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In animal communication, individuals of species exhibiting individual

recognition of conspecifics with whom they have repeated interactions, receive

signals not only from unfamiliar conspecifics, but also from individuals with

whom they have prior experience. Empirical evidence suggests that familiarity

with a specific signaller aids receivers in interpreting that signaller’s signals,

but there has been little theoretical work on this effect. Here, we develop a

Bayesian decision-making model and apply it to the well-studied systems

of primate ovulation signals. We compare the siring probability of learner

males versus non-learner males, based on variation in their assessment of

the best time to mate and mate-guard females. We compare males of different

dominance ranks, and vary the number of females, and their cycle synchrony.

We find strong fitness advantages for learners, which manifest very quickly.

Receivers do not have to see the full range of a signaller’s signals in order to

start gaining familiarity benefits. Reproductive asynchrony and increasing

the number of females both enhance learning advantages. We provide theor-

etical evidence for a strong advantage to specific learning of a signaller’s range

of signals in signalling systems. Our results have broad implications, not only

for understanding communication, but in elucidating additional fitness

benefits to group-living, the evolution of individual recognition, and other

characteristics of animal behavioural biology.
1. Introduction
In animal communication, individuals often receive signals not only from un-

familiar conspecifics, but also from conspecifics with whom they have prior

experience. Many species seem to navigate such interactions by developing

individual recognition, which can occur in multiple contexts [1,2]. These

include recognition of nearby rivals and neighbouring territory holders (e.g.

birds [3], lizards [4,5], anurans [6], fish [7,8], crustaceans [9]), recognition

between parents and offspring (e.g. penguins [10,11], songbirds [12], ungulates

[13,14], bats [15–17], pinnipeds [18–20], dolphins [21]), and recognition within

individuals in dominance hierarchies in social groups (e.g. insects [22,23], crus-

taceans [24,25], fish [26,27], ungulates [28], carnivores [29,30], primates [31]).

Repeated interactions with individuals that can be individually recognized

may be important in allowing receivers to learn about the behaviour of specific

signallers [32]. Such contexts also allow receivers to attend more to specific sig-

nallers that have demonstrated signal reliability, and provide a mechanism that

can ensure signal honesty [33]. Such effects have been studied in relation to

alarm calls, where theoretical models demonstrate fitness benefits that accrue

to individuals discriminating between specific signallers [34], and where

empirical data suggests that receivers do indeed preferentially attend to the

calls of reliable signallers (e.g. vervet monkeys [35]; marmots [36]).

Individual recognition between signallers and receivers may be also be impor-

tant not for assessing whether a signaller is reliable or unreliable, but for

determining whether a conspecific’s signal expression value is relatively low or

high, which may depend on the range of signals that each specific signaller

http://crossmark.crossref.org/dialog/?doi=10.1098/rsif.2018.0568&domain=pdf&date_stamp=2018-12-19
mailto:weijima@nyu.edu
mailto:jhigham@nyu.edu
https://dx.doi.org/10.6084/m9.figshare.c.4322555
https://dx.doi.org/10.6084/m9.figshare.c.4322555
http://orcid.org/
http://orcid.org/0000-0002-9835-9083
http://orcid.org/0000-0002-1133-2030


rsif.royalsocietypublishing.org
J.R.Soc.Interface

15:20180568

2
expresses. Empirical data on the female fertility signals of

humans and other primates have indeed shown that familiarity

with a specific signaller can aid a receiver in interpreting that

signaller’s signals or cues. For example, heterosexual men

seem better able to assess the timing of their partner’s fertile

periods relative to strangers, simply by apparent cues from

sight or smell [37–39]. In baboons, males who have spent

longer in a social group consort with females during conceptive

cycles more frequently compared to males who are new arri-

vals [40], while long-tailed macaques from the same social

group as a specific female are better at timing their mating

effort to the fertile periods of that female compared to other

males [41]. Experiments have also shown that male rhesus

macaques that are familiar with females are more likely to

look longer at images of the ovulatory faces of those females

compared to other males [42]. However, despite such empirical

evidence, to our knowledge there has been no theoretical work

of any type undertaken to address the role of signaller–receiver

familiarity on the efficacy of signal interpretation by receivers.

Here, we develop a Bayesian decision model to ask how

experience with a signaller affects the efficacy of a receiver in

interpreting that signaller’s signals and behaving optimally

in response. As a case study, we take the intra-cycle fertility sig-

nals exhibited by many anthropoid primate species. Examples

of these signals include the sexual swellings of species such as

baboons and chimpanzees, the facial colour changes of species

such as Japanese and rhesus macaques, and the chest-patch

colour changes of geladas [43]. In all cases, signal expression

is low when the female is not fertile, and then increases steadily

until a maximal expression period, during which ovulation

occurs [44]. However, different females have very different

minima and maxima. Simple rules such as ‘choose the female

with the largest swelling’ appear to be suboptimal, as some

females exhibit swellings that when maximal around ovulation

are still smaller than those of other females not currently ovu-

lating (e.g. [45]). The advantages of formalizing the model for

this paradigm include that: (i) primate intra-cycle fertility sig-

nals have been well-studied empirically, such that we have a

good understanding of the mechanisms of cyclical changes in

females, the nature of behavioural responses in males, and

the observed inter-female differences in both swellings and

male behavioural interest; (ii) several studies have suggested

that males familiar with specific females may perform better

in assessing whether that female is fertile based on her signal

[42], and may also time their mating effort more accurately

with such females [40,41].

Our model is developed from a long tradition of Bayesian

models of perception (for reviews, see [46–48]). In such

models, the observer computes a posterior probability distri-

bution over the world state variable of interest given noisy

sensory measurements. Computing the posterior requires

that the observer has internalized knowledge of the statistics

of the environment, as well as of the process generating the

measurements. If such knowledge is matched to the true

statistics, like we assume here, the Bayesian model is also

referred to as an optimal-observer or ideal-observer model.

Our model is based on five males of different dominance

ranks making mating decisions between a number of cycling

females with different levels of signal expression. We vary

the number of females (5, 10, 15) and the synchronicity of

their cycles (low versus high synchrony), to investigate the

effects of changing key biological parameters that have been

demonstrated to affect the function of these types of signals.
Our overall aim is to provide theoretical assessment of the

potential advantages of receiver familiarity on signal interpret-

ation, to explore how such advantages manifest, and to assess

how they are affected by biologically realistic changes to the

contexts in which receivers observe such signals.
2. Methods
The models consist of two stages: a measurement model, also

called a generative model, which specifies the probability distri-

bution of the male’s measurements as a function of time for

different females, and a male decision model, in which the

male either does or does not learn. Learning is implemented as

Bayesian: the learner updates a posterior distribution from day

to day based on the measurements as well as knowledge of

the measurement model. Learning does not necessarily require

recollection, recognition or higher-order cognition.

2.1. Measurement model
We construct a statistical model of visual measurements of a sexual

swelling or a facial colour change during a female’s menstrual

cycle, where the parameters of that cycle are heterogeneous

across females. We define time as 30 discrete days, which is a

fairly typical cycle length for an anthropoid primate [43]. We

assume that the measured signal, denoted by xt for day t, follows

a sinusoidal function corrupted by zero-mean Gaussian noise:

xt � normalð�sþ A cosðvðt� tÞÞ,s2Þ,

where �s is the cycle-averaged signal size or lightness, A the ampli-

tude of signal variation, t the ovulation time, v ¼ 2p/(30 days) the

frequency of the cycle, and s the standard deviation of the noise. If

A is positive, then the signal is on average maximal at ovulation.

We assume that the noise is uncorrelated across time points. We

allow the parameters �s, A and t to differ across females. To

model such variation, we assume that the signal average �s is inde-

pendently drawn for each female, from a normal distribution with

mean m�s and variance s2
�s :

�s � normal(m�s,s
2
�s Þ:

Similarly, we assume that signal amplitude A is indepen-

dently drawn for each female from a normal distribution with

mean mA and variance s2
A:

A � NðmA,s2
AÞ:

This yields a total of five parameters:s, m�s, s�s, mA and sA. Since

the problem is invariant to shifting and scaling, we can fix two par-

ameters; we use this freedom to set m�s ¼ 0 and s�s ¼ 1. We choose

the remaining three parameters to produce a plausible set of cycles

(figure 1a): mA ¼ 1, sA ¼ 0.33 and s ¼ 0.33. Changing these par-

ameters will not qualitatively change our results. However, there

will be quantitative differences. In particular, we expect the

benefits of learning to be greater when sA is higher.

We vary the degree of reproductive synchrony in the measure-

ment model. Reproductive synchrony—the overlap of females’

fertile phases—is considered to be one of the single most important

parameters affecting the evolution of these signals, as well as male

responses [44]. This is because when females are highly asynchro-

nous, high-ranking males can monopolize all female fertile phases,

but when females are highly synchronous, reproduction is inevita-

bly shared between multiple males. We simulate two synchrony

conditions: low synchrony—ovulation time t is drawn from a uni-

form distribution over the cycle; high synchrony—ovulation time

is drawn from a Gaussian distribution with mean at Day 15 and

standard deviation 3. In both conditions, the ovulation times of

different females are uncorrelated.
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Figure 1. Cyclical variation in female signal expression (a), male measurements of those cycles (b), posteriors after 10 (c), and 30 (d ) days.
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2.2. Decision models
After observing a given female for T days, a male has a set of

measurements x1, x2, . . ., xT. We assume that each male mates

with only one partner a day and a female mates with at most

one partner a day, reflecting consortship and/or male mate guard-

ing [43]. We further assume that a female is receptive to a male if

no higher-ranked male is consorting with her on that day. We

consider a non-learning and a Bayesian learning decision model.

2.2.1. Non-learner
We model the non-learner as following the heuristic rule of

always mating with the available female with the highest level

of signal expression, i.e. the female with the highest xT.

2.2.2. Learner
By contrast, the Bayesian learner computes for each female a

posterior distribution over ovulation time, p(tjx1, x2, . . ., xT).

We assume that in computing the posterior, the male assumes

that the distribution of ovulation time in the population, p(t),

is uniform. This assumed distribution is matched to the true

distribution in the low-synchrony condition but mismatched in

the high-synchrony condition. Therefore, the learner could gain

an additional advantage in that condition by using knowledge of

the true distribution (see Discussion). The posterior distribution

is derived in the electronic supplementary material and examples

are shown in figure 1. Posteriors become narrower over time.

Finally, the Bayesian learner model assumes that the male

mates with the available female who has the highest probability

of being fertile. Being fertile means that ovulation time t falls

within the next L days (including the current day),

t [ {t, . . . , tþ L� 1}. The probability that the female is fertile is

thus the posterior probability over t summed over the current
day and the following L 2 1 days:

pfertileðtÞ ¼
XtþL�1

t¼t

pðtjxÞ: ð2:1Þ

2.3. Siring probability
We have defined the decision strategies of a non-learning and of

a learning male. To assess the effectiveness of either strategy, we

have to connect mating success to reproductive success (the

siring of offspring). For a given female, a male’s probability of

siring is 0 if he does not mate with her during her fertile

period, but what is it otherwise? Sperm longevity is limited,

but here we assume that it extends to at least the duration of

the fertile period (4 days) [49]. However, sperm of multiple

males who mate with the same female during her fertile period

will be subject to sperm competition [43]. To reflect this, we

make the simplifying assumption that when the same female

mates k times within her fertile period, the probability of any

mating leading to siring is

pðsiringjk, fertileÞ ¼ 1

k
: ð2:2Þ

We assume a 4 day fertile period (e.g. [49]), so that on a given

day, the siring probability for a given male with any given female

can take the values 0, 1/4, 1/3, 1/2 and 1. If the same male mates

with the same female on more than 1 day during the fertile period,

the male will receive a siring probability of 1/k for every day

mating. However, the assumption does not capture the possibility

that sperm viability decreases over the duration of the fertile

period, or the possibility that later males remove the sperm of ear-

lier males; both factors will in reality confer a disadvantage to a

male who mates with the female earlier in her fertile period.
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2.4. Simulations
We assess the non-learner and learner strategies by calculating

through simulations the expected probabilities of siring offspring

under these strategies. We simulate groups consisting of five

males and five, 10, or 15 females. We consider 12 male learning

conditions: (i) all males are non-learners; (ii) all males are lear-

ners; (iii) one male is a learner (in each of five possible ranks),

and all others non-learners; (iv) one male is a non-learner (in

each of five possible ranks), and all others learners. The highest

ranking male makes the first choice, followed by each male

sequentially in order of dominance. We factorially combine all

conditions, for a total of 2 (synchrony) � 3 (numbers of

females) � 12 (learning conditions) ¼ 72 conditions.

The sharing of the siring probability over the fertile period

introduces boundary effects. For example, if on the first day in

the simulation, a male mates with a female with t ¼ 1, then he

will be guaranteed a siring probability of 1, since there is no need

to share with males who mated with her on the preceding days.

Similarly, if a male mates on the last day of the simulation with a

female who ovulates 3 days later, he will not have to share either.

This artificially inflates the siring probabilities on the ends. To

avoid these boundary effects, we simulate 36 days instead of 30

days, but only report performance in the central 30 days; in other

words, we pad the simulated time period on both ends by a

number of days equal to the length of the fertile period minus 1.

In each of the 72 conditions, we perform 10 000 simulations

(based on precedent, and the number of simulations typically

required to ensure convergence in such studies). In each simu-

lation, we draw new cycle parameters �s and A for each female,

and a new set of noisy measurements x, one for each female

and each day. Then, on each day, we evaluate the decision

rules of the males in descending rank order. This gives a

matrix of IDs of chosen females as a function of day and male.

We score this choice matrix against the true ovulation times,
giving a matrix of siring probabilities. Finally, we average this

matrix across all simulations and restrict ourselves to the central

30 days. We plot the values in these siring probability matrices

by condition, giving rise to the 72 plots in figures 2–4.
2.5. Calculation of chance
We define chance as the siring probability in a population in which

every male randomly chooses a female to mate with. This prob-

ability is equal to the product of the probability that the female

is fertile and the siring probability given that she is fertile:

chanceðtÞ ¼ pfertileðtÞ � pðsiringj fertileÞ: ð2:3Þ

The first factor in equation (2.3) takes a form similar to

equation (2.1) but uses the actual ovulation time distribution

rather than a posterior:

pfertileðtÞ ¼
XtþL�1

t¼t

pðtÞ:

In the low-synchrony condition, pfertile(t) is equal to L/30. In

the high-synchrony condition, it is easily computed numerically.

The second factor in equation (2.3) needs to be broken down by

the number of times the female mates during her fertile period;

we denote this number by k. Then,

pðsiringj fertileÞ ¼
XL

k¼1

pðkÞpðsiringjk; fertileÞ: ð2:4Þ

Here, p(siring j k, fertile) is given by equation (2.2), and p(k) is

the probability that the female mates exactly k 2 1 times in the

L 2 1 days of the fertile period excluding the current day. The

probability of mating on a given day is nmales/nfemales, and there-

fore p(k) is the probability of k 2 1 ‘successes’ among L 2 1
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Bernoulli trials with parameter nmales/nfemales, which is given by

the binomial distribution:

pðkÞ ¼ binomial k � 1; L� 1,
nmales

nfemales

� �
: ð2:5Þ

Combining equations (2.2) through (2.5), we find

chanceðtÞ ¼
XtþL�1

t¼t

pðtÞ
 !

�
XL

k¼1

1

k
� binomial k � 1; L� 1,

nmales

nfemales

� � !
:

Chance is plotted as a function of time in figures 2 and 4.

2.6. Code sharing
All code is available from the Dryad Digital Repository at:

http://dx.doi.org/10.5061/dryad.t0680db [50].
3. Results
Under both low- and high-synchrony conditions, male

learners have very marked advantages over non-learners.

3.1. Low synchrony
Under conditions of low female cycle synchrony, males that are

learners among non-learners very quickly accrue sustained

reproductive benefits (figure 2), representing a significant fit-

ness advantage (figure 3). In contrast, being a non-learner

among learners produces a serious reproductive and fitness dis-

advantage. Effects begin to accrue extremely quickly (within

several days rather than several weeks), and do not require a
sustained period of observation to emerge. Since female cycles

are asynchronous, increasing the number of females increases

the extent of the effect—learner males exposed to a larger

number of females simply mate with a larger number of fertile

females (figures 2 and 3). This cumulative benefit continues to

rise over time as more and more females can be mated with.
3.2. High synchrony
Under conditions of high female cycle synchrony, males that

are learners among non-learners also quickly accrue sustained

reproductive benefits (figure 4), again representing a signifi-

cant fitness advantage (figure 5). Since female cycles are

synchronous, the cumulative benefit plateaus, and does not

continue to increase beyond a threshold, with that threshold

set by the total number of available female (figure 5).
4. Discussion
In this study, we modelled an intriguing phenomenon that has

been empirically demonstrated, but which has had no theoreti-

cal basis on which to estimate the nature, strength and

manifestation of its effects. Specifically, receivers often respond

to signals given by familiar signallers, and place the signal

within the context of the range of signals usually exhibited

by that signaller. In modelling this phenomenon, we found a

number of important general results, some of which were

unexpected. Important and general conclusions include that

the effect of learning the range of signals given by a specific sig-

naller are very marked, and that they manifest extremely

quickly. The latter result is particularly interesting. Since in

our scenario there is a general function underlying female

http://dx.doi.org/10.5061/dryad.t0680db


rsif.royalsocietypublishing.org
J.R.Soc.Interface

15:20180568

7
changes in signal expression, males are quickly able to estimate

each female’s specific function parameters to estimate her

relative maximum expression without observing the whole

function. This suggests that in at least some biological contexts,

receivers do not have to see the full range of a signaller’s signals

in order to start gaining familiarity benefits. Observation by a

receiver of just a subset of a signaller’s signal variation may

be enough to begin estimating the full range of that signaller’s

expected signal variation. Improved ability to learn is in this

case selected for because males who learn will have higher

reproductive success over time, favouring the spread of the

strategy through the population. Male learning is not however

reinforced by feedback during the lifespan, which might be

seen in other contexts (for example, when predators learn

about camouflaged prey, [51]). In this scenario, males learn

by observing the rate of change in signal size, because there

is an evolved underlying structure to signal change (cyclical),

which only needs parameters to be estimated in order to be

able to estimate aspects of the curve such as peaks and troughs.

Our modelled scenario is most directly relevant to a number

of primate systems in which cyclical signals of fertility are exhib-

ited. This includes species exhibiting sexual swellings such as

chimpanzees, baboons, and many species of macaques, but

also species that do not exhibit sexual swellings, but do exhibit

coloration changes in the face (e.g. rhesus macaques), or other

areas (e.g. the chest, gelada) [43]. Such signals are generally

known to be probabilistic in nature, with signal expression

high when the probability of conception is high, and low

when it is low [44]. They are generally thought to evolve as

mechanisms for indirect female mate choice, when direct

female mate choice is limited, perhaps by marked sexual

dimorphism, and male coercion. This suggests that direct
female mate choice may not be predicted to have a large effect

on our model.

One interesting question is how selection is likely to be

acting on signallers versus receivers in this scenario. If females

are selected to display a probabilistic signal as a mechanism of

indirect mate choice, selection might then act on male receivers

to improve their ability to learn, and hence their ability to

obtain information from such a signal. In addition, females

might be selected for signals that favour familiar males, in

order to encourage males to remain in groups for longer

periods, and/or to spend more time in association with specific

females. This is predicted where females receive direct benefits

from males, such as protection of infants from predators, and

tolerance at food patches from which they might normally be

excluded [44]. Selection may also act on males to improve

their abilities at individual recognition more broadly, and on

females to exhibit signals that enable individual recognition.

In addition to cyclical signals of female fertility, there are

also other scenarios where the integration of social knowl-

edge about specific individuals with information obtained

by their signals seems likely to be important. These include

in dominance interactions in group-living species where

dominance hierarchies are formed, and where high domi-

nance rank is accompanied by signals of high social status.

In primates this includes signals in polygynandrous species

(e.g. visual signals, mandrills, [52]; drills [53]; vocal signals,

crested macaques, [54]) or in species that exhibit one-male

units (e.g. visual signals, gelada [55]).

Although the model was developed for a cyclical signal, this

general benefit should be applicable to other signal types, since

the underlying decision problem—estimating parameters that
describe the range of signals that a specific signaller gives—is

a very common element of receiver decision-making across

many types of signal. The general benefits to receivers of learn-

ing the signal range of specific signallers elucidate additional

benefits to a number of key features of animal social living.

These include an additional benefit of developing individual

recognition in species with repeated interactions (e.g. horses

[56], hyenas [57], primates [58], dolphins [59], rodents [60]),

and for extending group tenure lengths for dispersing individ-

uals in group-living species (e.g. hyenas [61], primates [62–65]).

Consistent with this, a testable general empirical prediction

from our model is that animal species in which female signal

variation has a persistent underlying structure across females

should be under greater selection for the development of

repeated interactions and individual recognition.

Other conclusions, some of which may be more specific to

systems of cyclic fertility signals, relate to how changes to con-

ditions affect the magnitude of fitness benefits. Consistent with

empirical evidence that links reproductive synchrony to the

degree of reproductive skew in polygynandrous mammalian

species [66,67], the effects of reproductive synchrony are

important. Female reproductive asynchrony enhances the

advantage of familiarity and learning, as males are able to

mate with a greater number of fertile females due to their

lack of synchrony, and these effects are inevitably enhanced

further by increasing the number of females. This is interesting,

as it suggests that it is when there are a large number of

females, and when females are asynchronous, that these

types of learning abilities are most favoured. It also suggests

that male group residency lengths should be expected to

increase due to the strong advantages of familiarity with

specific females. That said, it is also in these circumstances

that male competition for high-ranking positions is expected

to be strongest, such that tenure lengths may be shortened by

strong competition for positions and consequent male group

ejection by other males. In contrast, synchrony, and low

female numbers, are expected to reduce the gross benefits of

learning, and of long group residency lengths. As such, our

model makes testable empirical predictions for primates

living in polygynandrous societies where females exhibit ferti-

lity signals. These include that primate species with greater

mating synchrony (which can be inferred from birth syn-

chrony) and with smaller group sizes will experience lower

gross benefits of male learning. While a number of factors

will influence male group tenure lengths, this factor should

be one effect selecting for shorter tenure lengths relative to

males in species with lower mating synchrony and larger

group sizes. Alternatively, other factors may be more impor-

tant in determining male group tenure length, with this

length then determining the relative fitness benefits of learning.

Moreover, males with shorter tenure lengths are predicted to

develop reduced knowledge about the characteristics of

specific group females relative to males in species with

longer tenure lengths. Our results may also have implications

for the benefits of particular male reproductive strategies. For

example, in some primate species, males invest substantive

amounts of time in association with specific females (‘friend-

ships’ [68]). Increased close access to specific females, and the

associated ability to learn their signal variation, is another

potential advantage to such investment. This might be

especially true for cues and signals of fertility that might be

only available from close range, such as detectable changes in

vaginal cytology [69].
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Our model inevitably makes a number of assumptions,

which can easily be modified. These include that: (i) there is

an equal probability of success for all males that mate during

the fertile period i.e. that no one day is more fertile than the

other within the fertile phase, and that males do not differ in

their fertility, nor can females exert post-copulatory mate

choice via sperm discrimination; (ii) all males start on Day 1

of the simulation, when it seems likely that some males will

have been present for longer than others, which is important

for any Bayesian learner; (iii) measurement noise is intrinsic

to the female (i.e. a probabilistic signal) and therefore equal

across males. In reality, males are likely to have differential

access to female signals, and also to differ in their ability to

judge them.

Although not parametrized in our model, a Bayesian

male could reap even more benefits by keeping track of the

mating histories of each female, hence modulating the prob-

ability of success. Similarly, under conditions of synchrony,

we only modelled circumstances in which the Bayesian

male does not know about the degree of synchrony in
ovulation time between females, but such knowledge

would also further increase his advantage. As such, the

advantages of being a Bayesian learner seem likely to be

even greater than found in our model. Our simulations

have revealed that animal receivers that learn the range of sig-

nals given by specific signallers, and place signals into that

context, have very significant advantages over other individ-

uals. Given this, further work should seek to investigate the

commonality of the phenomenon empirically across a broad

range of taxa and contexts in which repeated interactions

and individual recognition are found.
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