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To understand decision-making behavior in simple, controlled environments, Bayesianmodels are often use-
ful. First, optimal behavior is always Bayesian. Second, even when behavior deviates from optimality, the
Bayesian approach offers candidate models to account for suboptimalities. Third, a realist interpretation
of Bayesian models opens the door to studying the neural representation of uncertainty. In this tutorial, we
review the principles of Bayesian models of decision making and then focus on five case studies with exer-
cises. We conclude with reflections and future directions.
1. Introduction
1.1. What Are Bayesian Decision Models?

Goodcomputationalmodeling of decisionmakinggoesbeyonda

mere description of the data (curve fitting). Good models help to

break down perceptual, cognitive, or motor processes into inter-

pretable and generalizable stages. This, in turn, may allow for

conceptual connections across experiments or domains, for a

characterization of individual differences, or for establishing cor-

relations betweenmodel variables and aspects of neural activity.

Across domains of application, Bayesian models of decision

making are based on the same small set of principles, thereby

promising high interpretability and generalizability. Bayesian

models aspire to account for an organism’s decision process

when the task-relevant states of the world are not exactly known

to the organism. A state of the world can be a physical variable,

such as the reflectance of a surface or the location where a ball

will land, or a more abstract one, such as whether two parts

belong to the same object or the intent of another person.

Lack of exact knowledge can arise from noise (Faisal et al.,

2008) or from missing information, such as in the case of occlu-

sion (Kersten et al., 2004).

Bayesian decision models have two key components (Figure

1). The first is Bayes’ rule, which formalizes how the decision

maker assigns probabilities (degrees of belief) to hypothesized

states of the world given a particular set of observations. The

second is a cost function, which is the quantity that the decision

maker would like to minimize; an example would be the propor-

tion of errors in a task. The cost function dictates how the deci-

sion maker should transform beliefs about states of the world

into a decision. Combining the components, we end up with a

mapping from observations to decision. While the form of that

mapping depends on the task, the Bayesian recipe for deriving

it is general.

1.2. Why Bayesian Decision Models?

TheBayesianmodeling framework for decisionmaking holds ap-

peal for various reasons. The first reason has an evolutionary or

ecological flavor: Bayesian inference optimizes behavioral per-

formance, and one might postulate that the mind applies a

near-optimal algorithm in decision tasks that are common or

important in the natural world (or daily life). This argument is

more plausible for perceptual than for cognitive decisionmaking.

Second, Bayesian models are general because its two key com-
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ponents are; the recipe for constructing a Bayesian model ap-

plies across a wide range of tasks. Third, in Bayesian models,

the decision model is largely dictated by the generative model,

which, in turn, is often largely dictated by the statistics of the

experiment. As a result, many Bayesian models have few free

parameters. Fourth, Bayesian models have a good empirical

track record of accounting for behavior, both in humans and in

other animals. Fifth, sensible models can easily be constructed

by modifying the assumptions of an optimal Bayesian model.

Thus, the Bayesian model is a good starting point for model

generation.

1.3. What Math Does One Need?

Bayesian modeling may seem intimidating to beginners, but the

math involved rarely goes beyond standard calculus. Because of

the recipe-based methodology, many learners already feel in

control after several tens of hours of practice. Importantly,

when building Bayesian models, it is easy to supplement math

and intuitions with simple simulations.

1.4. Areas of Application

Bayesian modeling is most straightforward if the task-relevant

world states are categorical (e.g., binary) or low dimensional, if

their distributions are simple, if the task allows for parametric vari-

ation of world state variables, and if the decision maker has

an unambiguously defined objective. This makes Bayesian

modeling, in particular, suitable for simple perceptual tasks.

However, Bayesian decision models appear also in studies of

eye movements in natural scenes (Itti and Baldi, 2009), reaching

movements (Körding and Wolpert, 2004), physical scene under-

standing (Battaglia et al., 2013), speech understanding

(Goodman and Frank, 2016), inductive reasoning (Tenenbaum

etal., 2006), andeconomicdecisions (Cogley andSargent, 2008).

1.5. Disclaimer

This primer is about Bayesian decision models in psychology

and neuroscience, not about Bayesian data analysis. We will

also not discuss how to fit Bayesian decision models and

compare them to other decision models because that involves

methods that are not specific to Bayesian modeling and are

well described elsewhere.

2. Recipe for Bayesian Modeling
The recipe for Bayesianmodeling consists of the following steps:

specifying the ‘‘generative model’’ (step 1), calculating the
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Figure 1. Schematic of Bayesian Decision
Making
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‘‘posterior distribution’’ (inference; step 2a), turning the posterior

distribution into an ‘‘action or response’’ (step 2b), and calcu-

lating the ‘‘action/response distribution’’ for comparison with

experimental data (step 3).

2.1. Step 1: Generative Model

Consider a decision maker who has to take an action that re-

quires inferring a state of the world s from an observation x.

The variables s and x can be discrete or continuous and one-

dimensional or multidimensional. The observation x can be a

physical stimulus generated from an underlying unknown s (for

example, when s is a category of stimuli), an abstract ‘‘measure-

ment’’ (s plus noise), or a pattern of neural activity.

The frequencies of occurrence of each value of s in the envi-

ronment are captured by a probability distribution pðsÞ. The

distribution of the observation is specified conditioned on s

and denoted by pðx j sÞ. Often, pðx j sÞ is not directly known but

has to be derived from other conditional distributions. Together,

the distributions pðsÞ and pðx j sÞ define a ‘‘generative model,’’ a

statistical description of how the observations come about.

2.2. Step 2a: Inference

The key assumption of Bayesian models of behavior is that the

decision maker has learned the distributions in the generative

model and puts this knowledge to full use when inferring states

of the world. We now turn to this inference process.

On a given trial, the decision maker makes a specific observa-

tion xtrial. They then calculate the probabilities of possible world

states s given that observation. They do this using Bayes’ rule,

pðs j xtrialÞ = pðxtrial j sÞpðsÞ
pðxtrialÞ : (Equation 1)

The numerator of the right-hand side involves two probabilities

that we recognize from the generative model. Indeed, because

we defined them in the generative model, they can be calculated

here. However, their interpretation is different from the genera-

tive model. To understand this, we first need to realize that, in

Equation 1, the world state variable s should be considered a hy-

pothesis entertained by the decision maker. Each probability

involving s should be interpreted as a degree of belief in a value

of s. As such, these probabilities exist only in the head of the de-

cision maker and are not directly observable.

Specifically, in the context of Equation 1, pðsÞ is called the

‘‘prior distribution.’’ At first glance, it might confusing to give

pðsÞ a new name; was it not already the distribution of the state

of the world? The reason for the new name is that the prior dis-

tribution reflects to what extent the decision maker expects

different values of s; in other words, it formalizes a belief. If the

decision maker’s beliefs are wrong, the distribution pðsÞ in

Equation 1 will be different from the pðsÞ in the generative model;

we will discuss this in Section 4.5.
The factor pðxtrial j sÞ in Equation 1 is the

likelihood function of s. The likelihood of a

hypothesized world state s given an
observation is the probability of those observations if that hy-

pothesis were true. It is important that the likelihood function is

a function of the hypothesized world state s, not of xtrial (which

is a given value). To make this dependence explicit, it could be

helpful to use the notation LðsÞ = pðxtrial j sÞ. The likelihood of s

is numerically the same as pðxtrial j sÞ in the generative model,

but what is the argument and what is given is switched. (Side

note: Bayesian experts would not use the phrase ‘‘likelihood of

the observation.’’)

The left-hand side distribution, pðs j xtrialÞ, is called the poste-

rior distribution of s. It captures the answer to the question to

what extent each possible world state value s is supported by

the observed measurement xtrial and prior beliefs. Finally, the

probability in the denominator of Equation 1, pðxtrialÞ, does not

depend on s and is therefore a numerical constant; it acts as

the normalization factor of the numerator.

2.3. Step 2b: Taking an Action (Making a Response)

Bayesian decision making does not end with the computation of

a posterior distribution. The decision maker has to take an ac-

tion, which we will denote by a. An action could be a natural

movement or a response in an experiment. In perceptual tasks

in the laboratory, the response is typically an estimate bs of the

state of the world s, and such an estimate is Bayesian if it is

derived from the posterior. In perceptual tasks, one could even

go as far as postulating that bs represents the contents of percep-
tion (i.e., a percept).

In general, the appropriate action a can be chosen in a princi-

pled manner by defining a ‘‘cost function’’ Cðs; aÞ (also called a

‘‘loss function’’ or an ‘‘objective function’’), which the decision

maker strives to minimize. This function depends on the world

state s and the action a. On a trial when the observation is xtrial,

the ‘‘expected cost’’ is the expected value ofCðs; aÞwith respect

to the posterior distribution calculated in Equation 1:

ECðaÞ =
X
s

pðs j xtrialÞCðs; aÞ; (Equation 2)

where the sum applies to discrete s; for continuous s, the sum is

replaced by an integral. The Bayesian decision maker chooses

the action thatminimizes ECðaÞ. In this sense, the action isoptimal

and theBayesian approach isnormative. The processof choosing

an action given a posterior is, in its basic form, deterministic.

When a is an estimate of s, we can be a bit more specific. First,

we consider the case that s is discrete, and the objective is to es-

timate correctly (i.e., Cðs; aÞ= � 1 when s = a, 0 otherwise).

Then, the optimal action is to report the mode of the posterior:

the state for which pðs j xtrialÞ is highest. Next, we consider the

case s is real valued, and the objective is to minimize expected

squared error (i.e., Cðs;aÞ = ðs� aÞ2). Then, the optimal readout

is the mean of the posterior distribution.
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2.4. Step 3: Response (Action) Distribution

The generative model, the computation of the posterior (infer-

ence), and amapping from posterior to action together complete

a Bayesian model. To test the model against experimental data,

the modeler needs to derive or simulate the distribution of ac-

tions a given a state of the world s—that is, pða j sÞ. When the ac-

tion is an estimate bs, the difference bs � s is the estimation error,

and the distribution pðbs j sÞ will characterize estimation errors.

Finally, the parameters of the model need to be fitted to the

data. Examples of parameters in Bayesian models are sensory

noise level (Section 3.5), lapse rate (Section 4.4), and wrong

belief parameters (Section 4.5). For fitting, maximum-likelihood

estimation is the most standard, where now ‘‘likelihood’’ refers

to the likelihood of the parameters given the experimental data

(Myung, 2003). To implement the maximization, one can use

any number of standard algorithms; make sure to initialize with

multiple starting points to reduce the chance of getting stuck in

a local optimum (Martı́ et al., 2016).
3. Case Studies
We will now go through five case studies that illustrate different

aspects of Bayesian decision models. We encourage the reader

to try to do the exercises; solutions are included in Methods S1.

3.1. Case 1: Unequal Likelihoods and Gestalt Laws

You observe the five dots below all moving downward, as indi-

cated by the arrows.

According to Gestalt psychology (Wertheimer, 1938), the mind

has a tendency to group the dots together because of their com-

monmotion andperceive themasa single object. This is captured

by the ‘‘Gestalt law of common fate.’’ Gestalt laws, however, are

merely narrative summaries of phenomenology. A Bayesian

model has the potential to provide a true explanation of the

percept and, in some cases, make quantitative predictions (Wa-

gemans et al., 2012). In this case, the Bayesian decision model

takes the form of an ‘‘observer model’’ or ‘‘perception model.’’

Step 1: Generative Model

We first formulate our generative model. The retinal image of

each dot serves as a sensory observation. We will denote these

five retinal images by I1, I2, I3, I4, and I5, each specifying the di-

rection of movement of the corresponding dot’s image on the
166 Neuron 104, October 9, 2019
retina (up or down). For didactic purposes, let’s say that there

exist only two scenarios in the world.

d Scenario 1: all dots are part of the same object, and they

therefore always move together. They move together

either up or down, each with probability 0.5.

d Scenario 2: each dot is an object by itself. Each dot

independently moves either up or down, each with

probability 0.5.

(Dots are only allowed to move up and down, and speed and

position do not play a role in this problem.) The world state s from

Section 2 is now a binary scenario.

a. The generative model diagram in Figure 2 shows each sce-

nario in a big box. Inside each box, the bubbles contain the

variables and the arrows represent dependencies between

variables. In other words, an arrow can be understood to

represent the influence of one variable on another; it can

be read as ‘‘produces’’ or ‘‘generates’’ or ‘‘gives rise to.’’

The sensory observations should always be at the bottom

of the diagram. Put the following variable names in the cor-

rect boxes: retinal images I1, I2, I3, I4, and I5 and motion di-

rections s (a single motion direction), s1, s2, s3, s4, and s5.

The same variable might appear more than once.

Step 2: Inference

In inference, the two scenarios become hypothesized scenarios.

Inference involves likelihoodsandpriors. The likelihoodofascenario

is the probability of the sensory observations under the scenario.

b. What is the likelihood of scenario 1?

c. What is the likelihood of scenario 2?

d. Do the likelihoods of the scenarios sum to 1? Explain why

or why not.

e. What is wrong with the phrase ‘‘the likelihood of the

observations’’?

Let’s say scenario 1 occurs twice as often in the world as sce-

nario 2. The observer can use these frequencies of occurrence

as prior probabilities, reflecting expectations in the absence of

specific sensory observations.

f. What are the prior probabilities of scenarios 1 and 2?

g. What is the product of the likelihood and the prior proba-

bility for scenario 1?

h. What is this product for scenario 2?

i. Do these products of the scenarios sum to 1?

j. Posterior probabilities have to sum to 1. To achieve that,

divide each of the products above by their sum. Calculate

the posterior probabilities of scenarios 1 and 2. You have

just applied Bayes’ rule.

The default Bayesian perception model for discrete

hypotheses holds that the percept is the scenario with the high-

est posterior probability (maximum-a-posteriori or MAP esti-

mation).

k. Would that be consistent with the law of common fate?

Explain.
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l. How does this Bayesian observer model complement—or

go beyond—the traditional Gestalt account of this

phenomenon?

In this case, like often, the action is in the likelihood and the

prior is relatively unimportant.

3.2 Case 2: Competing Likelihoods and Priors in Motion

Sickness

Michel Treisman has tried to explain motion sickness in the

context of evolution (Treisman, 1977). During the millions of

years over which the human brain evolved, accidentally eating

toxic food was a real possibility, and that could cause hallucina-

tions. Perhaps, our modern brain still uses prior probabilities

passed on from those days; those would not be based on our

personal experience, but on our ancestors’! This is a fascinating,

though only weakly tested, theory. Here, we don’t delve into the

merits of the theory but try to cast it in Bayesian form.

Suppose you are in the windowless room on a ship at

sea. Your brain has two sets of sensory observations: visual ob-

servations and vestibular observations. Let’s say that the brain

considers three scenarios for what caused these observations:

d Scenario 1: the room is not moving and your motion in the

room causes both sets of observations.

d Scenario 2: your motion in the room causes your visual ob-

servations, whereas your motion in the room and the

room’s motion in the world together cause the vestibular

observations.

d Scenario 3: you are hallucinating; your motion in the

room and ingested toxins together cause both sets of

observations.

Step 1: Generative Model

a. Draw a diagram of the generative model. It should contain

one box for each scenario, and all of the italicized variables

in the previous paragraph. Some variables might appear

more than once.

Step 2: Inference

No numbers are needed except in part (e).

b. In prehistory, people would, of course, move around in the

world, but surroundings would almost never move. Once

in a while, a person might accidentally ingest toxins.

Assuming that your innate prior probabilities are based

on these prehistoric frequencies of events, draw a bar di-

agram to represent your prior probabilities of the three

scenarios above.

c. In the windowless room on the ship, there is a big

discrepancy between your visual and vestibular obser-

vations. Draw a bar diagram that illustrates the likeli-

hoods of the three scenarios in that situation (i.e.,

how probable these particular sensory observations

are under each scenario).

d. Draw a bar diagram that illustrates the posterior probabil-

ities of the three scenarios.

e. Use numbers to illustrate the calculations in (b)–(d).

f. Using the posterior probabilities, explain why you might

vomit in this situation.
3.3. Case 3: Ambiguity Due to a Nuisance Parameter in

Color Vision

We switch domains once again and apply a Bayesian approach

to the central problem of color vision (Brainard and Freeman,

1997), simplified to a problem for grayscale surfaces. We see a

surface when there is a light source. The surface absorbs

some proportion of the incident photons and reflects the rest.

Some of the reflected photons reach our retina.

Step 1: Generative Model

The diagram of the generative model is:

The ‘‘shade’’ of a surface is the grayscale in which a surface

has been painted. Technically, shade is ‘‘reflectance,’’ the pro-

portion of incident light that is reflected. Black paper might

have a reflectance of 0.10, while white paper might have a reflec-

tance of 0.90. The ‘‘intensity of a light source’’ (illuminant) is the

amount of light it emits. Surface shade and light intensity are the

world state variables relevant to this problem.

The sensory observation is the amount of light measured by

the retina, which we will also refer to as retinal intensity. The

retinal intensity can be calculated as follows:

Retinal intensity = surface shade3 light intensity (Equation 3)

In other words, if you make a surface twice as reflectant, it has

the same effect on your retina as doubling the intensity of the

light source.

Step 2: Inference

Let’s take each of these numbers to be between 0 (representing

black) and 1 (representing white). For example, if the surface

shade is 0.5 (mid-level gray) and the light intensity is 0.2 (very

dim light), then the retinal intensity is 0:53 0:2 = 0:1.

a. Suppose your retinal intensity is 0.2. Suppose further that

you hypothesize the light intensity to be 1 (very bright light).

Under that hypothesis, calculate what the surface shade

must have been.

b. Suppose your retinal intensity is the same 0.2. Suppose

further that you hypothesize the light intensity to be 0.4.

Under that hypothesis, calculate what the surface shade

must have been.

c. Explain why the retinal intensity provides ambiguous infor-

mation about surface shade.

d. Suppose your retinal intensity is again 0.2. By going

through a few more examples like the ones in (a) and (b),

draw in the two-variable likelihood diagram in Figure 3 all

combinations of hypothesized surface shade and hypoth-

esized light intensity that could have produced your retinal

intensity of 0.2. Think of this plot as a 3D plot (surface plot)!
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e. Explain the statement: ‘‘The curve that we just drew repre-

sents the combinations of surface shade and light intensity

that have a high likelihood.’’

f. Suppose you have a strong prior that light intensity was be-

tween 0.2 and 0.4 and definitely nothing else. In the two-

variable prior diagram in Figure 3 (center), shade the area

corresponding to this prior.

g. In the two-variable posterior diagram in Figure 3 (right),

indicate where the posterior probability is high.

h. What would you perceive according to the Bayesian

theory?

3.4. Case 4: Inference under Measurement Noise in

Sound Localization

The previous cases featured categorically distinct scenarios. We

now consider a continuous estimation task—for example,

locating a sound on a line. This will allow us to introduce the

concept of noise in the internal measurement of the stimulus.

This case would be uninteresting without such noise.

Step 1: Generative Model

The stimulus is the location of the sound. The sensory obser-

vations generated by the sound location consist of a complex

pattern of auditory neural activity, but for the purpose of our

model, and reflecting common practice, we reduce the sen-

sory observations to a single scalar, namely a noisy internal

measurement x. The measurement lives in the same space

as the stimulus itself—in this case, the real line. For example,

if the true location s of the sound is 3+ to the right of straight

ahead, then its measurement x could be 2:7+ or 3:1+.

Thus, the problem contains two variables: the stimulus s and

the observer’s measurement x. Each node in the graph is

associated with a probability distribution: the stimulus node

with a stimulus distribution pðsÞ and the measurement node

with a measurement distribution pðx j sÞ that depends on the

value of the stimulus. In our example, say that the experi-

menter has programmed pðsÞ to be Gaussian with a mean m

and variance s2s .

pðsÞ = 1ffiffiffiffiffiffiffiffiffiffiffi
2ps2

s

p e
�ðs�mÞ2

2s2s : (Equation 4)

(See Figure 4A.) The ‘‘measurement distribution’’ is the distribu-

tion of the measurement x for a given stimulus value s. We make

the common assumption that the measurement distribution is

Gaussian:
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pðx j sÞ = 1ffiffiffiffiffiffiffiffiffiffiffi
2ps2

p e�ðx�sÞ2
2s2 ; (Equation 5)

wheres is the standard deviation of themeasurement noise, also

called ‘‘measurement noise level’’ or ‘‘sensory noise level.’’ This

Gaussian distribution is shown in Figure 4B. The higher s, the

noisier the measurement and the wider its distribution. The

Gaussian assumption can be justified using the Central Limit

Theorem.

Step 2a: Inference

On a given trial, the observer makes a measurement xtrial. The

inference problem is: what stimulus estimate should the

observer make?

We introduced the stimulus distribution pðsÞ, which reflects

how often each stimulus value tends to occur in the experi-

ment. Suppose that the observer has learned this distribution

through training. Then, the observer will already have an

expectation about the stimulus before it even appears. This

expectation constitutes prior knowledge, and, therefore, in

the inference process, pðsÞ is referred to as the ‘‘prior dis-

tribution’’ (Figure 5A). Unlike the stimulus distribution in

the generative model, the prior distribution reflects the

observer’s beliefs. The likelihood function represents the ob-

server’s belief about the stimulus based on the measurement

only—absent any prior knowledge. Formally, the likelihood is

the probability of the observed measurement under a hypoth-

esized stimulus:

LðsÞ = pðxtrial j sÞ: (Equation 6)

As stated in Section 2.2, the likelihood function is a function of

s, not of x. The x variable is now fixed to the observed value xtrial.

Under our assumption for the measurement distribution pðx j sÞ,
the likelihood function over the stimulus is

LðsÞ = 1ffiffiffiffiffiffiffiffiffiffiffi
2ps2

p e�ðs�xtrialÞ2
2s2 : (Equation 7)

(Although this particular likelihood is normalized over s, that is

not generally true. This is why the likelihood function is called a

function and not a distribution.) The width of the likelihood

function is interpreted as the observer’s level of uncertainty

based on the measurements alone.

The posterior distribution is pðs j xtrialÞ, the probability density

function over the stimulus variable s given the measurement

xtrial. We rewrite Bayes’ rule, Equation 1, as

pðsjxtrialÞfpðxtrial j sÞpðsÞ = LðsÞpðsÞ: (Equation 8)

a. Why can we get away with the proportionality sign?

Equation 8 assigns a probability to each possible hypothe-

sized value of the unknown stimulus s. We will now compute

the posterior distributions under the assumptions we made in

step 1. Upon substituting the expressions for LðsÞ and pðsÞ into



A B Figure 4. The Probability Distributions that
Belong to the Two Variables in the
Generative Model
(A) A Gaussian distribution over the stimulus, pðsÞ,
reflecting the frequency of occurrence of each
stimulus value in the world.
(B) Suppose we now fix a particular value
of s (the dotted line). Then, the measurements
x will follow a Gaussian distribution around
that s. The diagram at the bottom shows
a few samples of x, which are scattered
around the true sound location s, indicated by
the arrow.
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Equation 8, we see that in order to compute the posterior, we

need to compute the product of two Gaussian functions. An

example is shown in Figure 6.

b. Create a figure similar to Figure 6 through numerical

computation of the posterior. Numerically normalize prior,

likelihood, and posterior.

Beyond plotting the posterior, our assumptions in this case

actually allow us to characterize the posterior mathematically.

c. Show that the posterior is a new Gaussian distribution

pðs j xtrialÞ = 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ps2

posterior

q e

ðs�mposteriorÞ2
2s2

posterior ; (Equation 9)

with mean

mposterior =

xtrial
s2

+ m

s2s

1
s2
+ 1

s2s

(Equation 10)

and variance

s2
posterior =

1
1
s2
+ 1

s2s

: (Equation 11)

You may use the following auxiliary calculation:

�ðs� mÞ2
2s2

s

� ðs� xtrialÞ2
2s2

= � 1

2

 
1

s2
s

+
1

s2

! 
s�

m

s2s
+ xtrial

s2

1
s2s
+ 1

s2

!2

+ junk

where ‘‘junk’’ refers to terms that don’t depend on s (see part a

to understand why we can ignore these when calculating the

new distribution).
The mean of the posterior, Equation 10,

is of the form axtrial + bm; in other words, it

is a linear combination of xtrial and

the mean of the prior, m. The coeffici-

ents a and b in this linear combination

are ðð1 =s2Þ =ð1 =s2 + 1 =s2sÞÞ and
ðð1 =s2sÞ =ð1 =s2 + 1 =s2sÞÞ, respectively. These sum to 1, and,

therefore, the linear combination is a ‘‘weighted average,’’ where

the coefficients act as weights. This weighted average, mposterior,

will always lie somewhere in between xtrial and m.

d. In the special case that s = ss, compute the mean of the

posterior.

The intuition behind the weighted average is that the prior

‘‘pulls the posterior away’’ from the measurement xtrial and to-

ward its own mean m, but its ability to pull depends on how nar-

row it is compared to the likelihood function. If the likelihood

function is narrow, which happens when the noise level s is

low, the posterior won’t budge much: it will be centered close

to the mean of the likelihood function. This intuition is still valid

if the likelihood function and the prior are not Gaussian but are

roughly bell shaped.

The variance of the posterior is given by Equation 11. It is inter-

preted as the overall level of uncertainty the observer has about

the stimulus after combining themeasurement with the prior. It is

different from both the variance of the likelihood function and the

variance of the prior distribution.

e. Show that the variance of the posterior can also be written

as s2posterior = s2s2s =ðs2 + s2sÞ.
f. Show that the variance of the posterior is smaller than both

the variance of the likelihood function and the variance of

the prior distribution. This shows that combining a mea-

surement with prior knowledgemakes an observer less un-

certain about the stimulus.

g. What is the variance of the posterior in the special case

that s = ss?

Step 2b: The Stimulus Estimate (response)

We now estimate s on the trial under consideration. We

denote the estimate by bs. As mentioned in Section 2.3, for a

real-valued variable and a squared error loss function, the

observer should use the mean of the posterior as the estimate.

Thus,
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Figure 5. Prior and Likelihood under
Sensory Noise
Consider a single trial on which the observed
measurement is xtrial . The observer is trying to infer
which stimulus s produced this measurement. The
two functions that play a role in the observer’s
inference process (on a single trial) are the prior
and the likelihood. The argument of both the prior
and the likelihood function is s, the hypothesized
stimulus.
(A) Prior distribution with m = 0. This distribution
reflects the observer’s beliefs about different
possible values the stimulus can take.
(B) The likelihood function over the stimulus based
on the measurement xtrial . Under our assumptions,
the likelihood function is a Gaussian centered
at xtrial .
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bs = mposterior =

xtrial
s2

+ m

s2s

1
s2
+ 1

s2s

(Equation 12)

This would be a Bayesian observer’s response in this localiza-

tion task.

Step 3: Response Distribution

Wenow like to use thismodel to predict subjects’ behavior in this

experiment. To do so, we’d like to compare our predicted re-

sponses, bs, to the subject’s actual responses. Looking at

Equation 12 for bs, we note that, to compute a predicted response

on a given trial, we need to know xtrial. But this is something we

don’t know! xtrial is the noisy measurement made by the ob-

server’s sensory system, an internal variable to which an exper-

imenter has no access.

A common mistake in Bayesian modeling is to discuss

the likelihood function (or the posterior distribution) as if it were

a single, specific function in a given experimental condition. In

the presence of noise in the observation/measurement, this is

incorrect. Both the likelihood and the posterior depend on the

measurement xtrial, which itself is randomly generated on each

trial, and, therefore, the likelihood and posterior will ‘‘wiggle

around’’ from trial to trial (Figure 7). This variability propagates

to the estimate: the estimate bs also depends on the noisy mea-

surement xtrial via Equation 12. Since xtrial varies from trial to trial,

so does the estimate: the stochasticity in the estimate is inherited

from the stochasticity in the measurement xtrial. Hence, in

response to repeated presentations of the same stimulus, the

estimate will be a random variable with a probability distribution,

which we will denote by pðbs j sÞ.
So rather than comparing our model’s predicted responses to

subjects’ actual responses on individual trials, we’ll instead use

our model to predict the distribution over subjects’ responses for

a given value of the stimulus. The predicted distribution is pre-

cisely pðbs j sÞ. To compare our Bayesian model with an ob-

server’s behavior, we thus need to calculate this distribution.

h. From step 1, we know that when the true stimulus is s, xtrial
follows a Gaussian distribution with mean s and variance

s2. Show that when the true stimulus is s, the estimate’s

distribution pðbs j sÞ is a Gaussian distribution with mean

s
s2

+ m

s2s

.�
1
s2

+ 1
s2s

�
and variance 1

s2

.�
1
s2
+ 1

s2s

�2

.
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We see that the variance of the estimate can be different

from the variance of the posterior. Intuitively, the response

distribution (the distribution of the observer’s posterior mean

estimate) for a given true stimulus s reflects the variability of

behavioral responses we would find when repeatedly pre-

senting the same stimulus s many times. This is conceptually

distinct from the internal uncertainty of the observer on a

single given trial, which is not directly measurable. Because

of a strong prior, a Bayesian observer could have consistent

responses from trial to trial despite being very internally

uncertain on any particular trial. This completes the model:

the distribution pðbs j sÞ can now be compared to human

behavior.

3.5. Case 5: Hierarchical Inference in Change Point

Detection

Our last case is change point detection, the task of inferring from

a time series of noisy observations whether or when an underly-

ing variable changed. There are two main reasons for consid-

ering this task. First, it is a common form of inference. A new

chef or owner might cause the quality of the food in a restaurant

to suddenly change, or a neurologist may want to detect a

seizure on an EEG in a comatose patient. Second, this case is

representative of a type of inference that involves multiple layers

of world state variables—in our case, not only the stimulus at

each time point but also the ‘‘higher-level’’ variable of when the

stimulus changed. In spite of this complication, the

problem lends itself well to a Bayesian treatment (Wilson et al.,

2013; Norton et al., 2019).

Step 1: Generative Model

The generative model is shown in Figure 8. Time is discrete and

goes from 1 to T. A change occurs at exactly one time point

tchange, chosen with equal probability:

p
�
tchange

�
=
1

T
: (Equation 13)

The stimulus s= ðs1;.; sTÞ is a sequence that starts with rep-

etitions of the value�1 and at some point changes to repetitions

of the value 1. The change point is when the value �1 changes

to 1. Formally,

st =

��1 if t < tchange
1 if tRtchange

(Equation 14)
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Figure 6. The Posterior Distribution Is Obtained by Multiplying the
Prior by the Likelihood Function
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Finally, we assume that the observer makes measurements

x = ðx1;.;xTÞ, whose noise is independent across time points.

Mathematically, this means that we can write the conditional

probability of the vector as the product of the conditional proba-

bilities of the components:

pðx j sÞ =
YT
t = 1

pðxt j stÞ:

We next assume that each measurement follows a Gaussian

distribution withmean equal to the stimulus at the corresponding

time and with a fixed variance:

pðxt j stÞ = Nðxt; st;sÞ= 1ffiffiffiffiffiffiffiffiffiffiffi
2ps2

p e�ðxt�stÞ2
2s2 :

Step 2: Inference

The observer would like to infer when the change occurred.What

can make this problem challenging is that the noise in the mea-

surements can create ‘‘apparent changes’’ that are not due to a

change in the underlying state st. The Bayesian observer solves

this problem in an optimal manner.

The world state of interest is change point tchange. Therefore,

the Bayesian observer computes the posterior over tchange given

a sequence of measurements, x (we leave out the subscript

‘‘obs’’ for ease of notation). We first apply Bayes’ rule:

p
�
tchangejx

�
fp

�
tchange

�
p
�
x j tchange

�
: (Equation 15)

Since the prior is constant, pðtchangeÞ =
�

1
T

�
, this simplifies to
p
�
tchangejx

�
fp

�
x j tchange

�
: (Equation 16)

Thus, our challenge is to calculate the likelihood function

L
�
tchange

�
= p
�
x j tchange

�
: (Equation 17)

For each hypothesized value of tchange, this function tells us

how expected the observations are under that hypothesis. The

problem is that, unlike in case 4, the generative model does

not give us this likelihood function right away; this is a conse-
quence of the ‘‘stacked’’ or hierarchical nature of the generative

model. We do have the distributions pðx j sÞ and pðs j tchangeÞ. To
make the link, we have to ‘‘average’’ over all possible values of s.

This is called ‘‘marginalization.’’ Marginalization is extremely

common in Bayesian models except for the very simplest

ones, the reason being that there are almost always unknown

states of the world that affect the observations but that the

observer is not primarily interested in. The box describes the

relevant probability calculus.

Marginalization of probabilities. If A and B are two discrete

random variables, their ‘‘joint distribution’’ is pðA;BÞ. From the

joint distribution, we can obtain the distribution of one of the vari-

ables by summing over the other one, for example:

pðAÞ =
X
B

pðA;BÞ (Equation 18)

This is called the ‘‘marginal distribution’’ of A. Making use of the

definition of conditional probability,pðA jBÞ = ðpðA;BÞ =pðBÞÞ, we

further write

pðAÞ =
X
B

pðA jBÞpðBÞ: (Equation 19)

We can obtain a variant of this equation by conditioning each

probability on a third random variable C:

pðA jCÞ =
X
B

pðA jB;CÞpðB jCÞ: (Equation 20)

This is the equation we use to obtain Equation 21.

We compute LðtchangeÞ by marginalizing over s:

L
�
tchange

�
=
X
s

p
�
xjsÞp�s j tchange�; (Equation 21)

a. Besides using Equation 20, we used a property that is

specific to our generative model. Which one?

b. For a given tchange, how many sequences s are possible?

Based on (b), we understand that the probability pðs j tchangeÞ is
zero for all s except for one. Thus, the sum in Equation 21 re-

duces to a single term:

L
�
tchange

�
=p
�
x j the one s in which the change occurs at tchange

�
(Equation 22)

=

 Ytchange�1

t = 1

pðxt j st = � 1Þ
!0@ YT

t = tchange

pðxt j st = 1Þ
1A:

(Equation 23)

This looks complicated, but we are not out of ideas!

c. Show that this can be written more simply as
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Figure 7. Trial-to-Trial Variability in Likelihoods and Posteriors
Likelihood functions (blue) and corresponding posterior distributions (purple)
on three example trials on which the true stimulus could have been the same.
The key point is that the likelihood function, the posterior distribution, and any
posterior-derived estimate are not fixed objects: theymove around from trial to
trial because the measurement xtrial does.
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L
�
tchange

�
f

YT
t = tchange

pðxtjst = 1Þ
pðxt j st = � 1Þ: (Equation 24)

d. Now substitute pðxt j stÞ=Nðxt; st;sÞ to find

L
�
tchange

�
fe

2
s2

PT
t = tchange

xt
: (Equation 25)

e. Does this equation make intuitive sense?

Combining Equations 16, 17, and 25, we find for the posterior

probability of a change point at tchange:

p
�
tchange

�� x�fe

2
s2

PT
t = tchange

xt
: (Equation 26)

To obtain the actual posterior probabilities, the right-hand side

has to be normalized (divided by the sum over all tchange).

f. The data in Figure 8 are x = ð� 0:46;0:83; � 3:26; � 0:14;

� 0:68; � 2:31;0:57;1:34;4:58;3:77Þ, with s = 1. Plot the

posterior distribution over change point.

However, if the goal is just to pick the most probable change

point (MAP estimate), normalizing is not needed.

g. Why not?

h. If that is the goal, the decision rule becomes ‘‘Cumulatively

add up the elements of x, going backwards from t = T to

t = 1. The time at which this cumulative sum peaks is

the MAP estimate of tchange.’’ Explain.

Step 3: Response Distribution

In case 4, we were able to obtain an equation for the pre-

dicted response distribution. Here, however, and in many

other cases, that is not possible. Nevertheless, we can still

simulate the model’s responses to obtain an approximate

prediction.
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i. Assume s= 1 and T = 10. Vary the true change point tchange
from 1 to T. For each value of tchange, we simulate 10,000

trials (or more if possible). On each simulated trial,

Based on tchange; specify the stimulus sequence s.

Simulate a measurement sequence x from s.

Apply the decision rule to each measurement sequence. The

output is the simulated observer’s response, namely an

estimate of tchange.

Determine whether the response was correct.

Plot proportion correct as a function of tchange. Interpret

the plot.

j. What is overall proportion correct (averaged across

all tchange)?

k. Vary s= 1;2; 3 and T from 2 to 16 in steps of 2. Plot overall

proportion correct as a function of T for the three values of

s (color coded). Interpret the plot.

l. How could our simple example be extended to cover more

realistic cases of change point detection?
4. Extensions
We have concluded our case studies of Bayesian decision

models. These cases were basic, and many extensions can be

made. We discuss a few such extensions here.

4.1. Multiple Observations

In case 4, if the decision maker makes two conditionally inde-

pendent observations, x1 and x2, then the likelihood function

LðsÞ becomes the product pðx1jsÞpðx2 j sÞ. This is the premise

of many Bayesian cue combination studies, in particular, multi-

sensory ones (Trommershauser et al., 2011). If multiple obser-

vations are made over time, then Bayesian inference becomes

a form of evidence accumulation. In case 5, multiple observa-

tions were also made over time, but, in addition, the stimulus

changed as measurements were made. The most common

generative model that describes time-varying stimuli with mea-

surements at each time point is called a ‘‘Hidden Mar-

kov Model.’’

4.2. More Sophisticated Encoding Models

The distribution of an observation given a world state, pðx j sÞ,
was deliberately kept very simple in cases 4 and 5. Instead,

with x still being a noisy measurement of s, the noise level could

depend on s, an instance of ‘‘heteroskedasticity’’; this would

make Bayesian inference substantially harder (Girshick et al.,

2011; Acerbi et al., 2018). Furthermore, x could be a pattern

of neural activity, for example, in early sensory cortex; this

could be the starting point for asking how Bayesian computa-

tions could be implemented in neural populations (Ma

et al., 2006).

4.3. More Realistic Cost Functions

Outside of purely perceptual tasks, an action is rarely an esti-

mate of the state of the world. In fact, the action a can be of a

very different nature than s. For example, if s represents whether

milk is spoiled or still good, the action a could be to toss or drink

the milk. Similarly, in an estimation experiment, a correct

response could be rewarded differently depending on the true

state of the world (Whiteley and Sahani, 2008). These scenarios

can be captured by suitably choosing Cða; sÞ in Equation 2.



Figure 8. Case 5: Change Point Detection
(A) Generative model.
(B) Example of a true stimulus sequence with tchange = 7.
(C) Example sequence of measurements. When did the change from �1 to 1 occur?
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4.4. Ad Hoc Sources of Error

Ad hoc sources of errors can be incorporated into Bayesian

models as into any behavioral model. Those sources could

include some proportion of random responses (lapse rate). In

addition, the readout of the posterior could be stochastic rather

than deterministic. In other words, decision noise could be

added in step 2b. Such noise could alternatively reflect inevitable

stochasticity, a level of imprecision that is strategically chosen to

save effort when more effort would not be worth the task gains,

or it could be a proxy for systematic but unmodeled suboptimal-

ities in the decision process.

4.5. Model Mismatch

The decision maker might have wrong beliefs about the genera-

tive model. For example, if the true distributions of s and x are

pðsÞ and pðx j sÞ, the decision maker might instead believe that

these variables follow different distributions, say qðsÞ and

qðx j sÞ. Then, they can still compute a posterior distribution

qðs j xtrialÞ, but it would be different from the correct one,

pðs j xtrialÞ. This is a case of ‘‘model mismatch’’: the distributions

used in inference are not the same as in the true generative

model (Beck et al., 2012).

5. Remarks
5.1. Persistent Myths

We address two common misunderstandings about Bayesian

models of behavior. First, it is a myth that all Bayesian models

are characterized by the presence of a non-uniform prior distri-

bution. While the prior is important in many applications, the

calculation of the likelihood is sometimesmuchmore central. Ex-

amples include case 1 andmost forms of sensory cue integration

(Trommershauser et al., 2011). Second, it is a myth that all

Bayesian models have so many degrees of freedom that any da-

taset can be fitted. On the contrary, as we saw in cases 4 and 5,

Bayesian models have very few parameters if we assume that

the observer uses the true generative model of the task. That be-

ing said, models with mismatch (Section 4.5) can have many

more free parameters. However, adding parameters solely to

obtain better fits violates the spirit of Bayesian modeling.

5.2. Bayesian versus Optimal Decision Making

Bayesian decision models are normative or optimal in the sense

that, if the decision maker strives to minimize any form of total
cost (or maximize any form of total reward) in the long run,

then they should use the posterior distribution to determine their

action. However, if the Bayesian decision maker suffers from

model mismatch, then they are still Bayesian, but not necessarily

optimal (Ma, 2012). In addition, a lot of recent work has focused

on including in the decision maker’s objective function not only

task performance or task rewards, but also the cost of represen-

tation or computation. This gives rise to a class of modified

Bayesian models known as ‘‘resource-rational’’ models (Griffiths

et al., 2015).

6. Criticisms of Bayesian Models
Criticisms of Bayesian models of decision making fall into

several broad categories. First, it has been alleged that Bayesian

modelers insufficiently consider alternative models (Bowers and

Davis, 2012). Indeed, many Bayesian modelers can do much

better in testing Bayesian models against alternatives. This crit-

icism, however, applies to many modeling studies, Bayesian or

not. Second, it has been alleged that Bayesian models are overly

flexible and can ‘‘fit anything’’ (Bowers and Davis, 2012). I

consider this largely an unfair criticism, as Bayesian models

are often highly constrained by either experimental or natural

statistics (examples of the latter: Girshick et al., 2011; Geisler

and Perry, 2009). It is true that some Bayesian studies use

many parameters to agnostically estimate a prior distribution

(e.g., Stocker and Simoncelli, 2006); those models need strong

external validation (e.g., Houlsby et al., 2013) or to be appropri-

ately penalized in model comparison. I discuss two more criti-

cisms below and conclude by pointing out two major challenges

for Bayesian models.

6.1. Bayesian Inference without and with Probabilities

It has been alleged that empirical findings cited in support of de-

cisionmaking being Bayesian are equally consistent withmodels

that predict the same input-output mapping as the Bayesian

model but without any representation of probabilities (Howe

et al., 2006; Block, 2018). Indeed, in their weak form, Bayesian

models are simply mappings from states to actions (policies)

without regard to internal constructs such as likelihoods and

posteriors (Ma and Jazayeri, 2014). In their strong form, however,

Bayesian models claim that the brain represents those con-

structs. Such representations naturally give rise to notions of
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uncertainty and decision confidence. For example, the standard

deviation of a posterior distribution could be ameasure of uncer-

tainty. Evidence for the strong form could be obtained from

Bayesian transfer tests (Maloney and Mamassian, 2009). Exam-

ples of Bayesian transfer tests involve varying sensory reliability

(Trommershauser et al., 2011; Qamar et al., 2013), priors (Acerbi

et al., 2014), or rewards (Whiteley and Sahani, 2008) from trial to

trial without giving the subject performance feedback. However,

when no transfer tests are done, it is difficult to argue that the

brain has done more than learn a fixed policy that produces

as-if Bayesian behavior. While Bayesian modelers need to be

more explicit about the epistemological status of their models,

and while some Bayesian studies only provide evidence for the

weak form, the collective evidence for the strong form is by

now plentiful (Ma and Jazayeri, 2014).

6.2. The Neural Implementation of Bayesian Inference

Bayesian modelers have been accused of not paying sufficient

attention to the implementational level (Jones and Love, 2011).

Bayesian models are primarily computational-level models of

behavior. However, the evidence that decision-making behavior

is approximately Bayesian in many tasks raises the question of

how neurons implement Bayesian decisions. This question is

most interesting for the strong form of Bayesianmodels because

answering it then requires a theoretical commitment to the neural

representations of likelihoods, priors, and cost functions.

Consider the neural representation of a sensory likelihood func-

tion as an example. A straightforward theoretical postulate—but

by no means the only one (Hoyer and Hyv€arinen, 2003; Fiser

et al., 2010; Deneve, 2008; Haefner et al., 2016)—is that the ac-

tivity (e.g., firing rates) in a specific population of sensory neu-

rons, collectively denoted by r, takes the role of the observation,

so that the sensory component of the generative model—the

analog of Equation 5—becomes a stimulus-conditioned activity

distribution pðr j sÞ (Sanger, 1996; Pouget et al., 2003). One could

then proceed by hypothesizing that this distribution serves as the

basis of the likelihood function. In other words, for given activity

rtrial, the likelihood of stimulus s would be

LðsÞ = pðrtrial j sÞ; (Equation 27)

in analogy to Equation 6. This equation is the cornerstone of the

theory of ‘‘probabilistic population coding’’ (Ma et al., 2006). The

hypothesis would be untestable if it were not for the brain’s use

of a likelihood function over s in subsequent computation. There-

fore, one needs a behavioral task in which evidence for the

strong form of a Bayesian model has been obtained. Then, one

could use Equation 27 to decode on each trial a full neural likeli-

hood function from a sensory population and plug it into the

Bayesian model to predict behavior (van Bergen et al., 2015;

Walker et al., 2019).

Equipped with putative neural representations of the build-

ing blocks of Bayesian inference, one can ask the further

question of how the computation that puts the pieces together

is implemented. In a handful of cases, this question can be

approached analytically. For example, in cue combination,

the Bayesian computation consists of a multiplication of likeli-

hood functions. Under a certain assumption about pðrtrial j sÞ,
the neural implementation of this computation is a simple
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addition of patterns of neural activity (Ma et al., 2006). How-

ever, this case might be an exception because, under the

same distributional assumption, the neural implementation of

many other Bayesian computations is not exact and can get

very complex (e.g., Ma et al., 2011). Instead, a simple trained

neural network can perform strong-form Bayesian inference

across a wide variety of tasks, even when the distributional

assumption is violated (Orhan and Ma, 2017). The neural im-

plementation of Bayesian computation remains an active

area of research.

Finally, resource-rational theories take implementation-level

costs and constraints seriously (Griffiths et al., 2015). A

resource-rational decision maker is one who not only maximizes

task performance, but also simultaneously minimizes an ecolog-

ically meaningful cost, such as total firing rate, total number of

neurons, amount of effort, or time spent. Resource-rational

models provide accounts of the nature of representations as

well as of apparent suboptimalities in decision making.

6.3. Other Challenges

We briefly mention two other major challenges to Bayesian

models of decision making. The first is that they often do not

scale upwell. For example, if onewere to infer the depth ordering

of N image patches, there are N! possible orderings, and a

Bayesian decision maker would have to consider every one of

them. For large N, this would be computationally prohibitive

and not realistic as a model of human vision. A similar combina-

torial explosion would arise in case 5 if the number of change

points were not known to be 1. A second challenge is how a

Bayesian decision maker learns a natural generative model

from scratch using only a small number of training examples

(Tenenbaum et al., 2011; Lake et al., 2015).
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A Solutions to exercises

A.1 Case 1: Unequal likelihoods and Gestalt laws

a.

b. 1
2

c. 1
32

d. The likelihoods do not add up to 1, nor should they. How probable the obser-
vations are under one scenario about the world is independent of how probable
those same observations are under another scenario about the world.

e. The phrase is misleading because it suggests that there is only one. There
are multiple different likelihoods for the same set of observations, one for each
hypothetisized state of the world.

f. p(H1) = 2
3 , p(H2) = 1

3

g. 1
3

h. 1
96

i. No.

j. P (H1|I1, . . . , I5) = 0.97, P (H2|I1, . . . , I5) = 0.03.

k. Since H1 has the highest posterior probability, we are expected to perceive H1–
i.e., we perceive the group of dots as being part of the same object. This is
consistent with the Gestalt law of common fate.

l. The Bayesian account produces predictions consistent with the Gestalt law but
it goes beyond the “descriptive” law by providing an account that might be
considered both normative and perhaps explanatory– it tells us what the optimal
observer should perceive, beyond merely describing what people do perceive.
Paired with certain evolutionary premises, the Bayesian account might provide
an explanation of the law of common fate.

A.2 Case 2: Competing likelihoods and priors in motion sick-
ness



a.

e. E.g. priors = (0.9, 0.1, 0.2), likelihoods = (0.01, 0.3, 0.3), posteriors = (0.09, 0.3, 0.61).
f. Our evolutionary priors tell us stationary rooms are very probable, moving rooms
are highly improbable, and the ingestion of a toxin is somewhat rare. The likelihood
information we receive as a result of there being a visual-vestibular mismatch sug-
gests that the stationary room hypothesis is improbable, and each of the other two
hypotheses (which very likely lead to sensory mismatches) are probable. The posteri-
ors are found by multiplying the prior and likelihood for each hypothesis. Scenario 3,
the hypothesis that you are hallucinating because you’ve ingested a toxin, yields the
highest posterior probability. If your body believes the MAP hypothesis that a toxin
was ingested, it might trigger vomiting as a natural defensive response.

A.3 Case 3: Ambiguity from a nuisance parameter: Surface
shade perception

a. 0.2

b. 0.5

c. Intuitively, the same retinal intensity might be caused by a bright light source
and a dark surface , or a dark light source and light surface. Retinal intensity
alone provides ambiguous information about surface shade, since we do not know
the contribution of light intensity.

d.



e. This graph shows the likelihoods of each hypothesized combination of light inten-
sity and surface shade, when the observed retinal intensity is 0.2. World states
which lie off of this curve cannot produce a retinal intensity of 0.2. World states
on this curve definitely produce a retinal intensity of 0.2.

f. To adjudicate between all possible points along this curve, the visual system
might take prior over light intensity into account. For instance, if it is dark out-
side, there would be high prior probabilities for low light intensities. Combining
with the likelihood, the posterior might be highest for the hypothesis that the
surface of the object is white.

g. See figure.

h. See figure.

i. We would perceive the surface as having a shade somewhere between 0.5 and 1.

A.4 Case 4: Inference under measurement noise in sound lo-
calization

a. The proportionality sign is appropriate because s-independent factors are irrele-
vant when performing the final normalizing step needed to obtain the posterior.

b. The following piece of Matlab code approximately reproduces the figure:

clear, close all;

svec = -10:0.01:10;

mu = 0;

sig_s = 2;

sig = 1;

x_trial = 3.2;

prior = normpdf(svec, mu, sig_s);

prior = prior / sum(prior);

likelihood = normpdf(svec, x_trial, sig);

likelihood = likelihood / sum(likelihood);

protoposterior = prior .* likelihood;

posterior = protoposterior / sum(protoposterior);

figure; hold on

plot(svec,prior,’r’)

plot(svec,likelihood,’b’)

plot(svec,posterior,’k’)



c. Posterior:

p(s|xtrial) ∝ p(s)p(xtrial|s) ∝ e
− 1

2

(
(s−µ)2

σ2s
+

(xtrial−s)
2

σ2

)

We use the notation Js = 1
σ2
s

and J = 1
σ2 . Using the hint, we rewrite as

p(s|xtrial) ∝ e
− 1

2

[
(Js+J)

(
s−µJs+xtrialJ

Js+J

)2
+junk

]

∝ e
− (s−µJs+xtrialJ

Js+J )
2

2 1
Js+J

This is the equation for a Gaussian with mean and variance as given in the
problem.

d. µ+xtrial

2 .

e. Should be straightforward.

f. Using the result of (e), σ2
posterior < σ2 because

σ2
s

σ2+σ2
s
< 1. Analogously, σ2

posterior <

σ2
s .

g. σ2

2

h. As a rule for normal distributions, if y ∼ N (µ, σ2), then ay+b ∼ N (aµ+b, a2σ2),
e.g. scaling a Gaussian distribution by a factor of 2 would increase its variance
by a factor of 4. The posterior mean estimate ŝ = µposterior = wx + (1 − w)µ
involves scaling the measurement x by a constant w and shifting it by constant

(1 − w)µ, where w =
1
σ2

1
σ2

+ 1
σ2s

. Therefore, the estimate distribution will have a

variance which scales the variance of the measurement distribution by w2:

p(x|s) ∼ N(x; s, σ2)

p(ŝ|s) ∼ N(ŝ;ws+ (1− w)µ,w2σ2)

Var(ŝ|s) = w2σ2 =

(
1
σ2

1
σ2 + 1

σ2
s

)2

σ2 =
1
σ2

( 1
σ2 + 1

σ2
s
)2

A.5 Case 5: Hierarchical inference in change point detection

a. The property that once the sequence s is given, x is independent of tchange. In
other words, p(x|s, tchange) = p(x|s).

b. For a given tchange, only one sequence is possible.

c. Divide by the constant
∏T
t=1 p(xt|st = −1). This is a constant because it does

not depend on tchange, and it can therefore be absorbed into the proportionality
sign.

d.

L(tchange) ∝
T∏

t=tchange

p(xt|st = 1)

p(xt|st = −1)
=

T∏
t=tchange

e−
(xt−1)2

2σ2
+

(xt+1)2

2σ2 = e

2
σ2

T∑
t=tchange

xt



g. Normalizing does not change the most probable change point, since it is just the
highest point on the graph.

j. 0.683.

l. The change point could have a higher probability of occurring at some times
rather than others. There could be multiple change points instead of one. The
stimulus could take more values than merely -1 or 1.
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