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Supplementary Text

S1 Theoretical motivations for the task

The goal of the current study was to test whether category and confidence decision rules account for attention-
dependent uncertainty. Unlike the tasks used in previous studies, the task we used! can answer this question,
because it has two properties: 1) Unlike the detection and coarse discrimination (e.g., +45°) tasks used in
most signal detection theory? (SDT) studies, the current task allows inference of absolute decision bound-
aries. 2) Unlike tasks with mirror-image categories (e.g., left vs. right discrimination), the current task
creates an incentive to shift the category boundary when uncertainty changes.

S1.1 Inference of absolute decision boundaries

A decision rule can be thought of as a boundary defined on the observer’s internal measurement space. Here
we were interested in the absolute location of that boundary b. The “unified criterion” discussed previously
also refers to an absolute boundary34.

To infer absolute decision boundaries from behavioral data, the measurement axis must represent known
feature values. The embedded category task has this property, because the measurement axis represents
orientation. Making a category or confidence decision can be thought of as comparing the observed stimulus
orientation to an internal reference orientation, which is the decision boundary. As experimenters, we know
the means of the internal measurement distributions (specific orientations), so we can infer the absolute
decision boundary on the orientation axis.

In SDT detection and coarse discrimination tasks, in contrast, absolute decision boundaries cannot be
inferred, because the measurement axis represents values that we, as experimenters, do not know. In a
detection task, the measurement value is thought of as the strength of the internal signal, or the “amount
of evidence” that the external signal is present. In a coarse discrimination task, the measurement value
is thought of as the amount of evidence for choice 1 (e.g., —45°) versus choice 2 (e.g., +45°). We don’t
know the means of the internal measurement distributions in real values; we don’t even know what the units
are. Consequently, the behavioral SDT measures d’ (perceptual sensitivity) and ¢ (criterion) are defined
in a normalized space — d’ and ¢ are z-scored measures of the distance between the two internal category
distributions and the location of the observer’s decision boundary, respectively. So they are relative measures.

As a result, an absolute decision boundary b is unrecoverable from behavioral data. This fact can be shown
mathematically. The standard formulae for d’ and c are

d = Z(H) - Z(F) (S1)

¢ = —3(Z(H) + Z(F)), (S2)

where Z is the inverse of the normal cumulative distribution function (i.e., z-score), H is the proportion of
hits, and F' is the proportion of false alarms. Note this formula gives ¢ with respect to the unbiased criterion.
If we let the mean of the noise distribution be 0 and the mean of the signal distribution be u, then



r_ M
a =" (S3)

(S4)

Here we have two equations with three unknowns. Any combination of d’ and c is therefore consistent with
an infinite set of combinations of the u, o, and b parameters; thus b cannot be uniquely determined. The
intuition here is that the SDT axis can be rescaled without changing d’ and ¢ (Figure Sla). The same
issue applies not only to d’ and ¢ but to any other relative behavioral measure, such as hit rate or false
alarm rate. Kontsevich et al.® raised this concern about Gorea and Sagi’s* proposal of a unified criterion
for simultaneously presented stimuli.
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Figure S1: Methodological limitations in standard signal detection tasks. (a) Rescaling the SDT axis by a factor a yields the
same values of d’ and ¢, but with a different set of parameters (the original parameters rescaled by a). This is because d’
and c are relative to the internal measurement distributions, not any absolute evidence metric. (b) In standard SDT tasks,
when the means of the internal measurement distributions are symmetric about the optimal category boundary, changing
the uncertainty does not change the optimal boundary. ;x = mean, o = standard deviation, b = decision boundary.

The non-uniqueness of SDT parameters creates a critical problem when asking whether b changes with
attention. Attention could change u, o, or both properties of the internal measurement distributions®®.
Therefore, b cannot be compared, even in a relative fashion, across attention conditions; so fixed and flexible
decision rules cannot be distinguished (Figure 5).

Note that in a left vs. right fine discrimination task, in which stimuli are drawn from orientation distributions



with similar means, absolute decision boundaries can be inferred, again because the measurement axis
represents orientation, and the measurement distribution means are known to the experimenter?.

This argument relates to that by Aitchison et al.’®, who showed that to distinguish different models of

confidence, two-dimensional data are required. They used features of two separate stimuli. Here, we used
orientation and uncertainty.

S1.2 Incentive to shift the category boundary when uncertainty changes

Fine discrimination tasks have the first property, allowing inference of absolute decision boundaries. However,
not every such task has the second property, an incentive to shift category boundaries.

In the embedded category task, the category distributions overlap in such a way that the optimal category
boundaries shift when the uncertainty in the measurement distributions changes (Figure 3a,b). Therefore,
observers have an incentive to shift their category decision rules when uncertainty changes, and we as
experimenters are able to assess whether they do so.

In standard SDT tasks, in contrast, the optimal category boundary does not depend on uncertainty o if the
means of the internal measurement distributions remain symmetric about the boundary (Figure S1b). So if
attention does not change the means, or changes them symmetrically (as in a discrimination task), then the
optimal category boundary will not change. Observers therefore have no incentive to change their category
decision rules when uncertainty changes, making it impossible to test whether the category boundary is fixed
or flexible.

In summary, the embedded category task has two critical advantages over standard SDT tasks, which allow
an unambiguous determination of whether and how perceptual decisions take uncertainty into account.

Extended Materials and Methods

S2 Experiment

S2.1 Observers

Twelve observers (7 female, 5 male), aged 18-25 years, participated in the experiment. These observers came
from an original set of 28 observers who completed at least one session. The remaining observers did not
complete the main experiment, either because they were not invited to continue following the pre-screening
staircase sessions (15 observers, Section S2.3.7) or because they chose to stop participating before all
sessions were completed (one observer). Observers received $10 per 40-60 minute session, plus a completion
bonus of $25. The experiments were approved by the University Committee on Activities Involving Human
Subjects of New York University. Informed consent was given by each observer before the experiment. All
observers were naive to the purpose of the experiment. No observers were fellow scientists.

S2.2 Apparatus and stimuli

2.2.1 Apparatus

Observers were seated in a dark room, at a viewing distance of 57 cm from the screen, with their chin
in a chinrest. Stimuli were presented on a gamma-corrected 100 Hz, 21-inch display (Model Sony GDM-



5402). The display was connected to a 2010 iMac running OS X 10.6.8 using MATLAB (Mathworks) with
Psychophysics Toolbox 311713,

2.2.2  Stimuli

The background was mid-level gray (60 cd/m?). Stimuli consisted of drifting Gabors with a spatial frequency
of 0.8 cycles per degree, a speed of 6 cycles/s, a Gaussian envelope with a SD of 0.8 degrees of visual angle
(dva), and a randomized starting phase. In category training, the stimuli were positioned at fixation, and
the central fixation cross was a black “+” subtending 1.2 dva in diameter. In all other blocks, one stimulus
was positioned in each of the four quadrants of the screen, at 45, 135, 225, and 315 degrees, 5 dva from
fixation, and the fixation cross was a black “X” with each arm pointing to a quadrant. One or more of the
arms turned white to provide a precue or response cue (Figure 1b). Stimulus contrast depended on the block

type.

2.2.3 Categories

Stimulus orientations s; were drawn from Gaussian distributions with means u; = ps = 0°, and standard
deviations o1 = 3° (category 1) and oy = 12° (category 2). Because the category distributions overlapped,
maximum accuracy was ~80%.

2.2.4 Attention manipulation

During attention training and testing blocks, voluntary spatial attention was manipulated via a central precue
presented at the start of the trial. A response cue at the end of the trial indicated which of the four stimuli
to report. On each trial, each of the four stimuli was drawn from one of the two category distributions. Each
stimulus was generated independently. In valid trials (66.7% of all trials), a single quadrant was precued
and the response cue matched the precue. In invalid trials (16.7%), a single quadrant was precued and the
response cue did not match the precue. Cue validity was therefore 80% when a single quadrant was precued.
In neutral trials (16.7%), all four quadrants were precued, and the response cue pointed to one of the four
quadrants with equal probability for each quadrant.

S2.3 Procedure

Each observer completed seven sessions. Because our behavioral task involved multiple components—
orientation categorization, confidence reports, and attention—we trained observers on each component in a
stepwise fashion, as described below.

The first two sessions (“staircase sessions”) were used to pre-screen observers and find a stimulus con-
trast level that would achieve maximum separability in performance across the three attention conditions.
Each staircase session consisted of 3 category training blocks and 3 category/attention testing-with-staircase
blocks, in alternation. No confidence reports were collected in these sessions. The first category training
block was preceded by a category demo, and the first category/attention testing-with-staircase block was
preceded by a category/attention training block. Detailed instructions were provided in the first session.
Most blocks consisted of sets of trials, in between which the observer was informed of their progress (e.g.,
“You have completed three quarters of Testing Block 2 of 3”) and allowed to rest. The staircase sessions
also served as practice on the categorization and attention components of the task, so that observers knew



them well by the time they started the main experiment. During these sessions, stimulus contrast was 35%
for training blocks, and varied during the testing-with-staircase blocks.

The final five sessions (“test sessions”) comprised the main experiment. Each test session consisted of 3
category training blocks and 3 confidence/attention testing blocks, in alternation. The first category training
block was preceded by a category demo, and the first confidence/attention testing block was preceded by a
confidence/attention training block. During these sessions, stimulus contrast was fixed to an observer-specific
value in all blocks.

Combining all test sessions, 9 observers completed 15 confidence/attention testing blocks (2160 trials), 2
observers completed 14 testing blocks (2016 trials), and 1 observer completed 12 testing blocks (1728 trials).
Accuracy on category training trials was 70.8% + 4.0% (mean + 1 SD) in staircase sessions and 71.9% =+
4.0% in test sessions, indicating that observers learned the category distributions well (recall that maximum
accuracy on the task is ~80%).

2.3.1 Eye tracking

Eye tracking (Eyelink 1000) was used to monitor fixation online. In all blocks, trials were only initiated
when the observer was fixating. In testing blocks, trials in which observers broke fixation due to blinks or
eye movements were aborted and repeated later in the experiment.

2.3.2 Instructions

First staircase session. Before the first category training block, we provided observers with a printed graphic
similar to Figure la, explained how the stimuli were generated from distributions, and explained the category
training procedure. We also explained that trials would only proceed when the observer maintained fixation.
Before the category/attention training block, we explained the attention task using an onscreen graphic that
explained the cuing procedure and a printed graphic that illustrated cue validity. We also explained the
requirement to maintain fixation from the precue until the response cue and the consequences of breaking
fixation. Before the first category/attention testing-with-staircase block, we explained that the stimulus
presentation time would be shorter and that the contrast of the stimuli would vary.

First test session. Before the confidence/attention training block, we explained two changes to the experi-
ment. First, we told observers that they would be reporting category choice and confidence simultaneously.
We provided a printed graphic similar to the buttons shown in Figure 1b, showing the eight buttons repre-
senting category choice and confidence level, the latter on a 4-point scale. The confidence levels were labeled
as “very high,” “somewhat high,” “somewhat low,” and “very low.” All printed graphics were visible to
observers throughout the experiment. Second, we told observers that contrast would be fixed (rather than
variable) for the remainder of the experiment, in all blocks.

2.3.3 Category demo

We showed observers 25 randomly drawn exemplar stimuli from each category (50 exemplars in the first
staircase session). Stimulus contrast was 35% in staircase sessions and observer-specific in test sessions.



2.3.4 Category training

To ensure that observers knew the stimulus distributions well, we gave them extensive category training with
trial-to-trial correctness feedback and foveal stimulus presentation to reduce orientation uncertainty. Each
trial proceeded as follows: Observers fixated on a central cross for 1 s. Category 1 or category 2 was selected
with equal probability. The stimulus orientation was drawn from the corresponding stimulus distribution
and displayed as a drifting Gabor. The stimulus appeared at fixation for 300 ms, replacing the fixation cross.
Observers were asked to report category 1 or category 2 by pressing a button with their left or right index
finger, respectively. Observers were able to respond immediately after the offset of the stimulus, at which
point correctness feedback was displayed for 1.1 s, e.g., “You said Category 1. Correct!” The fixation cross
then reappeared. In staircase sessions, the stimulus contrast was 35%. In test sessions, the contrast matched
the observer-specific levels chosen for testing blocks, in order to minimize obvious changes between training
and testing blocks. Each category training block had 2 sets of 36 trials (72 total). At the end of the block,
observers were shown the percentage of trials that they had correctly categorized.

2.3.5 Category/attention training

To familiarize observers with the attention task before the testing-with-staircase blocks, they completed
category/attention training. Observers performed the attention task, reporting only category choice. To
prevent observers from forming a simple mapping of orientation measurement and attention condition onto
the probability of category 1 (which might have biased behavior towards the Bayesian model), we withheld
trial-to-trial feedback on this and all other types of attention blocks. The precue indicating which location(s)
to attend to appeared for 300 ms, followed by a 300 ms period in which a standard fixation cross was shown.
Then the four drifting Gabor stimuli were displayed for 300 ms. After another 300 ms period with a fixation
cross, the response cue appeared, indicating which stimulus to report. The response cue remained on the
screen until the observer pressed one of the two choice response buttons, with no time pressure. Observers
were free to blink or rest briefly between trials, with a minimum intertrial interval of 800 ms. All attention
conditions were randomly intermixed. The stimulus contrast was 35%, as in staircase session category
training. The block had 36 trials in the first session and 30 trials in subsequent sessions. At the end of the
block, observers were shown the percentage of trials they had correctly categorized.

2.3.6 Category/attention testing-with-staircase

The purpose of this block was to determine the stimulus contrast for each observer that would be used
in the test sessions. The trial procedure was identical to that of category/attention training, except that
stimulus presentation time was 80 ms (instead of 300 ms) and stimulus contrast varied. We used an adaptive
staircase procedure to determine the stimulus contrast on each trial and estimate psychometric functions
for performance accuracy as a function of log contrast. Separate staircases were used for valid, neutral, and
invalid conditions. We used Luigi Acerbi’s MATLAB (https://github.com/lacerbi/psybayes) implementation
of the PSI method by Kontsevich and Tyler 4, extended to include the lapse rate'®. The method generates a
posterior distribution over three parameters of the psychometric function: threshold p, slope o, and lapse rate
A. On each trial, it selects a stimulus intensity that maximizes the expected information gain by completion
of the trial. p (log contrast units) ranged from —6.5 to 0 and had a Gaussian prior distribution with mean
—2 and SD 1.2. log o ranged from —3 to 0, and had a uniform prior distribution across the range. A ranged
from 0.15 (because the maximum accuracy in the task was slightly below 1 — 0.15) to 0.5, and had a Beta
prior distribution with shape parameters a = 20 and 8 = 39. Each block had 4 sets of 36 trials (144 total).
At the end of the block, observers were shown the percentage of trials that they had correctly categorized.


https://github.com/lacerbi/psybayes

2.3.7 Observer pre-screening and contrast selection

Simulations we conducted before starting the study showed that without a sufficiently large noise (related
to accuracy) difference between valid and invalid trials, our models would be indistinguishable. Therefore,
we used a pre-screening process to select observers with a robust attention effect to participate in the
main experiment. We also determined the stimulus contrast at which each observer’s attention effect was
maximal. This procedure increased the probability that uncertainty would depend on attention in the main
experiment, which was critical for answering our central question about decision behavior. Note that the
pre-screening procedure only concerned the overall accuracy difference between valid and invalid trials, which
is independent of how attention affects the decision rule.

After each observer’s final staircase session, we plotted and visually inspected the mean and SD of the
posterior over the 3 (valid, neutral, and invalid) estimated psychometric functions (an example is shown in
Figure S7). An observer was considered eligible for the remainder of the study if there existed a contrast
that satisfied two conditions. 1) Invalid accuracy was above chance: The mean minus the SD of the posterior
over invalid psychometric functions was above 0.5. 2) Valid accuracy was different from invalid accuracy:
The mean minus the SD of the posterior over valid psychometric functions was greater than the mean plus
1 SD of the posterior over invalid psychometric functions. For example, note that there is a range of values
in Figure S7 for which the purple shading does not overlap with the chance line or with the green shading.
Within the range of suitable contrasts, we selected the contrast for which the separation between valid,
neutral, and invalid performance appeared to be maximal. Observers for which no suitable contrast could
be found were not invited to participate in the main experiment. Selected contrasts ranged from 4% to 60%
across observers.

2.3.8 Confidence/attention training

To familiarize observers with the button mappings for choice and confidence, they completed confidence/attention
training. The trial procedure was identical to category/attention training, except observers reported their
confidence on each trial in addition to their category choice. Observers were not instructed to use the full
range of confidence reports, as that might have biased them away from reporting what felt most natural.
Instead, they were simply asked to be “as accurate as possible in reporting their confidence” on each trial.
Feedback about their choice and confidence report was presented for 1.2 s after each trial, e.g. “You said cat-
egory 2 with HIGH confidence.” The stimulus contrast was specific to each observer, based on the staircase
sessions. There were 30 trials per block.

2.3.9 Confidence/attention testing

These were the main experimental blocks. The trial procedure (Figure 1b) was the same as in confi-
dence/attention training blocks, but with no trial-to-trial feedback whatsoever. Each block had 4 sets of 36
trials (144 total). At the end of each block, observers were required to take a break of at least 30 s. During
the break, they were shown the percentage of trials that they had correctly categorized. Observers were also
shown a list of the top 10 block scores (across all observers, indicated by initials). This was intended to
motivate observers to perform well, and to reassure them that their scores were normal, since it is rare to
score above 75% on a block.



S3 Modeling

The modeling procedures were similar to those used by Adler and Ma®. Several modeling choices were
adopted based on model comparisons performed for that study. These included: having orientation-dependent
measurement noise; allowing all decision boundaries to be free parameters in the Bayesian model; including
decision noise in the Bayesian model; and modeling three types of lapse rates.

S3.1 Measurement noise

We used free parameters to characterize o, the standard deviation (SD) of orientation measurement noise,
for all three attention conditions: ovalid, Oneutral, a0d Tinvalid-

We assumed additive orientation-dependent noise in the form of a rectified 2-cycle sinusoid, accounting for the
finding that measurement noise is higher at noncardinal orientations'®. For a given trial i, the measurement
noise SD comes out to

. TS
0 = Oattention condition + 1/)’8111 % . (85)
The second term of this equation is a constant that depends on the stimulus orientation s, with 1 a free
parameter that determines the degree of orientation dependence.

S3.2 Response probability

We coded all responses as r € {1,2,...,8}, with each value indicating category and confidence. A value
of 1 mapped to high confidence category 1, and a value of 8 mapped to high confidence category 2, as in
Figure 1b. The probability of a single trial 7 is equal to the probability mass of the internal measurement
distribution p(z | s;) = N(x;s;,0?) in a range corresponding to the observer’s response r;. Because we only
use a small range of orientations, we can safely approximate measurement noise as a normal distribution,
rather than a von Mises distribution. We find the boundaries (b,,—1(0;), by,(0;)) in measurement space, as
defined by the fitting model m and parameters 6, and then compute the probability mass of the measurement
distribution between the boundaries:

—br,—1 br;

Pm.o(Ti | siy0i) = / N (z;s;,02)de + N (z; 84, 07) de, (S6)

—b, by -1

o]

where by = 0° and bg = °.

To obtain the log likelihood of the dataset, given a model with parameters 6, we compute the sum of the log
probability for every trial i, where ¢ is the total number of trials:

t t
logp(data | 0) = > "logp(r; | 0) = > logps(ri | si,0:). (S7)
=1

i=1



S3.3 Model specification

3.3.1 DBayesian

Derivation of d. The log posterior ratio d is equivalent to the log likelihood ratio plus an additive term
representing the prior probability over category:

pz|C=1) p(C=1)
=) + log =2 (S8)

To get d, we need to find the expressions for the orientation measurement likelihood p(z | C'). The observer
knows that the measurement x is caused by the stimulus s, but has no knowledge of s. Therefore, the optimal
observer marginalizes over s:

p(z | C) = / p(z | $)p(s | C)ds. (59)

We substitute the expressions for the noise distribution and the stimulus distribution, and evaluate the
integral:

plz | C) = /N(s;x, o N (s; pc, 08) ds = N (x; pe, o + o2). (S10)

Plugging in the category-specific uc and o¢, and substituting these expressions back into Equation S8, we
get:
1, 0?4032 o3 — o} (C =

1)
d= =1 = 2 log B2 =/ s11
98 02 + o} 2(02+0%)(02+J§)x * ng(Cz?) (S11)

The 8 possible category and confidence responses are determined by comparing the log posterior ratio d to
a set of decision boundaries (ko, k1, ..., ks). k4 is equal to the observer’s believed log prior ratio log gggzg,
which functions as the boundary on d between the 4 category 1 responses and the 4 category 2 responses
and is fit to capture possible category bias. k4 is the only boundary parameter in models of category choice
only (and not confidence). ko is fixed at —oo and ks is fixed at co. The observer chooses category 1 when d

is positive. Thus there were 7 free boundary parameters: (ki, ka,...,k7) = k.

The posterior probability of category 1 can be written as as p(C =1 | z) = m.

Decision boundaries. In the Bayesian models with d noise, we assume that, for each trial, there is an added
Gaussian noise term on d, 1g ~ p(n4), where p(ns) = N'(0,02), and o4 is a free parameter. We pre-computed
101 evenly spaced draws of n; and their corresponding probability densities p(74). We used Equation S11
to compute a lookup table containing the values of d as a function of x, o, and 7. We then used linear
interpolation to find sets of measurement boundaries b(c) corresponding to each draw of 74'7. We then
computed 101 response probabilities for each trial (as described in Section S3.2), one for each draw of ng,
and computed the weighted average according to p(r4). This gave the values of py, g(r; | $i, 0;) for each trial
1, which are needed in order to compute the total log likelihood of the dataset under the model.

In the Bayesian choice model without d noise, we translate the decision boundary k4 from a log prior ratio
to a measurement boundary corresponding to the fitted noise levels . To do this, we use k4 as the left-hand
side of Equation S11 and solve for = at the fitted levels of 0. We used this model only for the purpose of
obtaining estimates of the category decision boundary parameters, and not for model comparison.

10



3.3.2 Fixed

In the Fixed model, the observer compares the measurement to a set of boundaries that are not dependent
on o. We fit free parameters k and use measurement boundaries b, = k..

3.3.3 Linear and Quadratic

In the Linear and Quadratic models, the observer compares the measurement to a set of boundaries that
are linear or quadratic functions of 0. We fit free parameters k and m and use measurement boundaries
b.(0) = k. + m,o (Linear) or b.(c) = k. + m,0? (Quadratic).

3.3.4 Free

To estimate the category boundaries with minimal assumptions, we fit a Free model in which the observer
compares the orientation measurement to a set of boundaries that vary nonparametrically (i.e., free of a
parametric relationship with o) across attention conditions. As with the Bayesian choice model without
d noise (Section S3.3.1), we used this model only for the purpose of obtaining estimates of the category
decision boundary parameters and did not fit confidence. We fit free parameters k4 valid, k4, neutral, K4,invalid,
and used measurement boundaries b4,attention condition = k4,attention condition-

S3.4 Lapse rates

In category and confidence models, we fit three different types of lapse rate. On each trial, there is some
fitted probability of:

e A “full lapse” in which the category report is random, and confidence report is chosen from a distri-
bution over the four levels defined by A1, the probability of a “very low confidence” response, and A4,
the probability of a “very high confidence” response, with linear interpolation for the two intermediate
levels.

e A “confidence lapse” Aconfidence i Which the category report is chosen normally, but the confidence
report is chosen from a uniform distribution over the four levels.

o A “repeat lapse” Aepeat in which the category and confidence response is simply repeated from the
previous trial.

In category choice models, we fit a standard category lapse rate A, as well the above “repeat lapse” Arepeat-

S3.5 Parameterization

All parameters that defined the width of a distribution (oyalid, Gneutral, Tinvalid, 0d) Were sampled in log-space
and exponentiated during the computation of the log likelihood. See Table S1 for a complete list of model
parameters for category choice and confidence models and Table S3 for choice-only models.
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S3.6 Model fitting

Rather than find a maximum likelihood estimate of the parameters, we sampled from the posterior distribu-
tion over parameters, p(f | data); this has the advantage of maintaining a measure of uncertainty about the
parameters, which can be used both for model comparison and for plotting model fits. To sample from the
posterior, we use an expression for the log posterior

log p(0 | data) = log p(data | ) 4+ log p(6) + constant, (S12)

where log p(data | 6) is given in Equation S7. We assumed a factorized prior over each parameter j:
logp(0) = logp(0;), (S13)
j=1

where j is the parameter index and n is the number of parameters. We took uniform (or, for parameters
that were standard deviations, log-uniform) priors over reasonable, sufficiently large ranges'”, which we
chose before fitting any models.

We sampled from the probability distribution using a Markov Chain Monte Carlo (MCMC) method, slice
sampling'®. For each model and dataset combination, we ran between 4 and 10 parallel chains with random
starting points. For each chain, we took 100,000 to 1,000,000 total samples (depending on model computa-
tional time) from the posterior distribution over parameters. We discarded the first third of the samples and
kept 6,667 of the remaining samples, evenly spaced to reduce autocorrelation. All samples with log posteriors
more than 40 below the maximum log posterior were discarded. Marginal probability distributions of the
sample log likelihoods were visually checked for convergence across chains. In total we had 120 model and
dataset combinations, with a median of 40,002 kept samples (interquartile range = 13,334).

S3.7 Model comparison

3.7.1 Metric choice

To compare model fits while accounting for the complexity of each model, we computed an approximation of
leave-one-out cross-validation. Leave-one-out cross-validation is the most thorough way to cross-validate but
is very computationally intensive; it requires fitting the model ¢ times, where ¢ is the number of trials. The
Pareto smoothed importance sampling approximation of leave-one-out cross-validation (PSIS-LOO, referred
to here simply as LOO) takes into account the model’s uncertainty landscape by using samples from the full
posterior of §19.

LOO is currently the most accurate approximation of leave-one-out cross-validation2°.

We determined that our results were not dependent on our choice of model comparison metric. We computed
AIC, BIC, AICc, WAIC?!, and LOO for all models in the 2 model groupings (category choice-plus-confidence
and category choice-only), multiplying the non-LOO metrics by f% to match the scale of LOO. For AIC,
BIC, and AICc, we selected the MCMC sample with the highest log likelihood as our maximum-likelihood
parameter estimate. Then we computed Spearman’s rank correlation coefficient for every possible pairwise
comparison of model comparison metrics for all model and dataset combinations, producing 20 total values
(2 model groupings x 10 possible pairwise comparisons of model comparison metrics). All values were
greater than 0.998, indicating that, had we used an information criterion instead of LOO, we would not
have changed our conclusions. Furthermore, there are no model groupings in which the identities of the
lowest- and highest-ranked models are dependent on the choice of metric. The agreement of these metrics
strengthens our confidence in our conclusions.
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3.7.2 Metric aggregation

In all figures where we present model comparison results (Figures 3d, S3c, S5b), we aggregate LOO
scores by the following procedure: Choose a reference model (e.g. Fixed). Subtract all LOO scores from the
corresponding observer’s score for that model; this converts all scores to a LOO “difference from reference”
score, with lower (more negative) indicating a better score and higher (more positive) indicating a worse
score. Repeat the following standard bootstrap procedure 10,000 times: Choose randomly, with replacement,
a group of datasets equal to the total number of unique datasets, and take the mean of their “difference
from reference” scores for each model. Blue lines and shaded regions in model comparison plots indicate the
median and 95% CI on the distribution of these bootstrapped mean “difference from reference” scores.

S3.8 Visualization of model fits

Model fits were plotted by bootstrapping synthetic group datasets with the following procedure: For each
model and observer, we generated 20 synthetic datasets, each using a different set of parameters sampled,
without replacement, from the posterior distribution of parameters. Each synthetic dataset was generated
using the same stimuli as the ones presented to the real observer. We randomly selected a number of
synthetic datasets equal to the number of observers to create a synthetic group dataset. For each synthetic
group dataset, we computed the mean response per orientation bin. We then repeated this 1,000 times and
computed the mean and standard deviation of the mean output per bin across all 1,000 synthetic group
datasets, which we then plotted as the shaded regions. Therefore, shaded regions represent the mean 41
SEM of synthetic group datasets.

For plots with stimulus orientation on the horizontal axis (Figures 2b, 3c, S3b, S5a), orientation was
binned according to quantiles of the stimulus distributions so that each point consisted of roughly the same
number of trials. We took the overall stimulus distribution p(s) = % (p(s | C = 1) + p(s | C' = 2)) and found
bin edges such that the probability mass of p(s) was the same in each bin. We then plotted the binned data
with linear spacing on the horizontal axis.

S3.9 Model recovery analysis

We performed a model recovery analysis?? to test our ability to distinguish our choice and confidence models.
We generated synthetic datasets from each model, using the same sets of stimuli that were originally randomly
generated for each of the 12 observers. To ensure that the statistics of the generated responses were similar
to those of the observers, we generated responses to these stimuli from 8 of the randomly chosen parameter
estimates obtained via MCMC sampling (as described in Section S3.6) for each observer and model.
In total, we generated 384 datasets (4 generating models x 12 observers x 8 datasets). We then fit all
four models to every dataset, using maximum likelihood estimation (MLE) of parameters by an interior-
point constrained optimization (MATLAB’s fmincon), and computed AIC scores from the resulting fits. For
reasons of computational tractability, we used AIC instead of LOO as the model comparison metric. Because
AIC and LOO scores gave us near-identical model rankings for data from real subjects (Section S3.7.1),
we do not believe that the model recovery results are dependent on choice of metric.

We found that the true generating model was the best-fitting model, on average, in all cases (Figure S4).
Overall, AIC “selected” the correct model (i.e., AIC scores were lowest for the model that generated the
data) for 87.5% of the datasets, indicating that our models are distinguishable.
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Figure S2: The Bayesian mapping from orientation measurement and attention-dependent uncertainty to response. Colors
correspond to category and confidence response as in Figure 1b. (a) Blue and red curves show likelihood functions for the
category distributions under example levels of uncertainty. (b) The Bayesian model maps measurement and uncertainty
onto the decision variable, the log likelihood ratio (black curve). When the relative likelihood of category 1 is high, the
decision variable is large and positive; when the relative likelihood of category 2 is high, it is large and negative. Response is
determined by comparing the decision variable to boundaries that are fixed in log-likelihood-ratio space, but in measurement

space vary as a function of uncertainty.
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Figure S3: Category and confidence models. (a) Theoretical relation between orientation uncertainty and category and
confidence decision boundaries for all models. (b) Mean response as a function of orientation and cue validity, as in
Figure 3c. Stimulus orientation is binned to approximately equate the number of trials per bin. (c) Model comparison.
Black bars represent individual observer LOO score differences of each model from Fixed. Negative values indicate that
the corresponding model had a higher (better) LOO score than Fixed. Blue line and shaded region show median and 95%
confidence interval of bootstrapped mean LOQ differences across observers.
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Figure S5: Category choice-only models. (a) Proportion of category 1 responses as a function of orientation and cue
validity. Error bars show mean and SEM across observers. Shaded regions are mean and SEM of model fits (Section
$3.8). Stimulus orientation is binned to approximately equate the number of trials per bin. (b) LOO model comparison,
as in Figure S3c. (c) Mean MCMC orientation uncertainty and category choice boundary parameter estimates for a
representative observer. Estimates are plotted as a function of attention condition (valid, neutral, invalid; filled circles),
along with their generating functions (curves), for the four main models fit to the category choice data only, plus a Bayesian
model with no noise on the decision variable d and a nonparametric model in which choice boundaries are unconstrained
(Free; parameter estimates from this model are plotted in gray for all subjects in Figure 4). The Bayesian curve is to
the left of the other curves, because noise attributed to orientation uncertainty in the other models is partially attributed
to decision noise in the Bayesian model; when the decision noise parameter is removed (Bayesian, no d noise), the curve
aligns with the others.
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Supplementary Tables

Fixed ‘ Bayesian ‘ Linear ‘ Quadratic

Measurement noise

Ovalidy Oneutral; Tinvalid

Orientation-dependent noise

Y

Decision boundaries

ki_7 ki_7, mi_7

d noise

04

Lapse rates

/\17 >\47 Aconﬁdencea )\repeat

Total number of parameters 15 ‘ 16 ‘ 22 22
Table S1: Parameters of category choice and confidence decision models.
15 pars. 16 pars. 22 pars.
Fixed Bayesian Linear
22 pars. Quadratic | 129 [65,198] 27 [0,53] 5 [—18,28]
22 pars. Linear 124 [77,177) 21 [-3,48]
16 pars. Bayesian | 102 [45,167]

Table S2: Cross comparison of all category choice and confidence decision models. Cells indicate medians and 95% Cl of
bootstrapped mean LOO score differences. A positive median indicates that the model in the corresponding row had a

higher score (better fit) than the model in the corresponding column.

Bayesian,
no d noise*

Fixed | Bayesian

Linear | Quadratic

Free*

Measurement noise

Ovalidy Oneutral; Tinvalid

Orientation-dependent noise P

Decision boundaries k ‘ k, m ‘ kvalid; Kneutral, Kinvalid
d noise ‘ o7 \

Lapse rates A, Arepeat

Total number of parameters 7 ‘ 8 ‘ 7 ‘ 8 ‘ 8 ‘ 9

Table S3: Parameters of category choice-only decision models.
parameter estimates (Figures 4, S5c), and not for model comparison.

7 pars. 8 pars. 8 pars.
Fixed Bayesian Linear
8 pars. Quadratic | 11 [5,18] 2[-2,9] 0]-2,3]
8 pars. Linear 11 [4,19] 2 [-3,10]
8 pars. Bayesian | 9 [-2,18]

* indicates models that were used only for obtaining

Table S4: Cross comparison of all category choice-only decision models. Conventions as in Table S2.
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