), suggesting that categories were learned. However, on average mean estimates
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Fig 1. Experimental design. (A) Trial sequence in the covert-criterion task. After stimulus offset, observers reported the category by key press and received auditory
feedback indicating the correctness of their response. In addition, the fixation cross was displayed in the color of the generating category. (B) Trial sequence in the
overt-criterion task. Prior to stimulus onset, observers rotated a line to indicate their criterion by sliding the mouse side-to-side. When the observer clicked the mouse,
a stimulus was displayed under the criterion line and auditory feedback was provided. (C) Example stimulus distributions for category A (green) and category B (red).
Note that numbers on the x-axis are relative to the neutral criterion (i.e., 0 is the neutral criterion). (D) Example of random stepwise changes in probability across a
block of trials. Change points occurred every 80-120 trials and are depicted above by the black arrows. Category A probabilities 77, were sampled from a discrete set,
S»=10.2,0.35,0.5, 0.65, 0.8}. (E) Generative model for the task in which category probability 7 is updated following a sample-and-hold procedure, a category C is
selected based on the category probability, a stimulus s is drawn from the category distribution and is corrupted by visual noise resulting in the noisy measurement x.
Note that this diagram omits the dependency that leads to change points every 80-120 trials.

https://doi.org/10.1371/journal.pcbi.1006681.g001

were repelled from the category boundary (average category A error of 11.3° + 6.3° and aver-
age category B error of —8.0° £ 2.6°; mean + SEM across observers) suggesting a systematic
repulsive bias.

To determine how category probability affects decision-making, during testing category A
probability 77, was determined using a sample-and-hold procedure (Fig 1D; category B proba-
bility was 1 — 7). For ¢ = 1, category A probability was randomly chosen from a set of five
probabilities S, = {0.2, 0.35, 0.5, 0.65, 0.8}. On most trials, no change occurred (A; = 0), so
that 7,1 = 71,. Every 80-120 trials there was a change point (A; = 1), with change point sampled
uniformly. At each change point, category probability was randomly selected from the S,,
excluding the current probability. On each trial ¢, a category C; was randomly selected (with
P(category A) = m,) and a stimulus s, was drawn from the stimulus distribution corresponding
to the selected category. We assume that the observer’s internal representation of the stimulus
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is a noisy measurement x, drawn from a Gaussian distribution with mean s, and standard devi-
ation oy, which represents visual noise (v). The generative model of the task is summarized in
Fig 1E.

Bayesian models

To understand how decision-making behavior is affected by changes in category probability,
we compared observer performance to several Bayesian models. To compute the behavior of a
Bayesian observer, we developed a Bayesian change-point detection algorithm, based on
Adams and MacKay [27], but which also accounts for Markov dependencies in the transition
distribution after a change. Specifically, the Bayesian observer estimates the posterior distribu-
tion over the current run length (time since the last change point), and the state (category
probability) before the last change point, given the data so far observed (category labels until
trial £, C; = (Cy,. . .,Cy)). We denote the current run length at the end of trial ¢ by r,, the current
state by 7,, and the state before the last change point by &, where both 7,,¢; € S,.. That is, if a
change point occurs after trial ¢ (i.e., 7, = 0), then the new category A probability will be 71, and
the previous run’s category probability &, = 7, ;. If no change point occurs, both 7 and §
remain unchanged. We use the notation C\” to indicate the set of observations (category
labels) associated with the run r,, which is C,_, .., for r, > 0, and {) for r, = 0. The range of
times with a colon, e.g., Cy.;, indicates the sub-vector of C with elements from ' to ¢ included.

Both of our tasks provide category feedback, so that at the end of trial ¢ the observer has
been informed of C,,,.. In S1 Appendix we derive the iterative Bayesian ideal-observer model.
After each trial, the model calculates a posterior distribution over possible run lengths and pre-
vious probability states, P(r,&,|C,.;). The generative model makes it easy to calculate the condi-
tional probability of the current state for a given run length and previous state, P(7,|r,&,,C1.,).
These two distributions may be combined, marginalizing (summing) across the unknown run
length and previous states to yield the predictive probability distribution of the current state,
P(7,|C,.,). Given this distribution over states, in both tasks the observer needs to determine the
probability of each category. In particular,

P(Ct+1 =AlC,) =E[r] = Z n,P(n,|C,,). (1)

T ES,

In the overt task, the ideal observer sets the current criterion to the optimal value z** based
on the known category orientation distributions and the current estimate of category probabil-
ities. Further, in the ideal and all subsequent models of the overt task, in addition to early sen-
sory noise (o,) we assume the actual setting is perturbed by adjustment noise (z, = z*" + ¢,
where g, ~ N (0, 6?)).

In the covert task, the observer views a stimulus and makes a noisy measurement x; of its
true orientation s, with noise variance ¢2. The prior category probability is combined with the
noisy measurement to compute category A’s posterior probability P(Cy,; = Alx;, 1, Cy.,). The
observer responds “A” if that probability is greater than 0.5.

We consider the ideal-observer model (Bayes;qe.1) and four (suboptimal) variants thereof,
which deviate from the ideal observer in terms of their beliefs about specific features of the
experiment (Bayes,, Bayes,, Bayesg, and Bayes,.  5). Two further variants of the Bayesian model
(Bayespi,s and Bayes, g) are described in S1 Appendix. Crucially, all these models are “Bayes-
ian” in that they compute a posterior over run length and probability state, but they differ with
respect to the observer’s assumptions about the generative model. Note that these models differ
from the model provided by Gallistel and colleagues [28], which was used to model a task in
which participants explicitly indicated perceived probability and change points.
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Bayes;gea. The ideal Bayesian observer uses knowledge of the generative model to maxi-
mize expected gain. This model assumes knowledge of sensory noise, the category distribu-
tions, the set of potential probability states, and the run length distribution. Because observers
were trained on the categories prior to completing each categorization task, assuming knowl-
edge of the category distributions seems reasonable. Further, it is reasonable to assume knowl-
edge of sensory noise as this is a characteristic of the observer. However, since observers were
not told how often probability would change, nor were they told the set of potential probability
states, observers may have had incorrect beliefs about the generative model. Thus, we devel-
oped additional Bayesian models (described below), in which observers could have potentially
incorrect beliefs about different aspects of the generative model.

Bayes,. The Bayes, model allows for an observer to have an incorrect belief about the run
length distribution. For a given discrete r, the observer believes that the run length distribution
is drawn from a discrete uniform distribution, ~ Unif[|2r], r|. We chose this particular inter-
val rather than a more general one, because it is simple and includes the true generative distri-
bution. For the ideal observer, r = 120.

Bayes,. The Bayes, model allows for an observer to have an incorrect belief about the set
of probability states. The veridical set of experimental states is five values of 7 ranging from 0.2
to 0.8. The Bayes,, model observer also assumes five possible values of 7 evenly spaced, but
ranging from 7, t0 May = 1 — Zmin, Where 7y, is a free parameter.

Bayesg. While incorrect assumptions about parameters of the generative model result in
suboptimal behavior, suboptimality can also arise from prior biases (that is, incorrect hyper-
parameters). The Bayesz model, like the Bayes;ge,; model, assumes knowledge of the generative
model, but also includes a hyperprior Beta(f, §) that is applied after a change point. Thus, as 8
increases, the posterior belief over category probabilities is biased toward equal probability.
For the ideal observer, 8 =1 (a uniform distribution).

Bayes, . 5. The ‘incorrect-belief Bayesian models described above vary one assumption at
a time, with at most a single additional free parameter. To get a sense of model performance
when multiple assumptions are varied, the Bayes,. , s model allows for incorrect beliefs about
the run length and probability distributions and a prior bias towards equal probability. Specifi-
cally, the Bayes, , s model observer assumes that run length is drawn from the discrete distribu-
tion [r, 7 + Ar] and that there are five possible values of 7 evenly spaced ranging from 7,,;, to
Timax Where r € [1,200], Ar € [1, 200], my;, € (0, 0.5), and 71, € (0.5, 1) are all free parame-
ters. The model also includes the hyperprior Beta(f, 8), with § € (0, 100], that is applied after a
change point. Because of the model’s complexity, excessive flexibility, and differences in the fit-
ting procedure (see Methods), we only compared it to the best-fit model as determined by a
separate model-comparison analysis. For the same reasons, note that this model is not
included in the following figures or parameter tables. However, the results are summarized in
Fig S1in S1 Appendix.

Alternative models

In addition to the Bayesian models described above, we tested the following alternative models
that do not require the observer to compute a posterior over run length and probability state.
In each of the following models, assumptions vary about whether and how probability is esti-
mated. In the Fixed Criterion (Fixed) model the observer assumes fixed probabilities. In the
Exponential-Averaging (Exp), Exponential-Averaging with Prior Bias (Expy;,s), and the Wil-
son et al. (2013) models, probability is estimated based on the recent history of categories. In
the Reinforcement-Learning (RL) model, the decision criterion is updated following an error-
driven learning rule with no assumptions about probability. Finally, the Behrens et al. (2007)
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model is an alternative Bayesian model with fewer assumptions and restrictions than the
Bayesian change-point detection model described above. We also tested three additional mod-
els that are described in S1 Appendix.

Each of the following models, except for the RL model, computes an estimate of category
probability (7, ,) on each trial and the estimated probability of the alternative is 7, = 1 — 7, ,.
On each trial, the optimal criterion z,, is computed based on these estimated probabilities in
the identical manner as for the Bayesian models. To make a categorization decision in the
covert-criterion task, the criterion is applied to the noisy observation of the stimulus. In the
overt-criterion task, the observer reports the criterion, which we again assume is corrupted by
adjustment noise.

Fixed. While incorporating category probability into the decision process maximizes
expected gain, a simpler strategy is to ignore changes in probability and fix the decision crite-
rion throughout the block. In the fixed-criterion model, we assume equal category probability
and the criterion is set to the neutral criterion:

z = (s + 1)- (2)

1
2

P(x;|C=A)
> P(x,|C,=B)’

This model is equivalent to a model in which the likelihood ratio is used to make

categorization decisions rather than the posterior odds ratio in the covert-criterion task. This
is a reasonable strategy for an observer who wants to make an informed decision, but is unsure
about the current probability state and its rate of change.

Exp. The exponential-averaging model computes smoothed estimates of category proba-
bility by taking a weighted average of previously experienced category labels, giving more
weight to recently experienced labels:

iy, =05
(3)

Tppr1 — aExpCt +(1— O‘Exp)TCAm

where agy, is the smoothing factor, 0 < ag,, < 1, and C, = 1 if category A is observed on trial ¢

and C; = 0 otherwise. The time constant of memory decay for this model is T = W
Xp

Mathematically this model is equivalent to a delta-rule [29] model based on an “error” that
is the difference between the current category and the current probability estimate:

Tpe = Rip, + 0, (C, — 7, ,). The criterion z is then set to the optimal value based on this
category-probability estimate.

ExXppiase The Expypi,s model is identical to the Exp model, while also incorporating a com-
mon finding in the literature [2] known as conservatism (i.e., observers are biased towards the
neutral criterion). On each trial an estimate of probability is computed as described in Eq (3),
and averaged with a prior probability of 0.5:

5 R 1
Tpy = Wiy, + B (1—w), (4)

where w is the weight given to the probability estimate 7, , and (1 — w) is the weight given to
7a = 0.5. The criterion z is also set to the optimal value based on this category-probability
estimate.

Wilson et al. (2013). Due to the complexity of the full Bayesian change-point detection
model, Wilson et al. [30] developed an approximation to the full model using a mixture of
delta rules. In their reduced model, the full run-length distribution is approximated by main-
taining a subset of all possible run lengths. These are referred to as nodes {l;,. . .,/;}. On each
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trial, an estimate of probability is computed for each node,
A
a, =05

L1
Mo = TMay+

where v, is a model parameter that represents the strength of the observer’s prior towards
equal category probability (pseudocounts of a Beta prior; larger v, corresponds to stronger
conservatism) and C; is the category label. The learning rate for each node is thus

Uyyitson, = ﬁ For a single-node model, this is identical to the Exp model described above Eq

(3). To obtain an overall estimate of probability in a multiple-node model, estimates (Eq (5))
are combined by taking a weighted average. The weights, p(l}|C,.,), are updated on every trial.
The update is dependent on an approximation to the change-point prior, which in turn
depends on the hazard rate & (for details see Wilson et al. [30], Eqs 25-31, along with the later
correction [31]). In other words, when the probability of a change is high, more weight is
given to /;, which results in a greater change in the overall probability estimate. But when the
probability of a change is low, more weight is given to nodes greater than /; and the probability
estimate is more stable. For a three-node model probability is estimated as

ﬁA.tJrl :p(l1|cl:t)ﬁ:2,t+l +p(l2|cl:t)ﬁ7i\,t+1 +p(ls|cl:t)ﬁlﬁ,t+1- (6)

For the purpose of the current experiment, we used a three-node model in which the first
node was fixed (I; = 1) and [, and I; were allowed to vary. In addition, the prior strength
parameter, v, which modulates the learning rate, was also free. By allowing v,, to vary, this
model is equivalent to the three-node model described by Wilson and colleagues [30] in which
all nodes were free and v, = 2 was fixed. The hazard rate was set to 0.01, corresponding to an
expected block length of 100 trials (the experimental mean), and we assumed a change
occurred at t = 1, so that all the weight was given to [;. We also tested an alternative model with
a fixed value of v, = 2, but it resulted in a worse fit.

RL. While the models described above make assumptions about how probability is esti-
mated, it is also possible that observers simply update the decision criterion without estimating
the current probability state. A model-free reinforcement-learning approach assumes the
observer does not use knowledge of the environmental structure. Instead, the decision crite-
rion, rather than an estimate of category probability, is updated. The observer updates the
internal criterion (z) on each trial according to the following delta rule:

z,,if correct
Zi = (7)

z, + o (%, — z,), if incorrect.

Thus, the criterion is updated when negative feedback is received by taking a small step in
the direction of the difference between the noisy observation (x;) and current criterion (z,),
where the step size is scaled by the learning rate oy . Nothing is changed after a correct
response. Assuming effective training, we initialize the RL model by setting z, = (1 + 11, ).

Behrens et al. (2007). Behrens and colleagues [24] developed a model that uses Bayesian
learning to update one’s belief about the statistics of the environment to use on the next trial.
Importantly, a Behrens et al. (2007) observer updates beliefs about the probability of category
A (m), volatility (v) and the volatility’s rate of change (k) without having to store the entire his-
tory of outcomes (Cj.,) and reward statistics. The posterior probability over 7, v, and k, or
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current belief about the environmental statistics, is computed as follows:

p(nt+17 Vit k|C1:t+1) X P(Ct+1 |7Tt+1) X

®
J | oK 900l i, 0, i,

where p(7e1|7p Vis1) ~ B(7s, exp(v441)) is the probability transition function, p(v,,|v,, k) ~
N (v,,exp(k)) is the volatility transition function, and p(Cy, |7, ) is the likelihood of the most
recently observed category. The likelihood is equal to 7,,; when C;,; =1 and 1 — 7,1 when
Ci11 = 0. Integration was done numerically over a five-dimensional grid (m,, vy, k, 71141, V441)-
We assumed the observer adopted non-informative uniform priors over 7, v, and k. Thus,
each dimension was split into 30 equally spaced bins with v and k spaced evenly in log space
(as per positive parameters of unknown scale). To obtain an estimate of the probability of cate-
gory A, we marginalized over v,,, and k and computed the mean of the probability distribu-
tion,

ﬁ:A, 1 /nr+1p(ﬂr+1)dnr+1' (9)

Other than sensory or adjustment noise, this model has no additional free parameters.
Assuming perfect category knowledge, the criterion z is set to the optimal value based on this
category-probability estimate.

Behrens et al. (2007) with bias. For the Behrens et al. (2007) model with a bias towards
equal probability, category probability was estimated as in Eq 9 and a weighted average
between 74 = 0.5 and the model estimate was computed as in Eq 4. This model has one addi-
tional free parameter, w, which is the weight given to the probability estimate 7, , as in the
Exppias model. The criterion z is then set to the optimal value based on the weighted category-
probability estimate.

Raw data

Fig 2 shows raw data for a single observer in the covert (Fig 2A) and overt (Fig 2C) tasks. For
visualization in the covert task, the ‘excess’ number of A responses is plotted as a function of
trial (gray line in Fig 2A). To compute the ‘excess’ number of A responses, we subtracted {
from the cumulative number of A responses. Thus, ‘excess’ A responses are constant for an
observer who reported A and B equally often, increase when A is reported more, and decrease
when A is reported less. To get a sense of how well the observer performed in the covert task,
the number of ‘excess’ A trials (based on the actual category on each trial rather than the
observer’s response) is shown in black (Fig 2A, top). For reference, 7, is shown as a function
of trial (Fig 2A, bottom). From visual inspection, the observer reported A more often when
7as > 0.5 and B more often when 7, ; < 0.5. Results for all observers in the covert task can be
found in S1 Appendix (gray line in Figs S6A-S17A).

In the overt task, the orientation of the observer’s criterion setting, relative to the neutral
criterion, is plotted as a function of trial (gray circles). For visualization, a running average was
computed over a five-trial moving window (gray line). Here (Fig 2C, top), the black line repre-
sents the criterion on each trial, given perfect knowledge of the categories, sensory uncertainty,
and category probability. While this is impossible for an observer to attain, we can see that the
observer’s criterion follows the general trend. This suggests that observers update their crite-
rion appropriately in response to changes in probability. That is, the criterion is set counter-
clockwise from the neutral criterion when 7, ; > 0.5, and clockwise of neutral when 7, , < 0.5.
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Fig 2. Behavioral data and model fits. (A) Behavioral data from a representative observer (CWG) in the covert-criterion task. Top: The number of ‘excess’ A
responses (i.e., the cumulative number of A responses minus £) across trials. Gray line: Observer data. Black line: The true number of ‘excess’ A’s. Bottom: The
corresponding category probability. (B) Model fits (colored lines) for observer CWG in the covert-criterion task. Shaded regions: 68% CI for model fits. Gray:
Observer data. (C) Behavioral data from a representative observer (GK) in the overt-criterion task. Top: The orientation of the criterion line relative to the neutral
criterion as a function of trial number. Gray circles: raw settings. Gray line: running average over a 5-trial moving window. Black line: ideal criterion for an observer
with perfect knowledge of the experimental parameters. Bottom: Category probability across trials. (D) Models fits (colored lines) for observer GK in the overt-
criterion task. A running average was computed over a 5-trial window for visualization. Shaded regions: 68% CI on model fits. These are generally smaller than the
model-fit line. Gray line: the running average computed from the observer’s data.

https://doi.org/10.1371/journal.pcbi.1006681.9002
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Fig 2C (bottom) shows 74 as a function of trial. Results for all observers in the overt task can
be found in S1 Appendix (gray line in Figs S6B-S17B).

Modeling results

Model predictions. A qualitative comparison of the behavioral data to the ground truth
suggests that observers updated their criterion in response to changes in probability. However,
it does not tell us how. To explore the mechanism underlying these changes, we compared the
observers’ data to multiple models. For each task and model, the mean model response for a
representative subject is plotted in Fig 2B (covert task) and Fig 2D (overt task). Shaded regions
indicate 68% CIs computed from the posterior over model parameters. Specifically, we sam-
pled parameters from the posterior over model parameters and computed the model response
for the given set of parameters. We then computed the standard deviation across model
responses for a large sample (see Model visualization). Occasionally, shaded regions computed
on fits are narrower than the data line. Qualitatively, most models captured observers’ chang-
ing criteria, with the fixed model being much worse. Differences across models are especially
pronounced in the overt task. Specifically, we see that the Exp, Exppi.., Wilson et al. (2013),
RL, and Behrens et al. (2007) models capture changes in criterion that occur between change
points that the ideal Bayesian change-point model generally fails to capture. The MAP model
fits for each observer, model, and task can be found in S1 Appendix (colored lines in Figs
S6-S17).

Model comparison. We quantitatively compared models by computing the log marginal
likelihood (LML) for each subject, model, and task. The marginal likelihood is the probability
of the data given the model, marginalized over model parameters (see Methods). Here, we
report differences in log marginal likelihood (ALML, also known as log Bayes factor) from the
best model, so that larger ALML correspond to worse models. We compare models both by
looking at average performance across subjects (a fixed-effects analysis), and also via a Bayes-
ian Model Selection approach (BMS; [32]) in which subjects are treated as random variables.
With BMS, we estimate for each model its posterior frequency fin the population and its pro-
tected exceedance probability ¢, which is the probability that a given model is the most fre-
quent model in the population, above and beyond chance [33].

Model comparison (Fig 3) favored the Expyi,s model, which outperformed the second best
model Bayes, (covert task: ALML = 9.27 + 2.86; overt task: ALML = 8.96 + 4.01; mean and
SEM across observers) in the two tasks (covert task: #(10) = 3.99, p = 0.003; overt task: #(10) =
2.37, p = 0.04). Similarly, Bayesian model comparison performed at the group level also
favored the Expy,;,s model (covert task: f=0.42 and ¢ = 0.96; overt task: f= 0.34 and ¢ = 0.86).
These results suggest that observers estimate probability by taking a weighted average of
recently experienced categories with a bias towards 7 = 0.5.

To evaluate the performance of the more complex Bayes,. , 3 model, we computed both the
Bayesian Information Criterion (BIC), obtained via maximum-likelihood estimation, and an
approximate expected lower bound (ELBO) of the log marginal likelihood, obtained via Varia-
tional Bayesian Monte Carlo [34], a recent variational inference technique (see Methods for
details). For a fair comparison, we also computed the same metrics for the best-fitting model
from the analysis above (Expy,,s), using the same fitting procedures. In this analysis, negative
ABIC and positive AELBO correspond to evidence in favor of the Expy;,s model. For the covert
task, the two models were indistinguishable in terms of both BIC (ABIC = -2.75 + 6.07; £(10) =
-0.45, p = 0.66) and ELBO (AELBO = 0.93 + 2.81; #(10) = 0.33, p = 0.75). The same finding
held for the overt task, in that models performed comparably in terms of both BIC (ABIC =
—-2.14 + 10.58; #(10) = —0.20, p = 0.84) and ELBO (AELBO = 1.54 + 4.89; #(10) = 0.32, p = 0.76).
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Fig 3. Model comparison. (A) Average log marginal likelihood (LML) scores relative to the best-fitting model, Expy;,s (top: covert task; bottom: overt task). Lower
scores indicate a better fit. Error bars: 95% CI (bootstrapped). (B) Bayesian model selection at the group level. The protected exceedance probability (¢) is plotted for
each model. Models are stacked in order of decreasing probability.

https://doi.org/10.1371/journal.pcbi.1006681.9g003

In short, according to both metrics the Expy,;,; model describes the data at least as well as the
much more complex Bayes, , s model. The model fits and results of this comparison can be
found in Fig S1 in S1 Appendix.

Fig 4A shows the number of observers that were best fit by each model for each task. To
compare LML scores across tasks, and for the purpose of this analysis only, we standardized
model scores for each observer and task. Standardized LML scores in the overt task are plotted
as a function of standardized LML scores in the covert task in Fig 4B. We found a significant
positive correlation, r = 0.60, p < 0.01, indicating that models with higher LML scores in the
covert task were also higher in the overt task. This result suggests that strategy was fairly con-
sistent across tasks at the group level. In addition, there was more variance in model scores for
worse-fitting models.

Model parameters. We examine here the parameter estimates of the Expy,;,s model, recall-
ing that the two model parameters oy, and w represent, respectively, the exponential smooth-
ing factor and the degree to which observers exhibit conservatism. The maximum a posteriori
(MAP) parameter estimates are plotted in Fig 5. Converting the smoothing factor to a time
constant over trials, we found that the time constant in both tasks was well below the true rate
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of change (covert: 7 = [4.24, 7.18]; overt: T = [3.48, 4.75]; Tyue = 100 trials on average). We con-
ducted paired-sample t-tests to compare the raw parameter estimates in the covert and overt
tasks. We found a significant difference in w (£(10) = —2.55, p = 0.03), suggesting that observers
were more conservative in the covert than the overt task. No significant difference was found
for agy, (£(10) = —0.98, p = 0.35).

To investigate whether there was bias in the parameter-estimation procedure when fitting
the Expy;,s model, we also conducted a parameter-recovery analysis. Most parameters could be
recovered correctly, except for adjustment variability (o,) in the overt task, which we found to
be overestimated on average (see Section 4 in S1 Appendix for details). Note that this bias in
estimating o, in the overt task does not affect our model comparison, which is based on LMLs
and not on point estimates.

While we might expect performance to be similar across tasks and observers (i.e., a correla-
tion between the parameter fits in each task), no significant correlations were found (Qgxp: 7 =
-0.14, p = 0.67; w: r = 0.16, p = 0.64). Parameter estimates for all models, except the Bayes,. , 5
model, are shown in Tables 1 and 2.

As the Bayes, , 5 contained a number of parameters that were unique to the model, parame-
ter estimates for this model were not included in the tables below (covert: o, = 9.6 £ 0.7,
r=56.9+19.1, Ar=37.0 £ 14.8, 7 = .15 + .04, A = .35 + .04, and 8 = 1.68 * .6; overt: g, =
155+ 1.1,r=323+£10.2,Ar=30.7+ 9.5, 1=.13 + .04, Amr= .42 £ .03, and = 0.42 £ .2).

Discussion

Although we know that people update decision criteria in response to explicit changes in prior
probability, the effects of implicit changes in prior probability on decision-making behavior
are less well known. In the present study, we used model comparison to investigate the mecha-
nisms underlying decision-making behavior in an orientation-categorization task as prior
probability changed. We tested a set of models that varied in both computational and memory
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demands. Models were tested on data from both a covert- and overt-criterion task. A compre-
hensive approach, consisting of both qualitative and quantitative analysis, was performed to
determine the best fitting model. We found that observers updated their decision criterion fol-
lowing changes in probability. Additionally, we observed systematic changes in the decision
criterion during periods of stability, which was clearly evident in the overt-criterion data.
While most models fit the data reasonably well qualitatively, model comparison slightly
favored an exponential-averaging model with a bias towards equal probability, which was
indistinguishable from a flexible variant of the Bayesian change-point detection model with

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006681  July 8, 2019 14/26


https://doi.org/10.1371/journal.pcbi.1006681.g005
https://doi.org/10.1371/journal.pcbi.1006681

O PLOS

COMPUTATIONAL
BIOLOGY

Human online adaptation to changes in prior probability

Table 1. Maximum a posteriori parameter estimates +S.E. in the covert-criterion task.

Model oy r b3 B a w L L3 Yp
Bayes;geal 9.7+ 0.6 - - - - - -
Bayes, 9.9+£0.8 51.5+11.8 - - - - - -
Bayes, 10.5+0.8 - 0.32 £ 0.02 - - - -
Bayesg 10.2£0.7 - - 18.4 £ 8.2 - - - -
Fixed 109 £0.8 - - - - - - -
Exp 9.4+0.7 - - - 0.04 £ 0.01 - - -
Expuias 10.0 £ 0.8 - - - 0.17 £ 0.04 0.58 £ 0.05 - - -
Wilson et al. (2013) 9.4 +0.7 - - - - 122+£2.8 118.5+£23.3 433+ 144
RL 9.2+0.7 - - - 0.26 £ 0.03 - - - -
Behrens et al. (2007) 85+0.3 - - - - - - - -
Behrens et al. (2007) + bias 10.4 £ 0.7 - - - - 0.31 +0.04 - - -

https://doi.org/10.1371/journal.pcbi.1006681.t001

incorrect beliefs and a bias towards equal probability. We can thus interpret the Expy,;,s model
as a simpler explanation, in which observers update the decision criterion by combining on-
line estimation of probability with an equal-probability prior. Ultimately, our results help
explain decision-making behavior in situations in which people need to assess the probability

of an outcome based on previous experience.

Criterion updates in response to implicit changes in category probability

To determine the influence of prior probability on decision-making behavior, we examined
changes in the decision criterion. First, we found that no participant was best fit by a fixed-cri-
terion model. This finding suggests that observers update decision criteria in response to
implicit changes in probability. This result is consistent with previous studies in which prior
probability was explicit [2-9]. Further, this finding complements recent studies suggesting that

individuals can learn and adapt to statistical regularities in changing environments [14-17, 24,
25, 35, 36]. Although this finding suggests that observers dynamically adjust decision criteria
in response to changes in prior probability, it does not tell us how they do this (e.g., do observ-
ers compute on-line estimates of probability?). To uncover the mechanisms underlying
changes in decision-making behavior, we compared multiple models ranging from the full
Bayesian change-point detection model to a model-free reinforcement-learning (RL) model.

Table 2. Maximum a posteriori parameter estimates +S.E. in the overt-criterion task.

Model 0, r b1 B a w L, I Vp
Bayes;geal 17.2+£1.1 - - - - - - -
Bayes, 164+ 1.1 70 £ 15 - - - - - - -
Bayes, 16.7 £ 1.1 - 0.17 £ 0.03 - - - - - -
Bayesg 170+ 1.1 . - 13.2+8.2 . - . - .
Fixed 194+ 1.1 - - - - - - - -
Exp 16.7 £ 1.1 - - 0.09 = 0.02 - - - -
EXPbias 16.0 £ 1.0 - - 0.22 +0.03 0.74 + 0.06 - - -
Wilson et al. (2013) 164+1.1 - - - - - 10.8 £2.0 46.4 + 184 9.2+5.1
RL 18.1+1.2 - - 0.21 £ 0.03 - - - -
Behrens et al. (2007) 18.6 + 1.0 - - - - - - -
Behrens et al. (2007) + bias 174+ 1.0 - - - - 0.66 + 0.06 - -
https://doi.org/10.1371/journal.pcbi.1006681.1002
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Systematic criterion fluctuations

How is the decision criterion set? Qualitatively, most models appear to fit the data reasonably
well in the covert task. However, when we look at data from the overt task, while the Bayesian
change-point detection models captured the overall trend, some variants failed to capture local
fluctuations in the decision criterion observed during periods of stability (i.e., time intervals
between change points). In other words, the criterion predicted by these models stabilized
whereas the observers’ behavior did not. This was less true when the Bayesian change-point
detection model was allowed to vary more freely. In contrast, the exponential-averaging mod-
els continually update the observer’s estimate of probability based on recently experienced cat-
egories. It can be difficult to discriminate a hierarchical model (e.g., the Bayesian change-point
detection models) from flat models (e.g., our exponential models). For example, in a similar
paradigm, Heilbron and Meyniel [37] found that predictions of change points could be similar
for hierarchical and flat models. The addition of confidence judgments allowed them to dis-
criminate the two model forms more readily.

How quickly observers updated this estimate is determined in the model by the decay-rate
parameter. From our model fits, we found that observers had an average decay rate that was
substantially smaller than the true run length distribution (on average 4.5 vs. 100 trials, respec-
tively), leading to frequent, systematic fluctuations in decision criteria. Although we cannot
directly observe these fluctuations in the covert task, because the estimated decay rate was not
significantly different across tasks we can assume the fluctuations occurred in a similar man-
ner. Like the exponential models, the RL model was also able to capture local fluctuations in
the decision criterion. However, the amplitude of the changes in criterion predicted by the RL
model was generally too low compared to the data. This discrepancy was especially clear in the
overt task; no participant was best fit by the RL model. As a more fair comparison to the expo-
nential models, we also fit the Bayesian model developed by Behrens and colleagues [24] with
and without a bias towards equal probability. These models are more fair in that they do not
require specifying a run-length distribution and allowed us to increase the number of possible
probability states. While this allowed us to capture local fluctuations, model comparison
favored the Expy;,s model. These results have two important implications. (1) It is important
to test alternatives to Bayesian models: observers’ behavior might be explained without requir-
ing an internal representation of probability. (2) Using multiple tasks together with rigorous
model comparison can provide additional insight into behavior (see also [38]). Here, the fluc-
tuations in decision criteria between change points led to suboptimal behavior. Overall, our
findings suggest that suboptimality arose from an incorrect, possibly heuristic inference pro-
cess, that goes beyond mere sensory noise [39-41].

A dual mechanism for criterion updating

While the Bayes, , s and Expyi,s models fit the data equally well, the Expy;,s model provides a
simpler explanation—considering that our experiment did not necessarily require subjects to
build a hierarchical model of the task (see [37]). This suggests that observers compute on-line
estimates of category probability based on recent experience. Further, the bias component of
the model suggests that observers are conservative, as reflected in a long-term prior that cate-
gories are equally likely. The degree to which observers weight this prior varied across individ-
uals and tasks. Taken together, these results suggest a dual mechanism for learning and
incorporating prior probability into decisions. That is, there are (at least) two components to
decision making that are acquired and updated at very different timescales.
Multiple-mechanism models have been used to describe behavior in decision-making [30]
and motor behavior [42]. A model that combines delta rules predicts motor behavior better
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than either delta rule alone [42]. Using a combination of delta rules [30], we were able to cap-
ture the local fluctuations in criterion that the ideal Bayesian model missed. However, we
found that a constant weight on 7 = 0.5 fit better than the multiple-node model described by
Wilson and colleagues [30]. Temporal differences between their task and ours might explain
some of the differences we observed, as changes occurred much more slowly in our experi-
ment. Additionally, while fitting Wilson et al.’s model we set the hazard rate to 0.01 (the aver-
age rate of change), but observers had to learn this value throughout the experiment and may
have had incorrect assumptions about the rate of change [21, 22].

Explanations of conservatism

Conservatism was an important feature in our models, as it improved model fits each time it
was incorporated. While we observed conservatism in both the covert- and overt-criterion
tasks, we found that, on average, observers were significantly more conservative in the covert
task. To understand why conservatism differs across tasks, we need to understand the differ-
ences between the tasks. While the generative model was identical across tasks, the observer’s
response differed. In the covert task, observers chose between two alternatives. In the overt
task, observers selected a decision criterion. This is an important difference because it allows
us to potentially rule out previous explanations of conservatism, such as the use of subjective
probability [4], misestimation of the relative frequency of events [43, 44], and incorrect
assumptions about the sensory distributions [45, 46]; these explanations predict similar levels
of conservatism across tasks. On the other hand, conservatism may be due to the use of subop-
timal decision rules. Probability matching is a strategy in which participants select alternatives
proportional to their probability, and has been used to explain suboptimal behavior in forced-
choice tasks in which observers choose between two or more alternatives [6, 47-50]. Thus, the
higher levels of conservatism in the covert task may have been due to the use of a suboptimal
decision rule like probability matching, which would effectively smooth the observer’s
response probability across trials. Probability matching is not applicable to responses in the
overt task. Thus, the use of different decision rules may result in different levels of conserva-
tism. These differences may also arise from an increase in uncertainty in the covert task due to
less explicit feedback. An observer with greater uncertainty will rely more on the prior. Thus,
conservatism may be the result of having a prior over criteria that interacts with task uncer-
tainty. This can be tested by manipulating uncertainty over the generative model and measur-
ing changes in conservatism. It is also possible that our training protocol introduced a bias
towards equal probability and, due to the greater similarity between the covert and training
tasks, the bias was stronger in the covert task. Finally, it is also possible that conservatism is the
result of both the use of suboptimal decision rules and one or more of the previously proposed
explanations.

Incorrect assumptions about the generative model

While we tested a number of Bayesian change-point detection models that explored an array
of assumptions about the generative model, clearly one could propose even more variants
(e.g., a model with incorrect assumptions about category means and variance). Here, we ana-
lyzed one such assumption at a time. A simple way to expand the model space is via a factorial
comparison [40, 51], which we did not consider here due to computational intractability and
the combinatorial explosion of models. We did however, fit the Bayes,. , s model, which simul-
taneously accounted for incorrect assumptions about the run length and probability-state dis-
tributions and a bias towards equal probability. We compared the fit to the Expy;,s model.
Notably these two models explained the data equally well, despite the higher flexibility of the
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Bayesian model. We can thus interpret the Expy,;,s model as a simpler explanation for Bayesian
change-point detection behavior with largely erroneous beliefs. For all models except the RL
model we assumed knowledge of the category distributions. However, Norton et al. [16] found
that for the same orientation-categorization task, category means were estimated dynamically,
even after prolonged training. Similarly, Gifford et al. [52] observed suboptimality in an audi-
tory-categorization task and found that the data were best explained by a model with non-sta-
tionary categories and prior probability that was updated using the recent history of category
exemplars. This occurred despite holding categories and probability constant within a block.
In fact, similar effects of non-stationarity have been observed in several other studies [53-55].
In addition to non-stationary category means, observers may also have misestimated category
variance [56], especially since learning category variance takes longer than learning category
means [14].

Conclusion

In sum, our results provide a computational model for how decision-making behavior changes
in response to implicit changes in prior probability. Specifically, they suggest a dual mecha-
nism for learning and incorporating prior probability that operate at different timescales.
Importantly, this helps explain behavior in situations in which assessment of probability is
learned through experience. Further, our results demonstrate the need to compare multiple
models and the benefit of using tasks that provide a richer, more informative dataset.

Methods
Ethics statement

The Institutional Review Board at New York University approved the experimental procedure
and observers gave written informed consent prior to participation.

Participants

Eleven observers participated in the experiment (mean age 26.6, range 20-31, 8 females). All
observers had normal or corrected-to-normal vision. One of the observers (EHN) was also an
author.

Apparatus and stimuli

Stimuli were presented on a gamma-corrected Dell Trinitron P780 CRT monitor with a 31.3 x
23.8"° display, a resolution of 1024 x 768 pixels, a refresh rate of 85 Hz, and a mean luminance
of 40 cd/m”. Observers viewed the display from a distance of 54.6 cm. The experiment was
programmed in MATLAB [57] using the Psychophysics Toolbox [58, 59].

Stimuli were 4.0 x 1.0° ellipses presented at the center of the display on a mid-gray back-
ground. In both the orientation-discrimination and covert-criterion tasks, trials began with a
central white fixation cross (1.2°). In the overt-criterion task, a yellow line with random orien-
tation was presented at the center of the display (5.0 x 0.5°).

Procedure

Categories. In the ‘categorization’ sessions described below, stimulus orientations were
drawn from one of two categories (A or B). Category distributions were Gaussian with differ-
ent means (up > p,) and equal variance (6% = 0% = 62 = 100 deg”). The mean of category A
was chosen randomly from all possible orientations at the beginning of each session and the
mean of category B was set so that d’ was approximately 1.5, which was determined for each
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observer based on the estimates of sensory uncertainty obtained during a ‘measurement ses-
sion’ (Fig 1C).

Sessions. All observers participated in three 1-hour sessions. Observers completed a ‘mea-
surement’ session first followed by two ‘categorization’ sessions. Observers completed the
covert-criterion task in the first ‘categorization’ session followed by the overt-criterion task in
the second, or vice versa (chosen randomly). At the beginning of each ‘categorization’ session,
observers completed 200 trials of category training followed by 800 experimental trials. Prior
to training, observers were provided with a detailed explanation of the category distributions
and training task. After training, observers were provided with additional instructions about
the subsequent ‘categorization’ task and told that the categories would remain constant for the
remainder of the session but that category probability may change. Observers were not told
how often category probability would change or the range of probability states.

Measurement task

During the ‘measurement’ session, sensory uncertainty (o,) was estimated using a two-interval,
forced-choice, orientation-discrimination task in which two black ellipses were presented
sequentially on a mid-gray background. The observer reported the interval containing the
ellipse that was more clockwise by keypress. Once the response was recorded, auditory feed-
back was provided and the next trial began. An example trial sequence is shown in Fig S3A in
S1 Appendix.

The orientation of the ellipse in the first interval was chosen randomly on every trial from a
uniform distribution ranging from -90 to 90°. The orientation of the second ellipse was ran-
domly oriented clockwise or counter-clockwise of the first. The difference in orientation
between the two ellipses was selected using an adaptive staircase procedure. The minimum
step-size was 1° and the maximum step-size was 32°. Each observer ran two blocks. In each
block, four staircases (65 trials each) were interleaved (two 1-up, 2-down and two 1-up,
3-down staircases) and randomly selected on each trial. For analyses and results see S1
Appendix.

Category training

Each training trial was identical to a covert-criterion trial (Fig 1A). During training there was
an equal chance that a stimulus was drawn from either category. To assess learning of category
distributions, observers were asked to estimate the mean orientation of each category following
training. The mean of each category was estimated exactly once. The order in which category
means were estimated was randomized. For estimation, a black ellipse with random orienta-
tion was displayed in the center of the display. Observers slid the mouse to the right and left to
rotate the ellipse clockwise and counterclockwise, respectively and clicked the mouse to indi-
cate they were satisfied with the setting. No feedback was provided. We computed the propor-
tion correct for each observer to ensure category learning by comparing it to the expected
proportion correct (p(correct) = 0.77) for d' = 1.5. Mean estimates are plotted in Fig S4C in S1
Appendix as a function of the true category means. We computed the average estimation error
for each category and observer by subtracting the estimate from the true mean. From visual
inspection, it appears that training was effective with the exception of one outlier, which we
assume was a lapse.

Categorization tasks

Covert-criterion task. In the covert-criterion task, observers categorized ellipses based on
their orientation. The start of each trial (N, = 800) was signaled by the appearance of a
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central white fixation cross (500 ms). A black oriented ellipse was then displayed at the center
of the screen (300 ms). Observers categorized the ellipse as A or B by keypress. Observers
received feedback as to whether they were correct on every trial. Observers received a point for
every correct response and aggregate points were displayed at the top of the screen to motivate
observers. In addition, the fixation cross was displayed at the center of the screen in the color
corresponding to the true category (category A: green; category B: red). The next trial began
immediately. An example trial sequence is depicted in Fig 1A.

Overt-criterion task. In the overt-criterion task, observers completed an explicit version
of the categorization task described above that was developed by Norton et al. [16]. At the
beginning of each trial (Ny;,5 = 800), a line was displayed at the center of the screen. The ori-
entation of the line was randomly selected from a uniform distribution ranging from -90 to
90°. The observers’ task was to rotate the line to indicate the criterion for that trial. Observers
were explicitly instructed to set the criterion so that a subsequent category A stimulus would
fall clockwise of the line and category B stimuli would fall counter-clockwise of it. Observers
rotated the line clockwise or counterclockwise by sliding the mouse to the right or left and
clicked the mouse to indicate their setting. Next, an ellipse was displayed under the criterion
line in the color corresponding to the true category for 300 ms. Auditory feedback indicated
whether the set criterion correctly categorized the ellipse. That is, observers were correct when
a category A stimulus was clockwise of the criterion line or a category B stimulus was counter-
clockwise of the line. Observers received a point for a correct response and aggregate points
were displayed at the top of the screen. The next trial began immediately. An example trial
sequence is depicted in Fig 1B.

Model fitting

For fitting, all models had one free noise parameter. In the covert-criterion task, this was sen-
sory noise (o). In the overt-criterion task, sensory noise was fixed and set to the value obtained
in the ‘measurement’ session, but we included a noise parameter for the adjustment of the cri-
terion line (o,). Fixing one noise parameter in the overt-criterion task ameliorated potential
issues of lack of parameter identifiability [60], and ensured that models had the same complex-
ity across tasks. The Bayes;q.,;, Fixed, and Behrens et al. (2007) models had no additional
parameters. The following suboptimal Bayesian models had one additional parameter: Bayes,
(r); Bayes,; (71in); Bayesg (8). The Bayes, , s model had 5 additional parameters (r, A, 7y, A,
B). The Exp and RL models also only had one additional parameter (&), as did the Behrens
et al. (2007) model with a bias towards equal probability (w). The Expy,;,s model had two addi-
tional parameters (Qeyx, and w), and the Wilson et al. (2013) model had three (1, I5, and v,,).

To fit each model, for each subject and task we computed the logarithm of the unnorma-
lized posterior probability of the parameters,

logp*(f)data) = logp(data|@, M) + logp(0|M), (10)

where data are category decisions in the covert-criterion task and criterion orientation in the
overt-criterion task, M is a specific model, and 0 represents the model parameters (generally, a
vector). The first term of Eq 10 is the log likelihood, while the second term is the prior over
parameters (see below).

For each model (except Bayes,, , 5) we evaluated Eq 10 on a cubic grid, with bounds chosen
to contain almost all posterior probability mass. The grid for all models, except Wilson et al.
(2013), consisted of 100 equally spaced values for each parameter. Due to the computational
demands of the Wilson et al. (2013) model, we reduced the grid to 50 equally spaced values.
The grid allowed us to approximate the full posterior distribution over parameters, and also to
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evaluate the normalization constant for the posterior, which corresponds to the evidence or
marginal likelihood, used as a metric of model comparison (see Model comparison). We
reported as parameter estimates the best-fitting model parameters on the grid, that is the maxi-
mume-a-posteriori (MAP) values (see Tables 1 and 2). We used the full posterior distributions
to compute posterior predictive distributions, that is, model predictions for visualization (see
Model visualization), and to generate plausible parameter values for our model-recovery anal-
ysis. The Bayes, , s model had too many parameters to compute the marginal likelihood via
brute force on a grid, so we adopted a different procedure for model comparison (see Model
comparison).

Priors over parameters. We chose all priors to be uninformative. For noise parameters,
we used uniform priors over a reasonably large range ([1°, 30°]). For 0y, arp, and w we used
a uniform prior from 0 to 1. For r we used a uniform prior from 2 to 200 trials. For 7;,, we
used a uniform prior from 0 to 0.5. For f, we used a uniform prior on the square root of the
parameter value, ranging from 0 to 10. Instead of fitting the individual nodes in the Wilson
et al. (2013) model, we fit the difference between nodes, i.e., 6, =L - and 6, =15 — I,. We
used a uniform prior on the square root of §; ranging from 1.01 to 5 and on the square root of
0, ranging from 1.01 to 14. Finally, for v, we used a uniform prior in log space from 0 to 5.

Response probability

Covert-criterion task. For each model, parameter combination, observer, and trial in the
covert-criterion task, we computed the probability of choosing category A on each trial given a
stimulus, s;, and all previously experienced categories, C;.;_;. In all models, the observer’s cur-
rent decision depends on the noisy measurement, x;, so the probability of responding A for a
given stimulus s, is

p(éAlsﬂ C.,,M,0)= /p(CA‘xt’ Cl:t—l7M70)N('xt|St7 Ui)dxt' (11)

Because the current criterion setting in the RL model depends on the vector of all previous
stimulus measurements, x1.,, the probability could not be computed analytically for this model.
As an approximation, we used Monte Carlo simulations with 5000 sample measurement vec-
tors. For each measurement vector, we applied the model’s decision rule and approximated
the probability by computing the proportion of times the model chose A out of all the simula-
tions. For all models, we included a fixed lapse rate, A = 10™%, that is the probability of a
completely random response. The probability of choosing category A, C,, in the presence of
lapses was then

P(Cyls; €y M 0) = (1= 2)p(C, s, €y, ML 0) + (12)

I8
7
Effectively, the lapse rate acts as a regularization term that avoids excessive penalties to the
likelihood of a model for outlier trials.
Next, assuming conditional independence between trials, we computed the log likelihood
across all of the observer’s choices, given each model and parameter combination

Nirials

log p(data|M7 0) = Z logp(CA|St’ Cl:t717 M’ 0)7 (13)
t=1

where ¢ is the trial index and Ny, is the total number of trials.
Overt-criterion task. For each model, parameter combination, observer, and trial in the
overt-criterion task, we computed the decision criterion on each trial. For all models except
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the RL model, the criterion was computed as in S1 Appendix. For the RL model, the criterion
was computed as in Eq 7 for 5000 sample measurement vectors. For all models in the overt-cri-
terion task, the criterion was corrupted by adjustment noise with variance o2, so that

z, ~ N (z,,02), where z, was the observer’s chosen criterion at trial t, and z, was the actual
reported criterion after adjustment noise. In addition, the observer had a chance of lapsing
(e.g., a misclick), in which case the response was uniformly distributed in the range. Therefore,

the probability that the observer reports the criterion z, was

A

N 14
50 (14)

p(‘%tlcm—l’ M, 0) = (1 - 7\‘>p(2t|clzt—l7 M, 6) +
with A =5 x 107>, As in the covert-criterion task, we computed the log likelihood across all tri-
als by summing the log probability

r
log p(data|M, ) = Zlogp(%JCLtfl,M, 0). (15)
t=1

Model comparison

To obtain a quantitative measure of model fit, for each observer, model (except Bayes, , g),
and task we computed the log marginal likelihood (LML) by integrating over the parameters
in Eq 10,

log p(data|M) = log / p(data]6, M)p(0]M)d0. (16)

To approximate the integral in Eq 16, we marginalized across each parameter dimension
using the trapezoidal method. Assuming equal probability across models, the marginal likeli-
hood is proportional to the posterior probability of a given model and thus represents a princi-
pled metric for comparison that automatically accounts for both goodness of fit and model
complexity via Bayesian Occam’s razor [61]. Penalizing for model complexity is a desirable fea-
ture of a model-comparison metric to reduce overfitting.

In addition to the Bayesian model-comparison metric described above, we computed
the Akaike Information Criterion (AIC) [62] for each of our models. AIC is one of many infor-
mation criteria that penalize the maximum log likelihood by a term that increases with the
number of parameters. LML and AIC results were consistent (see S1 Appendix. for model
comparison using AIC scores).

For comparison purposes, we report relative model-comparison scores, ALML and AAIC.
We used bootstrapping to compute confidence intervals on the mean difference scores. Specif-
ically, we simulated 10,000 sample data sets. For each simulated dataset we sampled, with
replacement, 11 difference scores (the same number of difference scores as observers) and cal-
culated the mean. To determine the 95% CI, we sorted the mean difference scores and deter-
mined the scores that corresponded to the 2.5 and 97.5 percentiles.

For an additional analysis at the group level, we used the random-effects Bayesian model
selection analysis (BMS) developed by Stephan et al. [32] and expanded on by Rigoux et al.
[33]. Specifically, using observers’ LML scores we computed the protected exceedance proba-
bility ¢ and the posterior model frequency for each model. Exceedance probability represents
the probability that one model is the most frequent decision-making strategy in the popula-
tion, given the group data, above and beyond chance. This analysis was conducted using the
open-source software package Statistical Parametric Mapping (SPM12; http://www.fil.ion.ucl.
ac.uk/spm).
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To compare the Bayes, , s and Expy;,, models, we first fitted the data by maximum likeli-
hood. For each of the two models, subject, and task we minimized the negative log likelihood
of the data using Bayesian Adaptive Direct Search (BADS; https://github.com/lacerbi/bads
[63]), taking the best result of 20 optimization runs with randomized starting points. Using the
negative log likelihood from the fits, we computed the Bayesian Information Criterion (BIC),
which penalizes the maximum log likelihood by a term that increases with the number of
parameters in a similar way to AIC. We then estimated approximate lower bounds (ELBO) to
the log marginal likelihood (and approximate posterior distibutions, unused in our current
analysis) via Variational Bayesian Monte Carlo (VBMC; https://github.com/lacerbi/vbmc
[34]), taking the ‘best’ out of 10 variational optimization runs. VBMC combines variational
inference and active-sampling Bayesian quadrature to perform approximate Bayesian infer-
ence in a sample-efficient manner. We validated the technique on the Expy,;,s model, by com-
paring the ELBO obtained via VBMC and the log marginal likelihood calculated via numerical
integration. For all subjects and task, the two metrics differed by < 0.2 points. As a diagnostic
of convergence for VBMC, for each problem instance we also verified that the majority of
variational optimization runs returned an ELBO less than 1 point away from the ‘best’ solution
we used in the analysis. For the few datasets that exhibited a slightly larger variability in the
ELBOs across optimization runs, such variability was still much lower than the standard error
across subjects of the AELBO, thus not affecting the results of the model comparison.

Model visualization

For each model, observer, and task, we randomly sampled 1000 parameter combinations from
the joint posterior distribution with replacement. For each parameter combination, we simu-
lated model responses using the same stimuli that were presented to the observer. Because the
model output in the covert task was the probability of reporting category A, for each trial in a
simulated dataset we simulated 10,000 model responses (i.e., category decisions), calculated
the cumulative number of A’s for each simulated dataset, and averaged the results. The mean
and standard deviation were computed across all simulated datasets in both tasks. Model fit
plots show the mean response (colored line) with shaded regions representing one standard
deviation from the mean. Thus, shaded regions represent a 68% confidence interval on model
fits.

Model recovery

To ensure that our models were discriminable, we performed a model-recovery analysis,
details of which can be found in S1 Appendix. In addition to the model-recovery analysis, we
also performed a parameter-recovery analysis for the Expy,;,; model. This was done to deter-
mine whether our parameter estimation procedure was biased for each parameter and task.

Supporting information

S1 Appendix. Supplementary information. Ideal observer model derivation; additional mod-
els; comparison of the Bayes, , s and Expyi,s models, model comparison with AIC; recovery
analysis; measurement task; category training; individual model fits.

(PDF)
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