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Abstract

The precision of multisensory perception improves when cues arising from the same cause

are integrated, such as visual and vestibular heading cues for an observer moving through a

stationary environment. In order to determine how the cues should be processed, the brain

must infer the causal relationship underlying the multisensory cues. In heading perception,

however, it is unclear whether observers follow the Bayesian strategy, a simpler non-Bayes-

ian heuristic, or even perform causal inference at all. We developed an efficient and robust

computational framework to perform Bayesian model comparison of causal inference strate-

gies, which incorporates a number of alternative assumptions about the observers. With this

framework, we investigated whether human observers’ performance in an explicit cause

attribution and an implicit heading discrimination task can be modeled as a causal inference

process. In the explicit causal inference task, all subjects accounted for cue disparity when

reporting judgments of common cause, although not necessarily all in a Bayesian fashion.

By contrast, but in agreement with previous findings, data from the heading discrimination

task only could not rule out that several of the same observers were adopting a forced-fusion

strategy, whereby cues are integrated regardless of disparity. Only when we combined evi-

dence from both tasks we were able to rule out forced-fusion in the heading discrimination

task. Crucially, findings were robust across a number of variants of models and analyses.

Our results demonstrate that our proposed computational framework allows researchers to

ask complex questions within a rigorous Bayesian framework that accounts for parameter

and model uncertainty.

Author summary

As we interact with objects and people in the environment, we are constantly exposed to

numerous sensory stimuli. For safe navigation and meaningful interaction with entities in
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the environment, our brain must determine if the sensory inputs arose from a common or

different causes in order to determine whether they should be integrated into a unified

percept. However, how our brain performs such a causal inference process is not well

understood, partly due to the lack of computational tools that can address the complex

repertoire of assumptions required for modeling human perception. We have developed a

set of computational algorithms that characterize the causal inference process within a

quantitative model based framework. We have tested the efficacy of our methods in pre-

dicting how human observers judge visual-vestibular heading. Specifically, our algorithms

perform rigorous comparison of alternative models of causal inference that encompass a

wide repertoire of assumptions observers may have about their internal noise or stimulus

statistics. Importantly, our tools are widely applicable to modeling other processes that

characterize perception.

Introduction

We constantly interact with people and objects around us. As a consequence, our brain

receives information from multiple senses as well as multiple inputs from the same sense. Cues

from the same sense (e.g., texture and disparity cues to an object shape) are generally congru-

ent as they usually reflect identical properties of a common external entity. Thus, the brain

eventually learns to mandatorily integrate inputs from the same modality as a unified percept,

which provides more precise information than either cue alone [1, 2]. Similarly, integration of

cues represented in different modalities but associated with a common stimulus also improves

perceptual behavior. There is a wealth of evidence that demonstrates increased precision [3–

12], greater accuracy [13, 14] and faster speed [15, 16] of perceptual performance due to multi-

modal integration.

However, multimodal cues present a complex problem. Cues from different modalities are

not necessarily congruent as different stimuli can simultaneously impinge on our senses, giv-

ing rise to coincident yet conflicting information. For example, in a classic ventriloquist illu-

sion, even though the sound originates from the puppeteer’s mouth, we perceive that it is the

puppet which is talking [17]. Mandatory integration of multimodal cues arising from different

stimuli can induce errors in perceptual estimates [6, 14]. Thus, for efficient interaction with

the world, the brain must assess whether the multimodal cues originated from the same cause,

and should be integrated into a single percept, or instead the cues should be interpreted in

isolation as they arose from different causes (segregation). Despite the often overwhelming

amount of sensory inputs, we are typically able to integrate relevant cues while ignoring irrele-

vant sensory input. It is thus plausible that our brain infers the causal relationship between

multisensory cues to determine if and how the cues should be integrated.

Bayesian causal inference—inference of the causal relationship between observed cues,

based on the inversion of the statistical model of the task—has been proposed as the decision

strategy adopted by the brain to address the problem of integration vs. segregation of sensory

cues [18, 19]. Such a decision strategy has described human performance in spatial localization

[18–27], orientation judgment [28], oddity detection [29], speech perception [30], time-inter-

val perception [31], simple perceptual organization [32], and heading perception [33, 34]. In

recent years, interest in the Bayesian approach to causal inference has further increased as neu-

ral imaging has identified a hierarchy of brain areas involved in neural processing while

observers implemented a Bayesian strategy to perform a causal inference task [20]. At the

same time, Bayesian models have become more complex as they include more precise
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descriptions of the sensory noise [22, 33, 34] and alternative Bayesian decision strategies [21,

24]. However, it is still unknown whether observers fully implement Bayesian causal inference,

or merely an approximation that does not take into account the full statistical structure of the

task. For example, the Bayes-optimal inference strategy ought to incorporate sensory uncer-

tainty into its decision rule. On the other hand, a suboptimal heuristic decision rule may disre-

gard sensory uncertainty [32, 35, 36]. Thus, the growing complexity of models and the need to

consider alternative hypotheses require an efficient computational framework to address these

open questions while avoiding trappings such as overfitting or lack of model identifiability

[37]. For a more detailed overview of open issues in multisensory perception and causal infer-

ence at the intersection of behavior, neurophysiology and computational modeling, we refer

the reader to [38–40].

Visuo-vestibular integration in heading perception

Visuo-vestibular integration in heading perception presents an ideal case to characterize the

details of the causal inference strategy in multisensory perception. While a wealth of published

studies have shown that integration of visual and vestibular self-motion cues increases percep-

tual precision [9–12, 14, 41–43], and accuracy [14], such an integration only makes sense if the

two cues arise from the same cause—that is optic flow and inertial motion signal heading in

the same direction. Despite the putative relevance of causal inference in heading perception,

the inference strategies that characterize visuo-vestibular integration in the presence of sensory

conflict remain poorly understood. For example, a recent study has found that observers pre-

dominantly integrated visual and vestibular cues even in the presence of large spatial discrep-

ancies [33]—whereas a subsequent work has presented evidence in favor of causal inference

[34]. Furthermore, these studies did not vary cue reliability—a manipulation that is critical to

test whether a Bayes-optimal inference strategy or a suboptimal approximation was used [35].

Another aspect that can influence the choice of inference strategy is the type of inference

performed by the observer. In particular, de Winkel and colleagues [33, 34] asked subjects to

indicate the perceived direction of inertial heading—an ‘implicit’ causal inference task as sub-

jects implicitly assessed the causal relationship between visual and vestibular cues on their way

to indicate the final (integrated or segregated) heading percept. Even in the presence of spatial

disparities as high as 90˚, one study found that several subjects were best described by a model

which fully integrated visual and vestibular cues [33] (possibly influenced by the experimental

design; see also [34]). It is plausible that performing an explicit causal inference task, which

forces subjects to indicate whether visual and vestibular cues arose from the same or different

events, may elicit different inference strategies, as previously reported in category-based induc-

tion [44], multi-cue judgment [45], and sensorimotor decision-making [46]. While some stud-

ies have tested both explicit and implicit causal inference [18, 21, 47], to our knowledge only

one previous study contemplated the possibility of different strategies between implicit and

explicit causal inference tasks [21], and a systematic comparison of inference strategies in the

two tasks has never been carried out within a larger computational framework.

Bayesian comparison of causal inference strategies

Thus, the goal of this work is two-fold. First, we introduce a set of techniques to perform

robust, efficient Bayesian factorial model comparison of a variety of Bayesian and non-Bayes-

ian models of causal inference in multisensory perception. Factorial comparison is a way to

simultaneously test different orthogonal hypotheses about the observers [21, 48–50]. Our

approach is fully Bayesian in that we consider both parameter and model uncertainty, improv-

ing over previous analyses which used point estimates for the parameters and compared
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individual models. A full account of uncertainty in both parameter and model space, by mar-

ginalizing over parameters and model components, is particularly prudent when dealing with

internal processes, such as decision strategies, which may have different latent explanations.

An analysis that disregards such uncertainty might produce unwarranted conclusions about

the internal processes that generated the observed behavior [37]. Second, we demonstrate our

methods by quantitatively comparing the decision strategies underlying explicit and implicit

causal inference in visuo-vestibular heading perception within the framework of Bayesian

model comparison. We found that even though the study of explicit and implicit causal infer-

ence in isolation might suggest different inference rules, a joint analysis that combines all avail-

able evidence points to no difference between tasks, with subjects performing some form of

causal inference in both the explicit and implicit tasks that used identical experimental setups.

In sum, we demonstrate how state-of-the-art techniques for model building, fitting, and

comparison, combined with advanced analysis tools, allow us to ask nuanced questions about

the observer’s decision strategies in causal inference. Importantly, these methods come with a

number of diagnostics, sanity checks and a rigorous quantification of uncertainty that allow

the experimenter to be explicit about the weight of evidence.

Results

Computational framework

We compiled a diverse set of computational techniques to perform robust Bayesian compari-

son of models of causal inference in multisensory perception, which we dub the ‘Bayesian

cookbook for causal inference in multisensory perception’, or herein simply ‘the cookbook’.

The main goal of the cookbook is to characterize observers’ decision strategies underlying

causal inference, and possibly other details thereof, within a rigorous Bayesian framework that

accounts for both parameter uncertainty and model uncertainty. The cookbook is ‘doubly-

Bayesian’ in that it affords a fully Bayesian analysis of observers who may or may not be per-

forming Bayesian inference themselves [51]. Fully Bayesian model comparison is computa-

tionally intensive, hence the cookbook is concerned with efficient algorithmic solutions.

The cookbook comprises of: (a) a fairly general recipe for building observer models for

causal inference in multisensory perception (see Methods and Section 1 of S1 Appendix),

which lends itself to a factorial model comparison; (b) techniques for fast evaluation of a large

number of causal inference observer models; (c) procedures for model fitting via maximum

likelihood, and approximating the Bayesian posterior of the parameters via Markov Chain

Monte Carlo (MCMC); (d) state-of-the-art methods to compute model comparison metrics

and perform factorial model selection. It is noteworthy that, while the current work focuses on

the example of visuo-vestibular heading perception, this cookbook is general and can be

applied with minor modifications to multisensory perception across sensory domains.

Computational details are described in the Methods section and S1 Appendix. Here we present

an application of our framework to causal inference in multisensory heading perception. For

ease of reference, we summarize relevant abbreviations used in the paper and their meaning in

Table 1.

Causal inference in heading perception

We demonstrate our framework taking as a case study the comparison of explicit vs. implicit

causal inference strategies in heading perception. In this section we briefly summarize our

methods. Extended details and description of the cookbook can be found in the Methods and

S1 Appendix.

Bayesian comparison of causal inference strategies in heading perception
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Experiments. Human observers were presented with synchronous visual (svis) and vestib-

ular (svest) headings in the same direction (C = 1) or in different directions (C = 2) separated by

a directional disparity Δ (Fig 1A). Mean stimulus direction (−25˚, −20˚, −15˚,. . .,25˚), cue dis-

parity (0˚, ±5˚, ±10˚, ±20˚, and ±40˚), and visual cue reliability cvis (coherence: high, medium

and low) changed randomly on a trial-by-trial basis (Fig 1B). On each trial, non-zero disparity

was either positive (vestibular heading to the right of visual heading) or negative. Observers

(n = 11) first performed several sessions of an explicit causal inference task (‘unity judgment’),

in which they indicated if the visual and vestibular stimuli signaled heading in the same direc-

tion (‘common cause’) or in different directions (‘different causes’). The same observers then

participated in a number of sessions of the implicit causal inference task (‘inertial left/right dis-

crimination’) wherein they indicated if their perceived inertial heading (vestibular) was to the

left or right of straight forward. Both tasks consisted of a binary classification (same/different

or left/right) with identical experimental apparatus and stimuli. No feedback was given to

subjects about the correctness of their response. All observers also performed a number of

practice trials and an initial session of a ‘unisensory left/right discrimination’ task in which

they reported heading direction (left or right of straight forward) of visual or vestibular stimuli

presented in isolation. For each subject we obtained 350–750 trials of the unisensory discrimi-

nation task (1 session), 700-1200 trials of the unity judgment task (2-3 sessions), and 2100-

3000 trials of the inertial discrimination task (7-9 sessions).

Table 1. Abbreviations and symbols.

Abbreviation Meaning Context

General

Δ Directional disparity between stimuli Generative model

svis, svest Visual / vestibular heading Generative model

xvis, xvest Noisy measurement of visual / vestibular heading Generative model

C Causal scenario (C = 1 for ‘same’, C = 2 for ‘different’) Generative model

cvis Visual coherence level (low, medium, or high) Generative model

pc Probability of common cause (Bayesian model) Observer model

κc Criterion for common cause (fixed-criterion model) Observer model

Model factors

Bay Bayesian strategy Causal inference strategy

Fix Fixed-criterion strategy Causal inference strategy

Fus Fusion strategy Causal inference strategy

-C Constant noise Sensory noise shape

-X Eccentricity-dependent noise Sensory noise shape

-E Empirical prior Prior type

-I Independent priors Prior type

Model fitting and comparison

AIC(c) (corrected) Akaike’s Information Criterion Model comparison metric

BIC Bayesian Information Criterion Model comparison metric

LML Log marginal likelihood Model comparison metric

LOO Leave-one-out Model comparison metric

MCMC Markov Chain Monte Carlo Model fitting technique

~φ Protected exceedance probability Bayesian model selection statistic

BOR Bayesian Omnibus Risk Bayesian model selection statistic

List of abbreviations and symbols used in the paper, with associated description and usage context.

https://doi.org/10.1371/journal.pcbi.1006110.t001
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Theory. For each task we built a set of observer models by factorially combining three

model components—hence also called model factors—that represent different assumptions

about the observers: shape of sensory noise, type of prior over stimuli, and causal inference

strategy (Fig 2A).

In each trial of the explicit and implicit causal inference tasks, two stimuli are presented: a

visual heading svis with known reliability cvis 2 {high, medium, low}, and a vestibular heading

svest. We assume that stimuli svis, svest induce noisy measurements xvis (resp., xvest) with condi-

tionally independent distributions p(xvis|svis, cvis) and p(xvest|svest). For any stimulus s we

assume that the noise distribution is a (wrapped) Gaussian centered on s and with variance

σ2(s). For each observer model we consider a variant in which σ2 depends only on the stimulus

modality and reliability (constant, ‘C’) and a variant in which σ2(s) also depends on stimulus

location, growing with heading eccentricity, that is with the distance from 0˚ (eccentricity-
dependent, ‘X’; see Methods). With a few notable exceptions [22, 33, 34], stimulus-dependence

in the noise has been generally ignored in previous work [18, 20, 21, 24, 27]. The base noise

magnitude is governed by model parameters σ0vest and σ0vis(cvis), where the latter is one param-

eter per visual reliability level. The eccentricity-dependent noise model has additional parame-

ters wvest and wvis which govern the growth of noise with heading eccentricity (see Methods

and S1 Appendix for details). We assume that the noise distribution equally affects both the

generative model and the observer’s decision model, that is, observers have an approximately

correct model of their own sensory noise [4, 6, 9].

We assume that the observer considers two causal scenarios [18]: either there is a single

common heading direction (C = 1) or the two stimuli correspond to distinct headings (C = 2)

[18] (Fig 2B). If C = 1, the observer believes that the measurements are generated from the

same underlying source s with prior distribution pprior(s). If C = 2, stimuli are believed to be

distinct, but not necessarily statistically independent, with prior distribution pprior(svis, svest).

For the type of these priors, we consider an empirical (‘E’) observer whose priors correspond

to an approximation of the discrete, correlated distribution of stimuli in the task (as per

Fig 1. Experiment layout. A: Subjects were presented with visual (svis) and vestibular (svis) headings either in the same direction (C = 1) or in different

directions (C = 2). In different sessions, subjects were asked to judge whether stimuli had the same cause (‘unity judgment’, explicit causal inference) or

whether the vestibular heading was to the left or right of straight forward (‘inertial discrimination’, implicit causal inference). B: Distribution of stimuli

used in the task. Mean stimulus direction was drawn from a discrete uniform distribution (−25˚, −20˚, −15˚,. . .,25˚). In 20% of the trials, svis� svest

(‘same’ trials, C = 1); in the other 80% (‘different’, C = 2), disparity was drawn from a discrete uniform distribution (±5˚, ±10˚, ±20˚, ±40˚), which led to

a correlated pattern of heading directions svis and svest. Visual cue reliability cvis was also drawn randomly on each trial (high, medium, and low).

https://doi.org/10.1371/journal.pcbi.1006110.g001
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Fig 1B); and an independent (‘I’) observer who uses a common and independent uni-dimen-

sional Gaussian prior centered on 0˚ for the two stimuli.

Parameter σprior represents the SD of each independent prior (for ‘I’ priors), or of the prior

over mean stimulus direction (for ‘E’ priors); whereas Δprior governs the SD of the prior over

disparity (‘E’ priors only). See Methods for details.

We assume that observers are Bayesian in dealing with each causal scenario (C = 1 or

C = 2), but may follow different strategies for weighting and combining information from the

two causal hypotheses. Specifically, we consider three families of causal inference strategies.

The Bayesian (‘Bay’) strategy computes the posterior probability of each causal scenario

Pr(C|xvis, xvest, cvis) based on all information available in the trial. The fixed-criterion (‘Fix’)

Fig 2. Observer models. A: Observer models consist of three model factors: Causal inference strategy, Shape of sensory noise, and Type of prior over

stimuli (see text). B: Graphical representation of the observer model. In the left panel (C = 1), the visual (svis) and vestibular (svest) heading direction

have a single, common cause. In the right panel (C = 2), svis and svest have separate sources, although not necessarily statistically independent. The

observer has access to noisy sensory measurements xvis, xvest, and knows the visual reliability level of the trial cvis. The observer is either asked to infer

the causal structure (unity judgment, explicit causal inference), or whether the vestibular stimulus is rightward of straight ahead (inertial discrimination,

implicit causal inference). Model factors affect different stages of the observer model: the strategy used to combine the two causal scenarios; the type of

prior over stimuli pprior(svis, svest|C); and the shape of sensory noise distributions p(xvis|svis, cvis) and p(xvest|svest) (which affects equally both how noisy

measurements are generated and the observer’s beliefs about such noise). C: Example decision boundaries for the Bay-X-E model (for the three

reliability levels), and for the Fix model, for a representative observer. The observer reports ‘unity’ when the noisy measurements xvis, xvest fall within the

boundaries. Note that the Bayesian decision boundaries expand with larger noise. Nonlinearities are due to the interaction between eccentricity-

dependence of the noise and the prior (wiggles are due to the discrete empirical prior).

https://doi.org/10.1371/journal.pcbi.1006110.g002
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strategy decides based on a fixed threshold of disparity between the noisy visual and vestibular

measurements, disregarding reliability and other statistics of the stimuli. Finally, the fusion

(‘Fus’) strategy disregards any location information, either always combining cues, or combin-

ing them with some probability (depending on whether the task involves implicit or explicit

causal inference).

In the explicit causal inference task, the Bayesian (‘Bay’) observer reports a common cause

if its posterior probability is greater than 0.5, Pr(C = 1|xvis, xvest, cvis)> 0.5. The prior probabil-

ity of common cause, pc� Pr(C = 1), is a free parameter of the model. The fixed-criterion

(‘Fix’) observer reports a common cause whenever the two noisy measurements are closer

than a fixed distance κc, that is |xvis − xvest|< κc, where the criterion κc is a free parameter that

does not depend on stimulus reliability [36]. The fixed-criterion decision rule differs funda-

mentally from the Bayesian one in that it does not take cue reliability and other stimulus statis-

tics into account (although noise will still affect behavior). As an example, Fig 2C shows the

decision boundaries for the Bayesian (constant noise, empirical prior) and fixed-criterion rule

for a representative observer. Finally, as a variant of the ‘fusion’ strategy we consider an

observer that does not perform causal inference at all, but simply reports unity with probability

η(cvis) regardless of stimulus disparity, where ηlow, ηmed, ηhigh are the only parameters of the

model (stochastic fusion, ‘SFu’). This variant generalizes a trivial ‘forced fusion’ strategy (η� 1)

that would always report a common cause in the explicit inference.

For the implicit causal inference task, the observer first computes the posterior probability

of rightward vestibular motion, Pr(svest > 0˚|xvest, xvis, cvis, C = k) for the two causal scenarios,

k = 1, 2. The Bayesian (‘Bay’) observer then reports ‘right’ if the posterior probability of right-

ward vestibular heading, averaged over the Bayesian posterior over causal structures, is greater

than 0.5. The fixed-criterion (‘Fix’) observer reports ‘right’ if Pr(svest > 0˚|xvest, xvis, cvis, C =

kfix)> 0.5, where kfix = 1 if |xvis − xvest|< κc, and kfix = 2 otherwise. Finally, for the Fusion strat-

egy we consider here the forced fusion (‘FFu’) observer, for which C� 1. The forced fusion

observer is equivalent to a Bayesian observer with pc� 1, and to a fixed-criterion observer for

κc!1.

Observers also performed a unisensory left/right heading discrimination task, in which

either a visual or vestibular heading was presented on each trial. In this case observers were

modeled as standard Bayesian observers that respond ‘right’ if Pr(svis > 0˚|xvis, cvis)> 0.5 for

visual trials, and if Pr(svest > 0˚|xvest)> 0.5 for vestibular trials. These data were used to con-

strain the joint model fits (see below).

For all observer models and tasks (except stochastic fusion in the explicit task), we consid-

ered a lapse probability 0� λ� 1 of the observer giving a random response. Finally, we note

that the Bayesian observer models considered in our main analysis perform Bayesian model

averaging (the proper Bayesian strategy). At the end of the Results section we will also consider

a ‘probability matching’ suboptimal Bayesian observer [24].

Analysis strategy. Our analysis strategy consisted of first examining subjects’ behavior

separately in the explicit and implicit tasks via model fitting and comparison. We then com-

pared the model fits across tasks to ensure that model parameters were broadly compatible,

allowing us to aggregate data from different tasks without changing the structure of the mod-

els. Finally, we re-analyzed observers’ performance by jointly fitting data from all three tasks

(explicit causal inference, implicit causal inference, and unisensory heading discrimination),

thereby combining all available evidence to characterize subjects’ decision making processes.

Given the large number of models and distinct datasets involved, we coded each model

using efficient computational techniques at each step (see Methods for details).

We fitted our models to the data first via maximum-likelihood estimation, and then via

Bayesian estimation of the posterior over parameters using Markov Chain Monte Carlo

Bayesian comparison of causal inference strategies in heading perception
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(MCMC). Posteriors are an improvement over point estimates in that they allow us to incor-

porate uncertainty over individual subjects’ model parameters in our analysis, and afford com-

putation of more accurate comparison metrics (see below).

We computed for each task, subject, and model the leave-one-out cross-validation score

(LOO) directly estimated from the MCMC output [52] (reported in S1 Appendix). LOO has

several advantages over other model selection metrics in that it takes parameter uncertainty

into account and provides a more accurate measure of predictive performance [53] (see Dis-

cussion). We combined model evidence (LOO scores) from different subjects and models

using a hierarchical Bayesian approach for group studies [54]. For each model component

within the model factors of interest (noise, prior, and causal inference strategy), we reported as

the main summary statistic of the analysis the protected exceedence probability ~φ, that is the

(posterior) probability of a model component being the most likely component, above and

beyond chance [55]. As a test of robustness, we also computed additional model comparison

metrics: the corrected Akaike’s information criterion (AICc), the Bayesian information crite-

rion (BIC), and an estimate of the log marginal likelihood (LML). While we prefer LOO as the

main metric (see Discussion), we verified that the results of the model comparison were largely

invariant of the choice of comparison metric.

Finally, for each model we estimated the absolute goodness of fit as the fraction of informa-

tion gain above chance (where 0% is chance and 100% is the estimated intrinsic variability of

the data, that is the entropy [56]).

Explicit causal inference task

We examined how subjects perceived the causal relationship of synchronous visual and vestib-

ular headings as a function of disparity (svest − svis, nine levels) and visual reliability level (high,

medium, low; Fig 3A). Common cause reports were more frequent near zero disparities than

for well-separated stimuli (Repeated-measures ANOVA with Greenhouse-Geisser correction;

F(1.82,18.17) = 76.0, � = 0.23, p< 10−4, Z2
p ¼ 0:88). This means that observers neither performed

complete integration (always reporting a common cause) nor complete segregation (never

reporting a common cause). Common-cause reports were not affected by visual cue reliability

alone (F(1.23,12.33) = 1.84, � = 0.62, p = .2, Z2
p ¼ 0:16), but were modulated by an interaction of

visual reliability and disparity (F(7.44,74.44) = 7.38, � = 0.47, p< 10−4, Z2
p ¼ 0:42). Thus, observ-

ers’ performance was affected by both cue disparity as well as visual cue reliability when explic-

itly reporting about the causal relationship between visual and vestibular cues. However, this

does not necessarily mean that the subjects’ causal inference strategy took visual cue reliability

into account. Changes in sensory noise may affect measured behavior even if the observer’s

decision rule ignores such changes [35]; a quantitative model comparison is needed to probe

this question.

We compared a subset of models from the full factorial comparison (Fig 2A), since some

models are equivalent when restricted to the explicit causal inference task. In particular, here

fixed-criterion models are not influenced by the ‘prior’ factor, and the (stochastic) fusion

model is not affected by sensory noise or prior, thus reducing the list of models to seven: Bay-

C-E, Bay-C-I, Bay-X-E, Bay-X-I, Fix-C, Fix-X, SFu.

To assess the evidence for distinct determinants of subjects’ behavior, we combined LOO

scores from individual subjects and models with a hierarchical Bayesian approach [54] (Fig

3B). Since we are investigating model factors that comprise of an unequal number of models,

we reweighted the prior over models such that distinct components within each model factor

had equal prior probability (Fix models had 2× weight, and SFu 4×). In Fig 3B we report the

protected exceedance probabilities ~φ and, for reference, the posterior model frequencies they
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are based on, and the Bayesian omnibus risk (BOR), which is the estimated probability that the

observed differences in factor frequencies may be due to chance [55]. We found that the most

likely factor of causal inference was the Bayesian model (~φ ¼ 0:78), followed by fixed-criterion

(~φ ¼ 0:18) and probabilistic fusion (~φ ¼ 0:04). That is, fusion was * 24 times less likely to be

the most representative model than any form of causal inference combined, which is strong

evidence against fusion, and in agreement with our model-free analysis. The Bayesian strategy

was * 3.5 times more likely than the others, which is positive but not strong evidence [57].

Conversely, the explicit causal inference data do not allow us to draw conclusions about noise

models (constant vs. eccentric) or priors (empirical vs. independent), as we found that all fac-

tor components are about equally likely (~φ � 0:5).

At the level of specific models—as opposed to aggregate model factors –, we found that the

probability of being the most likely model was almost equally divided between fixed-criterion

(C-I) and Bayesian (either X-E or C-I). All these models yielded reasonable fits (Fig 3C), which

captured a large fraction of the noise in the data (absolute goodness of fit � 76% ± 3%; see

Methods); a large improvement over a constant-probability model, which had a goodness of fit

of 14 ± 5%. For comparison, we also show in Fig 3C the stochastic fusion model, which had a

goodness of fit of 17% ± 5%. Visually, the Fix model in Fig 3C seems to fit better the group

data, but we found that this is an artifact of projecting the data on the disparity axis. Disparity

is the only relevant dimension for the Fix model; whereas Bay models fits the data along all

dimensions. The visual superiority of the Fix model wanes when the data are visualized in

their entirety (see S1 Fig).

Fig 3. Explicit causal inference. Results of the explicit causal inference (unity judgment) task. A: Proportion of ‘unity’ responses, as a function of

stimulus disparity (difference between vestibular and visual heading direction), and for different levels of visual cue reliability. Bars are ±1 SEM across

subjects. Unity judgments are modulated by stimulus disparity and visual cue reliability. B: Protected exceedance probability ~φ and estimated posterior

frequency (mean ± SD) of distinct model components for each model factor. Each factor also displays the Bayesian omnibus risk (BOR). C: Model fits

of several models of interest (see text for details). Shaded areas are ±1 SEM of model predictions across subjects. Numbers on top right of each panel

report the absolute goodness of fit.

https://doi.org/10.1371/journal.pcbi.1006110.g003
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We verified robustness of our findings by performing the same hierarchical analysis with

different model comparison metrics. All metrics were in agreement with respect to the Bayes-

ian causal inference strategy as the most likely, and the same three models being most probable

(although possibly with different ranking). BIC and marginal likelihood differed from LOO

and AICc mainly in that they reported a larger probability for the constant vs. eccentricity-

dependent noise (probability ratio *4.6, which is positive but not strong evidence).

These results combined provide strong evidence that subjects in the explicit causal infer-

ence task took into account some elements of the statistical structure of the trial (disparity, and

possibly cue reliability) to report unity judgments, consistent with causal inference, potentially

in a Bayesian manner. From these data, it is unclear whether observers took into account the

empirical distribution of stimuli, and whether their behavior was affected by eccentricity-

dependence in the sensory noise.

Implicit causal inference task

We examined the bias in the reported direction of inertial heading computed as (minus) the

point of subjective equality for left/rightward heading choices (L/R PSE), for each visual head-

ing and visual cue reliability (Fig 4A). Specifically, for a given value of visual heading svis (or

small range thereof), we constructed a psychometric function as a function of svest (see Meth-

ods for details). If subjects were influenced by svis and took visual heading into account while

Fig 4. Implicit causal inference. Results of the implicit causal inference (left/right inertial discrimination) task. A: Vestibular bias as a function of co-

presented visual heading direction svis, at different levels of visual reliability. Bars are ±1 SEM across subjects. The inset shows a cartoon of how the

vestibular bias is computed as minus the point of subjective equality of the psychometric curves of left/right responses (L/R PSE) for vestibular stimuli

svest, for a representative subject and for a fixed value of svis. The vestibular bias is strongly modulated by svis and its reliability. B: Protected exceedance

probability ~φ and estimated posterior frequency (mean ± SD) of distinct model components for each model factor. Each factor also displays the

Bayesian omnibus risk (BOR). C: Model fits of several models of interests (see text for details). Shaded areas are ±1 SEM of model predictions across

subjects. Numbers on top right of each panel report the absolute goodness of fit.

https://doi.org/10.1371/journal.pcbi.1006110.g004
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computing inertial heading, this would manifest as bias in the psychometric function (that is, a

shifted point of subjective equality). If subjects were able instead to discount the distracting

influence of svis, there should be negligible bias. As per causal inference, we qualitatively

expected that there would be bias for smaller |svis|, but the bias would either decrease or satu-

rate as |svis| increases. However, note that a nonlinear pattern of bias may also emerge due to

eccentricity-dependence of the noise, even in the absence of causal inference.

The bias was significantly affected by visual heading (Repeated-measures ANOVA;

F(0.71,7.08) = 19.67, � = 0.07, p = .004, Z2
p ¼ 0:66). We found no main effect of visual cue reliabil-

ity alone (F(0.85,8.54) = 0.51, � = 0.43, p = .47, Z2
p ¼ 0:05), but there was a significant interaction

of visual cue reliability and heading (F(2.93,29.26) = 7.36, � = 0.15, p< 10−3, Z2
p ¼ 0:42). These

data suggest that subjects’ perception of vestibular headings was modulated by visual cue reli-

ability and visual stimulus, in agreement with previous work in visual-auditory localization

[21]. However, quantitative model comparison is required to understand the mechanism in

detail since distinct processes, such as different causal inference strategies and noise models,

could lead to similar patterns of observed behavior.

We performed a factorial comparison with all models in Fig 2A. In this case, factorial

model comparison via LOO was unable to uniquely identify the causal inference strategy

adopted by observers (Fig 4B). Forced fusion was slightly favored (~φ � 0:48), followed by

Bayes (~φ � 0:27) and fixed-criterion (~φ � 0:25), suggesting that all strategies were similar to

forced fusion. Conversely, eccentricity-dependent noise was found to be more likely than con-

stant noise (ratio * 5.7), which is positive but not strong evidence, and empirical priors were

marginally more likely than independent priors (* 2.1). The estimated Bayesian omnibus risk

was high (BOR� 0.29), hinting at a large degree of similarity within all model factors such

that observed differences could have arisen by chance.

All metrics generally agreed on the lack of evidence in favor of any specific inference strat-

egy (with AICc and BIC tending to marginally favor fixed-criterion instead of fusion), and on

empirical priors being more likely. As a notable difference, marginal likelihood and BIC

reversed the result about noise models, favoring constant noise models over eccentricity-

dependent ones.

In terms of individual models, the most likely models according to LOO were, in order,

forced fusion (X-E), Bayesian (X-E), and fixed-criterion (C-E). However, other metrics also

favored other models; for example, Bayesian (C-E) was most likely according to the marginal

likelihood. All these models obtained similarly good fits to individual data (Fig 4C; absolute

goodness of fit� 97%). For reference, a model that responds ‘rightward motion’ with constant

probability performed about at chance (goodness of fit� 0.3 ± 0.1%).

In sum, our analysis shows that the implicit causal inference data alone are largely inconclu-

sive, possibly because almost all models behave similarly to forced fusion. To further explore

our results, we examined the posterior distribution of the prior probability of common cause

parameter pc across Bayesian models, and of the criterion κc for fixed-criterion models (Fig 5,

bottom left panels). In both cases we found a broad distribution of parameters, with only a

mild accumulation towards ‘forced fusion’ values (pc = 1 or kc ≳ 90
�

), suggesting that subjects

were not completely performing forced fusion. Thus, it is possible that by constraining the

inference with additional data we would be able to draw more defined conclusions.

Joint model fits

Data from the explicit and implicit causal inference tasks, when analyzed separately, afforded

only weak conclusions about subjects’ behavior. The natural next step is to combine datasets
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from the two tasks along with the data from the unisensory heading discrimination task in

order to better constrain the model fits.

Before performing such joint fit, we verified whether there was evidence that model param-

eters changed substantially across tasks, in which case we might have had to change the struc-

ture of the models (e.g., by introducing a subset of distinct parameters for different tasks [49]).

For each model parameter, we computed the across-tasks compatibility probability Cp (Fig 5),

which is the (posterior) probability that subjects were most likely to have the same parameter

values across tasks, as opposed to different parameters, above and beyond chance (see Methods

for details). We found at most mild evidence towards difference of parameters across the three

tasks, but no strong evidence (all Cp> .05). Therefore, we proceeded in jointly fitting the data

with the default assumption that parameters were shared across tasks.

For the joint fits there are nine possible models for the causal inference strategy (three

explicit causal inference × three implicit causal inference strategies). However, we considered

only a subset of plausible combinations, to avoid ‘model overfitting’ (see Discussion). First, we

disregarded the stochastic fusion strategy for the explicit task, since this strategy was strongly

rejected by the explicit task data alone. Second, if subjects performed some form of causal

inference (Bayesian or fixed-criterion) in both tasks, we forced it to be the same. This reduces

the model space for the causal inference strategy to four components: Bay/Bay, Fix/Fix, Bay/

FFu, Fix/FFu (explicit/implicit task). Combined with the prior and sensory noise factors as per

Fig 2A, this leads to sixteen models.

Fig 5. Posteriors over model parameters. Each panel shows the marginal posterior distributions over a single parameter for each subject and task.

Each line is an individual subject’s posterior (thick line: interquartile range; light line: 95% credible interval); different colors correspond to different

tasks. For each subject and task, posteriors are marginalized over models according to their posterior probability (see Methods). For each parameter

we report the across-tasks compatibility probability Cp, that is the (posterior) probability that subjects were best described by the assumption that

parameter values were the same across separate tasks, above and beyond chance. The first two rows of parameters compute compatibility across all

three tasks, whereas in the last row compatibility only includes the bisensory tasks (bisensory inertial discrimination and unity judgment), as these

parameters are irrelevant for the unisensory task.

https://doi.org/10.1371/journal.pcbi.1006110.g005
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Factorial model comparison via LOO found that the most likely causal inference strategy

was fixed-criterion (~φ ¼ 0:79), followed by Bayesian (~φ ¼ 0:13), and then by forced fusion in

the implicit task (~φ ¼ 0:05 paired with Bayesian explicit causal inference, ~φ ¼ 0:03 paired

with fixed-criterion explicit causal inference; Fig 6A). This is positive evidence that subjects

were performing some form of causal inference also in the implicit task, as opposed to mere

forced fusion (ratio *11.4). Moreover, we found strong evidence for eccentricity-dependent

over constant noise (~φ > 0:99, ratio *132.7). Instead, the joint data were still inconclusive

about the prior adopted by the subjects, with only marginal evidence for the empirical prior

over the independent prior (* 2.9).

In terms of specific models, the most likely model was fixed-criterion (X-E), followed by

Bayesian (X-E), and explicit Bayesian / implicit forced fusion (both X-I and X-E). The best

models gave a good description of the individual joint data, with an absolute goodness of fit of

� 91% ± 1% (Fig 6B).

Examination of the subjects’ posteriors over parameters for the joint fits (Table 2 and Fig 5,

black lines) showed reasonable results. The base visual noise parameters were generally mono-

tonically increasing with decreasing visual cue reliability; the vestibular base noise was roughly

of the same magnitude as the medium visual cue noise (as per experiment design); both visual

and vestibular noise increased mildly with the distance from straight ahead; subjects had a

small lapse probability. For Bayesian models, pc was substantially larger than the true value,

Fig 6. Joint fits. Results of the joint fits across tasks. A: Protected exceedance probability ~φ and estimated posterior frequency (mean ± SD) of distinct

model components for each model factor. Each factor also displays the Bayesian omnibus risk (BOR). B: Joint model fits of the explicit causal inference

(unity judgment) task, for different models of interest. Each panel shows the proportion of ‘unity’ responses, as a function of stimulus disparity and for

different levels of visual reliability. Bars are ±1 SEM of data across subjects. Shaded areas are ±1 SEM of model predictions across subjects. Numbers on

top right of each panel report the absolute goodness of fit across all tasks. C: Joint model fits of the implicit causal inference task, for the same models of

panel B. Panels show vestibular bias as a function of co-presented visual heading direction svis, and for different levels of visual reliability. Bars are ±1

SEM of data across subjects. Shaded areas are ±1 SEM of model predictions across subjects.

https://doi.org/10.1371/journal.pcbi.1006110.g006
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0.20 (t-test t(10) = 10.8, p< 10−4, d = 3.25), suggesting that observers generally thought that

heading directions had a higher a priori chance to be the same. Nonetheless, for all but one

subject pc was far from 1, suggesting that subjects were not performing forced fusion either.

An analogous result holds for the fixed criterion κc, which was smaller than the largest dispar-

ity between heading directions. We found that prior parameters σprior and Δprior had a lesser

impact on the models, and their exact values were less crucial, with generally wide posteriors.

Finally, we verified that our results did not depend on the chosen comparison metric.

Remarkably, the findings regarding causal inference factors were quantitatively the same for

all metrics, demonstrating robustness of our main result. Marginal likelihood and BIC differed

from LOO and AICc in that they only marginally favored eccentricity-dependent noise mod-

els, showing that conclusions over the noise model may depend on the specific choice of met-

ric. All metrics agreed in marginally preferring the empirical prior over the independent prior.

In conclusion, when combining evidence from all available data, our model comparison

shows that subjects were most likely performing some form of causal inference instead of

forced fusion, for both the explicit and the implicit causal inference tasks. In particular, we

find that a fixed-criterion, non-probabilistic decision rule (i.e., one that does not take uncer-

tainty into account) describes the joint data better than the Bayesian strategy, although with

some caveats (see Discussion).

Sensitivity analysis and model validation

Performing a factorial comparison, like any other statistical analysis, requires a number of

somewhat arbitrary choices, loosely motivated by previous studies, theoretical considerations,

or a preliminary investigation of the data (being aware of the ‘garden of forking paths’ [58]).

As good practice, we want to check that our main findings are robust to changes in the setup

of the analysis, or be able to report discrepancies.

We take as our main result the protected exceedance probabilties ~φ of the model factors in

the joint analysis (Fig 6A, reproduced in Fig 7, top row). In the following, we examine whether

this finding holds up to several manipulations of the analysis framework.

Table 2. Joint fit parameters.

Parameter Description Posterior mean Allowed range

All tasks

σ0vest Vestibular base noise 6.49˚ ± 0.90˚ [0.5˚, 80˚]†

σ0vis(chigh) Visual base noise (high coherence) 4.08˚ ± 0.54˚ [0.5˚, 80˚]†

σ0vis(cmed) Visual base noise (medium coherence) 6.32˚ ± 1.00˚ [0.5˚, 80˚]†

σ0vis(clow) Visual base noise (low coherence) 11.57˚ ± 2.67˚ [0.5˚, 80˚]†

wvest Vestibular noise eccentricity 0.04 ± 0.01 [0, 1]

wvis Visual noise eccentricity 0.07 ± 0.02 [0, 1]

λ Lapse rate 0.01 ± 0.01 [0, 1]

Bisensory only

pc Prior of common cause (Bay models) 0.56 ± 0.05 [0, 1]

κc Fixed criterion (Fix models) 26.50˚ ± 3.52˚ [0.25˚, 180˚]†

σprior Central prior width 49.77˚ ± 12.08˚ [1˚, 120˚]†

Δprior Disparity prior width 23.51˚ ± 6.39˚ [1˚, 120˚]†

Posterior means of parameters in the joint fit, marginalized over models according to each subject’s posterior model probability, and averaged across subjects (± SEM).

For reference, we also report the parameter range used for the optimization and MCMC sampling.
† These parameters were transformed and fitted in log space.

https://doi.org/10.1371/journal.pcbi.1006110.t002
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A first check consists of testing different model comparison metrics. In the previous sec-

tions, we have reported results for different metrics, finding in general only minor differences

from our results obtained with LOO. As an example, we show here the model comparison

using as metric an estimate of the marginal likelihood—the probability of the data under the

model (Fig 7, 2nd row). We see that the marginal likelihood results agree with our results with

LOO except for the sensory noise factor (see Discussion). Therefore, our conclusions about

the causal inference strategy are not affected.

Second, the hierarchical Bayesian Model Selection method requires to specify a prior over

frequencies of models in the population [54]. This (hyper)prior is specified via the concentra-

tion parameter vector α0 of a Dirichlet distribution over model frequencies. For our analysis,

since we focused on the factorial aspect, we chose an approximately ‘flat’ prior across model

factors (see Methods for details), instead of the default flat prior over individual models (α0 =

1). We found that performing the group analysis with α0 = 1 did not change our results (Fig 7,

3rd row).

Another potential source of variation is specific model choices, or inclusion of model fac-

tors. For example, a common successful variant of the Bayesian causal inference strategy is

‘probability matching’, according to which the observer chooses the causal scenario (C = 1 or

C = 2) randomly, proportionally to its posterior probability [24]. As a first check, we per-

formed the model comparison again using a ‘probability matching’ Bayesian observer instead
of our main ‘model averaging’ observer (Fig 7, 4th row). Results are similar to the main analy-

sis. If anything, the fixed-criterion causal inference strategy gains additional evidence here,

Fig 7. Sensitivity analysis of factorial model comparison. Protected exceedance probability ~φ of distinct model components for each model factor in

the joint fits. Each panel also shows the estimated posterior frequency (mean ± SD) of distinct model components, and the Bayesian omnibus risk

(BOR). Each row represents a variant of the factorial comparison. 1st row: Main analysis (as per Fig 6A). 2nd row: Uses marginal likelihood as model

comparison metric. 3rd row: Uses hyperprior α0 = 1 for the frequencies over models in the population (instead of a flat prior over model factors). 4th

row: Uses ‘probability matching’ strategy for the Bayesian causal inference model (replacing model averaging). 5th row: Includes probability matching

as a sub-factor of the Bayesian causal inference family (in addition to model averaging).

https://doi.org/10.1371/journal.pcbi.1006110.g007
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suggesting that probability matching is a worse description of the data than our original Bayes-

ian causal inference model (as confirmed by looking at differences in LOO scores of individual

subjects, e.g. for the Bay-X-E model; mean ± SEM: ΔLOO = −17.3 ± 5.7). A recent study in

audio-visual causal inference perception has similarly found that probability matching pro-

vided a poor explanation of the data [21].

In the factorial framework we could also have performed the previous analysis in a different

way, by considering ‘probability matching’ as a sub-factor of the Bayesian strategy, together
with ‘model averaging’. As we have done before for the explicit causal inference task, we reas-

sign prior probabilities to the models so that they are constant for each factor (in this case, the

two Bayesian strategies get a� 1

2
multiplier). Results of this alternative approach show an

increase of evidence for the Bayesian causal inference family (Fig 7, bottom row). The values of

~φ for the fusion models are also slightly higher, which is due to an increase of the Bayesian

omnibus risk (the probability that the observed differences in factor frequencies are due to

chance, a warning sign that there are too many models for the available data). This result and

other lines of reasoning suggest caution when model factors contain an uneven number of

models (see Discussion). Nonetheless, the main conclusion does not qualitatively change, in

that observers performed some form of causal inference as opposed to forced fusion.

Finally, we performed several sanity checks, including a model recovery analysis to ensure

the integrity of our analysis pipeline and that models of interest were meaningfully distinguish-

able (see Methods and S1 Appendix for details).

In conclusion, we have shown how the computational framework of Bayesian factorial

model comparison, which is made possible by a combination of methods described in the

cookbook, allows to explore multiple questions about aspects of subjects’ behavior in multisen-

sory perception, and to account for uncertainty at different levels of the analysis in a princi-

pled, robust manner.

Discussion

We presented a ‘cookbook’ of algorithmic recipes for robust Bayesian evaluation of observer

models of causal inference that have widespread applications to multisensory perception and

modeling perceptual behavior in general. We applied these techniques to investigate the deci-

sion strategies that characterize explicit and implicit causal inference in multisensory heading

perception. Examination of observers’ behavior in the explicit and implicit causal inference

tasks provided evidence that observers did not simply fuse visual and vestibular cues. Instead,

observers integrated the multisensory cues based on their relative disparity, a signature of

causal inference. Importantly, our framework affords investigation of whether humans adopt a

statistically optimal Bayesian strategy or instead implement a heuristic decision rule which

does not fully consider the uncertainty associated with the stimuli.

Causal inference in multisensory heading perception

Our findings in the explicit causal inference task demonstrate that subjects used information

about the discrepancy between the visual and vestibular cues to infer the causal relationship

between them. Results in the implicit causal inference task alone were mixed, in that we could

not clearly distinguish between alternative strategies, including forced fusion—in agreement

with a previous finding [33]. However, when we combined evidence from all tasks, we found

that some form of causal inference was more likely than mere forced fusion, in agreement with

a more recent study [34]. Our findings suggest that multiple sources of evidence (e.g., different

tasks) can help disambiguate causal inference strategies which might otherwise produce simi-

lar patterns of behavioral responses.
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Our Bayesian analysis allowed us to examine the distribution of model parameters, in partic-

ular the causal inference parameters pc and κc, which govern the tendency to bind or separate

cues for, respectively, a Bayesian and a heuristic fixed-criterion strategy. Evidence from all tasks

strongly constrained these parameters for each subject. Interestingly, for the Bayesian models

we found an average pc much higher than the true experimental value (inferred pc * 0.5 vs.

experimental pc = 0.2). This suggests that subjects had a tendency to integrate sensory cues sub-

stantially more than what the statistics of the task would require. Note that, instead, a Bayesian

observer would be able to learn the correct value of pc from noisy observations, provided some

knowledge of the structure of the task. Our finding is in agreement with previous studies which

demonstrated an increased tendency to combine discrepant visual and vestibular cues [10, 33,

43, 59, 60] and also a large inter-subject variability in pc, and not obviously related to the statis-

tics of the task [23]. We note that, in all studies so far, the ‘binding tendency’ (pc or κc) is a

descriptive parameter of causal inference models that lacks an independent empirical correlate

(as opposed to, for example, noise parameters, which can be independently measured). Under-

standing the origin of the binding tendency, and which experimental manipulations it is sensi-

tive to, is venue for future work [23, 61]. For example, de Winkel and colleagues found that the

binding tendency depends on the duration of the motion stimuli; decreasing for motions of

longer duration [34].

Previous work has performed a factorial comparison of only causal inference strategies

[21]. Our analysis extends that work by including as latent factors the shape of sensory noise

(and, thus, likelihoods) and type of priors [48, 49]. Models in our set include a full computa-

tion of the observers’ posterior beliefs based on eccentricity-dependent likelihoods, which was

only approximated in previous studies that considered eccentricity-dependence [22, 33, 34].

Indeed, in agreement with a recent finding, we found an important role of eccentricity-depen-

dent noise [22]. Conversely, our analysis of priors was inconclusive, as our datasets were

unable to tell whether people learnt the empirical (correlated) prior, or made an assumption of

independence.

Our main finding, relative to the causal inference strategy, is that subjects performed causal

inference both in the explicit and implicit tasks. Interestingly, from our analyses the most likely

causal inference strategy is a fixed-criterion strategy, which crucially differs from the Bayesian

strategy in that it does not take cue reliability into account—let alone optimally. This finding is

seemingly at odds with a long list of results in multisensory perception, in which people are

shown to take cue uncertainty into account [9, 10, 42, 62]. We note that this is not necessarily

in contrast with existing literature, for several reasons. First, this result pertains specifically to

the causal inference part of the observer model, and not how cues are combined once a com-

mon cause has been inferred [21]. To our knowledge, no study of multisensory perception has

tested Bayesian models of causal inference against heuristic models that take into account dis-

parity but not reliability, as it has been done for example in visual search [56, 63] and visual

categorization [36, 64]. A quantitative modeling approach is needed—qualitatively analyzing

the differences in behavior at different levels of reliability is not sufficient to establish that

observers take uncertainty into account; patterns of observed differences may be due to a

change in sensory noise even if the observer’s decision rule disregards cue reliability. Second,

our results are not definitive—the evidence for fixed-criterion vs. Bayesian is positive but not

decisive. Our interpretation of this result is that subjects are following some suboptimal deci-

sion rule which happens to be closer to fixed-criterion than to the Bayesian strategy for the pre-

sented stimuli and range of tested reliability levels. It is possible that with a wider range of

stimuli and reliabilities, and possibly with different ways of reporting (e.g., estimation instead

of discrimination), we would be able to distinguish the Bayesian strategy from a fixed-criterion

heuristic.
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Finally, we note that model predictions of our Bayesian models are good but still show sys-

tematic discrepancies from the data for the explicit causal inference task (Figs 3C and 6B). Pre-

vious work has found similar discrepancies in model fits of unity judgments data across

multiple sensory reliabilities (e.g., see Fig 2A in [21]). This suggests that there is some element

of model mismatch in current Bayesian causal inference models, possibly due to difference in

noise models or to other processes that affect causal inference across cue reliabilities, which

deserves further investigation.

Bayesian factorial comparison

We performed our analysis within a factorial model comparison framework [50]. Even though

we were mainly interested in a single factor (causal inference strategy), previous work has

shown that the inferred observer’s decision strategy might depend on other aspects of the

observer model, such as sensory noise or prior, due to nontrivial interactions of all these

model components [37]. Our method, therefore, consisted of performing inference across a

family of observer models that explicitly instantiated plausible model variants. We then mar-

ginalized over details of specific observer models, looking at posterior probabilities of model

factors, according to a hierarchical Bayesian Model Selection approach [54, 55]. We applied a

few tweaks to the Bayesian Model Selection method to account for our focus on factors as

opposed to individual models (see Methods).

Our approach was fully Bayesian in that we took into account parameter uncertainty (by

computing a metric, LOO, based on the full posterior distribution) and model uncertainty

(by marginalizing over model components). A fully Bayesian approach has the advantages of

explicitly representing uncertainty in the results (e.g., credible intervals over parameters), and

of reducing the risk of overfitting, although it is not immune to it [65].

In our case, we marginalized over models to reduce the risk of model overfitting, which is a

complementary problem to parameter overfitting. Model overfitting is likely to happen when

model selection is performed within a large number of discrete models. In fact, some authors

recommend to skip discrete model selection altogether, preferring instead inference and

Bayesian parameter estimation in a single overarching or ‘complete’ model [66]. We addition-

ally tried to reduce the risk of model overfitting by balancing prior probabilities across factors,

although we noted that this may not be enough to counterbalance the additional flexibility that

a model factor gains by having more sub-models than a competitor. Our practical recommen-

dation, until more sophisticated comparison methods are available, is to ensure that all model

components within a factor have the same number of models, and to limit the overall number

of models.

Our approach was also factorial in the treatment of different tasks, in that first we analyzed

each bisensory task in isolation, and then combined trials from all data in a joint fit. The fully

Bayesian approach allowed us to compute posterior distributions for the parameters, marginal-

ized over models (see Fig 5), which in turn made it possible to test whether model parameters

were compatibile across tasks, via the ‘compatibility probability’ metric. The compatibility

probability is an approximation of a full model comparison to test whether a given parameter

is the same or should differ across different datasets (in this case, tasks), where we consider

‘sameness’ to be the default (simplyfing) hypothesis. We note that if the identity or not of a

parameter across datasets is a main question of the study, its resolution should be addressed

via a proper model comparison.

With the joint fits, we found that almost all parameters were well constrained by the data

(except possibly for the parameters governing the observers’ priors, σprior and Δprior). An alter-

native option to better constrain the inference for scarce data or poorly identified parameters
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is to use informative priors (as opposed to non-informative priors), or a hierarchical approach

that assumes a common (hyper)prior to model parameters across subjects [67].

Model comparison metrics

The general goal of a model comparison metric is to score a model for goodness of fit and

somehow penalize for model flexibility. In our analysis we have used Pareto-smoothed impor-

tance sampling leave-one-out cross-validation (PSIS-LOO [53]) as the main metric to compare

models (simply called LOO in the other sections for simplicity). In fact, there is a large number

of commonly used metrics, such as (corrected) Akaike’s information criterion (AIC(c)) [68],

Bayesian information criterion (BIC) [68], deviance information criterion (DIC) [69], widely

applicable information criterion (WAIC) [70], and marginal likelihood [71]. The literature on

model comparison is vast and with different schools of thought—by necessity here we only

summarize some remarks. The first broad distinction between these metrics is between predic-

tive metrics (AIC(c), DIC, WAIC, and PSIS-LOO) [72], that try to approximate out-of-sample

predictive error (that is, model performance on unseen data), and BIC and marginal likeli-

hood, which try to establish the true model generating the data [71]. Another orthogonal dis-

tinction is between metrics based on point estimates (AIC(c) and BIC) vs. metrics that use

partial to full information about the model’s uncertainty landscape (DIC, WAIC, PSIS-LOO,

based on the posterior, and the marginal likelihood, based on the likelihood integrated over

the prior).

First, when computationally feasible we prefer uncertainty-based metrics to point estimates,

since the latter are only crude asymptotic approximations that do not take the model and the

data into account, besides simple summary statistics (number of free parameters and possibly

number of data points). Due to their lack of knowledge of the actual structure of the model,

AIC(c) and BIC can grossly misestimate model complexity [72].

Second, we have an ordered preference among predictive metrics, that is PSIS-LOO�

WAIC�DIC� AIC(c) [72]. The reason is that all of these metrics more or less asymptotically

approximate full leave-one-out cross validation, with increasing degree of accuracy from right

to left [53, 72]. As mentioned before, AIC(c) works only in the regime of a large amount of

data. DIC, albeit commonly used, has several issues and requires the posterior to be multivari-

ate normal, or at least symmetric and unimodal—gross failures can happen when this is not

the case, since DIC bases its estimate of model complexity on the mean (or some other mea-

sure of central tendency) of the posterior [72]. WAIC is a great improvement over DIC and

does not require normality of the posterior, but its approximation is generally superseded by

PSIS-LOO [53]. Moreover, PSIS-LOO has a natural diagnostic, the exponents of the tails of the

fitted Pareto distribution, which allows the user to know when the method may be in trouble

[53]. Full leave-one-out cross validation is extremely expensive, but PSIS-LOO only requires

the user to compute the posterior via MCMC sampling, with no additional cost with respect to

DIC or WAIC. Similarly to WAIC, PSIS-LOO requires the user to store for each posterior

sample the log likelihood per trial, which with modern computers represent a negligible stor-

age cost.

The marginal likelihood, or Bayes factor (of which BIC is a poor approximation), is an alter-

native approach to quantify model evidence, related to computing the posterior probability of

the models [71]. While this is a principled approach, it entails several practical and theoretical

issues. First, the marginal likelihood is generally hard to compute, since it usually involves a

complicated, high-dimensional integral of the likelihood over the prior (although this compu-

tation can be simplified for nested models [73]). Here, we have applied a novel approximation

method for the marginal likelihood following ideas delineated in [74, 75], obtaining generally
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sensible values. However, more work is needed to establish the precision and applicability of

such technique. Besides practical computational issues, the marginal likelihood, unlike other

metrics, is sensitive to the choice of prior over parameters, in particular its range [66]. Cru-

cially, and against common intuition, this sensitivity does not reduce with increasing amounts

of data. A badly chosen (e.g., excessively wide) prior for a non-shared parameter might change

the marginal likelihood of a model by several points, thus affecting model ranking. The open

issue of prior sensitivity has led some authors to largely discard model selection based on the

marginal likelihood [66].

For these reasons, we chose (PSIS-)LOO as the main model comparison metric. As a test of

robustness, we also computed other metrics and verified that our results were largely indepen-

dent of the chosen metric, or investigated the reasons when it was not the case.

As a specific example, in our analysis we found that LOO and marginal likelihood (or BIC)

generally agreed on all comparisons, except for the sensory noise factor. Unlike LOO, the mar-

ginal likelihood tended to prefer constant noise models as opposed to eccentricity-dependent

models. Our explanation of this discrepancy is that for our tasks eccentricity-dependence pro-

vides a consistent but small improvement to the goodness of fit of the models, which can be

overrided by a large penalty due to model complexity (BIC), or to the chosen prior over the

eccentricity-dependent parameters (wvis, wvest), whose range was possibly wider than needed

(see Fig 5). The issue of prior sensitivity (specifically, dependence of results on an arbitrarily

chosen range) can be attenuated by adopting a Bayesian hierarchical approach over parameters

(or a more computationally feasibile approximation, known as empirical Bayes), which is

venue for future work.

Computational framework

Model evaluation, especially from a Bayesian perspective, is a time-consuming business. For

this reason, we have compiled several state-of-the-art methods for model building, fitting and

comparison, and made our code available.

The main issue of many common observer models in perception is that the expression for

the (log) likelihood is not analytical, requiring numerical integration or simulation. To date,

this limits the applicability of modern model specification and analysis tools, such as probabi-

listic programming languages, that exploit auto-differentiation and gradient-based sampling

methods (e.g., Stan [76] or PyMC3 [77]). The goal of such computational frameworks is to

remove the burden and technical details of evaluating the models from the shoulders of the

modeler, who only needs to provide a model specification.

In our case, we strive towards a more modest goal of providing black-box algorithms for

optimization and MCMC sampling that exhibit a larger degree of robustness than standard

methods. In particular, for optimization (maximum likelihood estimation) we recommend

Bayesian adaptive direct search (BADS [78]), a technique based on Bayesian optimization [79,

80], which exhibits robustness to noise and jagged likelihood landscapes, unlike common opti-

mization methods such as fminsearch (Nelder-Mead) and fmincon in MATLAB. Simi-

larly, for MCMC sampling we propose a sampling method that combines the robustness and

self-adaptation of slice sampling [81] and ensemble-based methods [82]. Crucially, our pro-

posed method almost completely removes the need of expensive trial-and-error tuning on the

part of the modeler, possibly one of the main reasons why MCMC methods and full evaluation

of the posterior are relatively uncommon in the field (to our knowledge, this is the first study

of causal inference in multisensory perception to adopt a fully Bayesian approach).

Our framework is similar to the concept behind the VBA toolbox, a MATLAB toolbox for

probabilistic treatment of nonlinear models for neurobiological and behavioral data [83].
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The VBA toolbox tackles the problem of model fitting via a variational approximation that

assumes factorized, Gaussian posteriors over the parameters (mean field/Laplace approxi-

mation), and provides the variational free energy as an approximation (lower bound) of the

marginal likelihood. Our approach, instead, does not make any strong assumption, using

MCMC to recover the full shape of the posterior, and state-of-the-art techniques to assess

model performance.

Detailed, rigorous modeling of behavior is a necessary step to constrain the search for neu-

ral mechanisms implementing decision strategies [84] We have provided a set of computa-

tional tools and demonstrated how they can be applied to answer specific questions about

internal representation and decision strategies of the observer in multisensory perception,

with the goal of increasing the set of models that can be investigated, and the robustness of

such analyses. Thus, our tools can be of profound use not only to the field of multisensory per-

ception, but to biological modeling in general.

Methods

Ethics statement

The Institutional Review Board at the Baylor College of Medicine approved the experimental

procedures (protocol number H-29411, “Psychophysics of spatial orientation and vestibular

influences on spatial constancy and movement planning”) and all subjects gave written

informed consent.

Human psychophysics

Subjects. Eleven healthy adults (4 female; age 26.4 ± 4.6 years, mean ± SD) participated in

the full study. Subjects had no previous history of neurological disorders and had normal or

corrected-to-normal vision. Four other subjects completed only a partial version of the experi-

ment, and their data were not analyzed here.

Apparatus. Details of the experimental apparatus have been previously published and are

only described here briefly [9, 14, 85, 86]. Subjects were seated comfortably in a cockpit-style

chair and were protectively restrained with a 5-point racing safety harness. Each subject wore

a custom-made thermoplastic mesh mask that was attached to the back of the chair for head

stabilization. The chair, a three-chip DLP projector (Galaxy 6; Barco) and a large projection

screen (149 × 127 cm) were all mounted on a motion platform (6DOF2000E; Moog, Inc.).

The projection screen was located *65 cm in front of the eyes, subtending a visual angle of

*94˚ × 84˚. Subjects wore LCD-based active 3D stereo shutter glasses (Crystal Eyes 4, RealD,

Beverly Hills) to provide stereoscopic depth cues and headphones for providing trial timing-

related feedback (a tone to indicate when a trial was about the begin and another when a but-

ton press was registered). This apparatus was capable of providing three self-motion condi-

tions: vestibular (inertial motion through the movement of the platform), visual (optic flow

simulating movement of the observer in a 3D virtual cloud of stars, platform stationary) and

combined visual-vestibular heading (temporally-synchronized optic flow and platform

motion) at various spatial discrepancies.

Stimuli. We modified a previous multisensory heading discrimination task [9]. Here sub-

jects experienced combined visual and vestibular translation in the horizontal plane (Fig 1A).

The visual scene and platform movement followed a Gaussian velocity profile (displace-

ment = 13 cm, peak Gaussian velocity = 26 cm/s and peak acceleration = 0.9m/s2, duration =

1 s). Visual and vestibular headings were either in the same direction or their movement tra-

jectories were separated by a directional disparity, Δ, expressed in degrees (Fig 1A). The
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directional disparity Δ and visual cue reliability were varied on a trial-by-trial basis. Δ took one

of five values, selected with equal probability: 0˚ (no conflict), 5˚, 10˚, 20˚ and 40˚. Thus, visual

and vestibular stimuli were in conflict in 80% of the trials. In each trial, Δ was randomly

assigned to be positive (Fig 1A right, vestibular heading to the right of visual heading) or nega-

tive. Once a disparity value, Δ, was chosen, the mean heading angle (�s) which represents the

average of vestibular and visual headings, was uniformly randomly drawn from the discrete set

{−25˚, −20˚, . . ., 25˚}. Vestibular heading (svest, red trace in Fig 1) and visual heading (svis,

black trace in Fig 1A) were generated by displacing the platform motion and optic flow on

either side of the mean heading by Δ/2. The vestibular and visual headings experienced by sub-

jects were defined as svest ¼ �s þ D=2 and svis ¼ �s � D=2, respectively. This procedure entailed

that visual and vestibular heading directions presented in experiment were correlated (Fig 1B).

Three levels of visual cue reliability (high, medium, and low) were tested. Visual reliability was

manipulated by varying the percentage of stars in the optic flow that coherently moved in the

specified heading direction. For all subjects, visual motion coherence at high reliability was set

at 100%. Coherence at medium reliability was selected for each subject during a preliminary

session via a manual staircasing procedure such that their visual and vestibular thresholds

were approximately matched. Coherence at low reliability was also selected for each subject

separately and this was a value that was chosen to be lower than the medium reliability. Thus,

the optic flow coherences for medium and low reliabilities were different across subjects with

ranges of 40-70% and 25-50%, respectively. Overall, there were 297 stimulus conditions (9

directional disparities × 11 mean heading directions × 3 visual cue reliabilities) which were

randomly interleaved.

Tasks. First, subjects (n = 11) performed in a session of a unisensory heading discrimina-

tion task (left/right of straight ahead), in which visual or vestibular stimuli were presented in

isolation. Vestibular stimuli had one fixed reliability level, whereas visual stimuli were tested

on three different reliability levels, randomly interleaved, resulting in a total of 350–750 trials.

Then, subjects performed two-three sessions of the explicit causal inference task (unity

judgment). Here, subjects indicated if the visual and vestibular cues indicated heading in the

same direction (“common” cause, C = 1) or in different directions (“different” causes, C = 2).

Each combination of disparity and reliability was presented at least 20 times. Since each dispar-

ity was randomly assigned to be positive or negative on each trial, 0˚ disparity was presented at

least 40 times at each visual cue reliability resulting in a total of 700-1200 trials. Subjects did

not receive feedback about the correctness of their responses.

Finally, the same subjects also participated in the implicit causal inference task—bisensory

(inertial) discrimination. Here, subjects indicated the perceived direction of their inertial self-

motion (left or right of straight ahead). Note that although both visual and vestibular stimuli

were presented in each trial, subjects were asked to only indicate their perceived direction of

inertial heading, similar to the bisensory auditory localization procedure in [21]. Each combi-

nation of disparity and visual cue reliability was presented at least 70 times. Since each dispar-

ity was randomly assigned to be positive or negative on each trial, 0˚ disparity was presented at

least 140 times resulting in a total of 2100-3000 trials divided across 7-9 sessions. No feedback

was given about the correctness of subjects’ responses.

For all tasks, sessions were about one hour long and subjects were required to take multiple

breaks within each session.

Data analysis. For the explicit causal inference task, we computed the proportion of tri-

als in which subjects perceived a common cause at each disparity and visual cue reliability.

For the implicit causal inference task, we calculated the shift in perceived inertial heading as

a function of svis, that is the influence that svis had on svest, and we called this model-free
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summary statistic ‘bias’. In order to build psychometric functions with enough trials, we

binned values of svis in the following intervals: {[−45˚, −30˚], [−27.5˚, −22.5˚], [−20˚, −15˚],

[−12.5˚, −7.5˚], [−5˚, −2.5˚], 0˚, [2.5˚, 5˚], [7.5˚, 12.5˚], [15˚, 20˚], [22.5˚, 27.5˚], [30˚, 45˚]}.

Bin ranges were chosen to yield a comparable number of trials per bin, according to the non-

uniform distribution of svis in the experiment (see Fig 1B). For each visual bin and level of

visual cue reliability, we constructed psychometric functions by fitting the proportion of

rightward responses as a function of svest with cumulative Gaussian functions (inset in Fig

3A). Thus, we defined the bias in the perceived inertial heading as minus the point of subjec-

tive equality (L/R PSE). A bias close to zero indicates that subjects accurately perceived their

inertial (vestibular) heading. Large shifts of the PSE away from zero, that is substantial

biases, suggest that misleading visual cues exerted a significant influence on the accuracy of

inertial heading discrimination. Note that we do not expect the psychometric curves to be

exact cumulative Gaussian functions, because of nonlinearities due to eccentricity-depen-

dence of the noise and effects of causal inference. Nonetheless, the bias as we defined it is

useful as a simple model-free statistic. Repeated-measures ANOVA with disparity or visual

bin and visual cue reliability as within-subjects factors were performed separately on the

proportion of common cause reports and bias in perceived inertial heading. We applied

Greenhouse-Geisser correction of the degrees of freedom in order to account for deviations

from sphericity [87], and report effect sizes as partial eta squared, denoted with Z2
p. For all

analyses the criterion for statistical significance was p< .05, and we report uncorrected p-

values. Unless specified otherwise, summary statistics are reported in the text as mean ± SE

between subjects. Finally, we remark that the summary statistics described above were used

only for visualization and to perform simple descriptive statistics; we fit all models to raw

trial data.

Causal inference models

We build upon standard causal inference models of multisensory perception [18]. For

concreteness, in the following description of causal inference models we refer to the visuo-ves-

tibular example with binary responses (‘left/right’ for discrimination, and ‘yes/no’ for unity

judgements). The basic component of any observer model is the trial response probability,

that is the probability of observing a given response for a given trial condition (e.g., stimulus

pair, uncertainty level, task). In the following we briefly review how these probabilities are

computed.

All analysis code was written in MATLAB (Mathworks, Inc.), with core computations in C

for increased performance (via mex files in MATLAB). Code is available at https://github.com/

lacerbi/visvest-causinf.

Unisensory heading discrimination. We used subjects’ binary (‘left or right of straight

forward’) heading choices, measured in the presence of visual-only and vestibular-only stimuli,

to estimate subjects’ measurement noise in the respective sensory signals. Let us consider a

trial with a vestibular-only stimulus (the computation for a visual-only stimulus is analogous).

Subjects are asked whether the perceived direction of motion svest is to the left or to the right of

straight forward (0˚). We assume that the observer has access to a noisy measurement xvest of

stimulus svest (direction of motion), with probability density

pðxvestjsvestÞ ¼ N ðxvestjsvest; s
2ðsvestÞÞ; ð1Þ

where N ðxjm; s2Þ is a normal probability density with mean μ and variance σ2. Since stimulus

directions are defined over the circle, we also considered a wrapped normal or, similarly, a von
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Mises distribution instead of Eq 1. Because of the relatively small range of stimuli used in the

experiment, we found no difference between the distributions defined over the full circle and

the simple normal distribution in Eq 1 (see S1 Appendix). Incidentally, in an additional inves-

tigation we also found no empirical difference between a wrapped normal and a von Mises, so

either noise distribution could be used in the presence of fully circular stimuli (see S1

Appendix).

Depending on the sensory noise model, the variance in Eq 1 is either constant
(s2ðsvestÞ � s2

0 vest) or eccentricity-dependent with base magnitude s2
0 vest and noise that increases

with eccentricity (distance from 0˚) approximately quadratically, at least for small headings,

according to a parameter wvest� 0 (see S1 Appendix for details). For wvest = 0, the eccentricity-

dependent model reduces to the constant model. The observer’s posterior probability density

over the vestibular stimulus is p(svest|xvest)/ p(xvest|svest)pprior(svest), and we will see that under

some assumptions the prior over heading directions is irrelevant for subsequent computations

in the left/right unisensory task (see S1 Appendix).

We assume that observers compute the posterior probability that the stimulus is right of

straight forward as Prðsvest > 0jxvestÞ ¼
R 90

0
pðsvestjxvestÞdsvest, and respond ‘right’ if Pr(svest >

0|xvest)> 0.5; ‘left’ otherwise (see S1 Appendix for details). Observers may also lapse and give a

completely random response with probability λ (lapse rate). This yields

Prðchoose rightjxvestÞ ¼
l

2
þ 1 � lð Þ ⟦Prðsvest > 0jxvestÞ > 0:5⟧; ð2Þ

where ⟦�⟧ is Iverson bracket, which is 1 if the argument is true, and 0 otherwise [88].

An analogous derivation is applied to each unisensory visual stimulus condition for respec-

tively low, medium, and high visual reliability. We assume a distinct σ0vis for each visual reli-

ability condition, and, for the eccentricity-dependent models, a common wvis for all visual

reliability conditions, so as to reduce model complexity.

Unity judgment (explicit causal inference). In a unity judgment trial, the observer

explicitly evaluates whether there is a single cause (C = 1) underlying the noisy measurements

xvis, xvest, or two separate causes (C = 2; see Fig 2B). All following probability densities are con-

ditioned on cvis, the level of visual cue reliability in the trial, which is assumed to be known to

the observer; we omit this dependence to reduce clutter. We consider three families of explicit

causal inference strategies.

The Bayesian causal inference strategy computes the posterior probability of common

cause

PrðC ¼ 1jxvis; xvestÞ ¼
pðxvis; xvestjC ¼ 1Þpc

pðxvis; xvestjC ¼ 1Þpc þ pðxvis; xvestjC ¼ 2Þð1 � pcÞ
; ð3Þ

where 0� pc� Pr(C = 1)� 1, the prior probability of a common cause, is a free parameter of

the model. The derivation of p(xvis, xvest|C = k), for k = 1, 2, is available in S1 Appendix. The

observer reports unity if the posterior probability of common cause is greater than 0.5, with

the added possibility of random lapse,

Prðchoose unityjxvis; xvestÞ ¼
l

2
þ ð1 � lÞ⟦PrðC ¼ 1jxvis; xvestÞ > 0:5⟧: ð4Þ

For a separate analysis we also considered a ‘probability matching’ variant that reports

unity with probability equal to Pr(C = 1|xvis, xvest) (plus lapses).

Bayesian comparison of causal inference strategies in heading perception

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006110 July 27, 2018 25 / 38

https://doi.org/10.1371/journal.pcbi.1006110


As a non-Bayesian causal inference heuristic model, we consider a fixed criterion observer,

who reports a common cause whenever the two noisy measurements are within a distance

κc� 0 from each other,

Prðchoose unityjxvis; xvestÞ ¼
l

2
þ ð1 � lÞ⟦jxvis � xvestj < kc⟧: ð5Þ

Crucially, the fixed criterion observer does not take into account stimulus reliability or

other statistical information when inferring the causal structure.

Finally, we consider a fusion observer that eschews causal inference altogether. A classical

‘forced fusion’ observer would always report ‘unity’ in the explicit causal inference task, which

is easily rejected by the data. Instead, we consider a stochastic fusion observer that reports

‘unity’ with probability ηlow, ηmed, or ηhigh, depending only on the reliability of the visual cue,

and discards any other information.

Bisensory inertial discrimination (implicit causal inference). In bisensory inertial dis-

crimination trials, the observer reports whether the perceived inertial heading svest is to the left

or right of straight forward (0˚). In this experiment, we do not ask subjects to report svis, but

the inference would be analogous. The inertial discrimination task requires an implicit evalua-

tion of whether there is a single cause to the noisy measurements xvis, xvest (C = 1), or two sepa-

rate causes (C = 2), for a known level of visual coherence cvis (omitted from the notation for

clarity).

If the observer knew that C = k, for k = 1, 2, the posterior probability density over the vestib-

ular stimulus would be (see S1 Appendix)

pðsvestjxvis; xvest;C ¼ kÞ /
Z 90�

� 90�

pðxvestjsvestÞpðxvisjsvis; cvisÞpðsvis; svestjC ¼ kÞdsvis;

where the likelihoods are defined as per the uni-sensory task, Eq 1, and for the prior over head-

ing directions, p(svis, svest|C), see ‘Observers’ priors’ below.

The posterior probability of rightward motion is computed for k = 1, 2 as

Prðsvest > 0jxvest; xvis;C ¼ kÞ /
Z 90�

0�

pðsvestjxvis; xvest;C ¼ kÞdsvest;

and an analogous equation holds for the posterior probability of leftward motion.

In general, the causal structure is implicitly inferred by the observer. We assume that

observers combine cues according to

pðsvestjxvis; xvestÞ ¼ v1ðxvis; xvestÞ � pðsvestjxvis; xvest;C ¼ 1Þþ

½1 � v1ðxvis; xvestÞ� � pðsvestjxvis; xvest;C ¼ 2Þ
ð6Þ

where 0� v1(xvis, xvest)� 1 is the implicit causal weight associated by the observer to the

hypothesis of a single cause, C = 1. The form of the causal weight depends on the observer’s

implicit causal inference strategy.

We consider three families of implicit causal inference. For the Bayesian causal inference

observer, the causal weight is equal to the posterior probability, v1(xvis, xvest) = Pr(C = 1|xvis,

xvest), so that Eq 6 becomes the expression for Bayesian model averaging [18] (see Eq 3 and S1

Appendix). As a variant of the Bayesian observer we consider a probability matching Bayesian

strategy for which v1 = 1 with probability Pr(C = 1|xvis, xvest), and v1 = 0 otherwise. For the

fixed-criterion observer, v1 = ⟦|xvis − xvest|< κc⟧, with κc� 0 as per Eq 5. Finally, for the forced
fusion observer v1� 1.
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The posterior probability of rightward motion is then

Prðsvest > 0jxvest; xvisÞ ¼
R 90�

0�
pðsvestjxvis; xvestÞdsvest, and an analogous equation holds for the pos-

terior probability of leftward motion. We assume the observer reports the direction with high-

est posterior probability, with occasional lapses (see also Eq 2),

Prðchoose rightjxvis; xvestÞ ¼
l

2
þ 1 � lð Þ⟦Prðsvest > 0jxvis; xvestÞ > 0:5⟧; ð7Þ

where λ� 0 is the lapse rate.

Observers’ prior. We assume subjects develop a symmetric, unimodal prior over heading

directions for unisensory trials. Due to the form of the decision rule (Eq 2), a symmetric prior

has no effect on the unisensory trials, so we only focus on the bisensory case.

For the bisensory prior over heading directions, p(svis, svest|C) we consider two families of

priors. The empirical prior approximately follows the correlated structure of the discrete distri-

bution of vestibular and visual headings presented in the experiment (Fig 1B). The independent
prior assumes that observers learn a generic uncorrelated Gaussian prior over heading direc-

tions, as per [18]. See S1 Appendix for details.

We note that previous work in heading perception has found a ‘repulsive’ bias away from

straight ahead [89, 90], which is seemingly at odds with the central prior assumed here. How-

ever, the repulsion bias previously reported can be explained by the current Bayesian frame-

work by means of a stimulus-dependent likelihood [91, 92]. According to the Bayesian theory,

such a stimulus-dependent likelihood may induce a bias away from regions of higher sensory

precision. Whether the net bias is going to be attractive or repulsive depends on the relative

contribution of prior and likelihood [93]. Thus, our models that combine a central prior and

stimulus-dependent likelihood are not incompatible with previous findings of repulsive biases.

See also S1 Appendix.

Trial response probabilities. Eqs 2, 4, 5 and 7 represent the probability that an observer

chooses a specific response r (‘rightward’ or ‘leftward’ for discrimination trials, ‘same’ or ‘dif-

ferent’ for unity judgment trials), for given noisy measurements xvis and xvest (or only one of

the two for the unisensory task), and known visual reliability cvis. Since as experimenters we do

not have access to subjects’ internal measurements, to compute the trial response probabilities

we integrate (‘marginalize’) over the unseen noisy measurements for given heading directions

svis and svest presented in the trial.

For the unisensory case, considering as example the vestibular case, we get

Prðobserved rjsvestÞ ¼

Z 90�

� 90�

Prðchoose rjxvestÞpðxvestjsvestÞdxvest: ð8Þ

For the bisensory case, either unity judgment or inertial discrimination, we have

Prðobserved rjsvis; svest; cvisÞ ¼

Z 90�

� 90�

Z 90�

� 90�

Prðchoose rjxvis; xvest; cvisÞ

�pðxvestjsvestÞpðxvisjsvis; cvisÞdxvestdxvis:

ð9Þ

It is customary in the causal inference literature to approximate these integrals via Monte

Carlo sampling, by drawing a large number of noisy measurements from the noise distribu-

tions (e.g., [18, 20, 24, 33]). Instead, we computed the integrals via numerical integration,

which is more efficient than Monte Carlo techniques for low dimensional problems [94]. We

used the same numerical approach to evaluate Eqs 2, 4, 5 and 7, including an adaptive method
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for choice of integration grid. All numerical integrals were then coded in C (mex files in

MATLAB) for additional speed. See S1 Appendix for computational details.

Model fitting

For a given model, we denote its set of parameters by a vector θ. For a given model and dataset,

we define the parameter log likelihood function as

LLðθ;modelÞ ¼ logpðdatajθ;modelÞ

¼ log
YNtrials

i¼1

pðrðiÞjsðiÞvis; sðiÞvest; c
ðiÞ
vis; θ;modelÞ

¼
XNtrials

i¼1

logpðrðiÞjsðiÞvis; sðiÞvest; c
ðiÞ
vis; θ;modelÞ

ð10Þ

where we assumed conditional independence between trials; r(i) denotes the subject’s response

(‘right’ or ‘left’ for the discrimination trials; ‘common’ or ‘separate’ causes in unity judgment

trials); sðiÞvis and sðiÞvest are, respectively, the direction of motion of the visual (resp. vestibular) stim-

ulus (if present), and cðiÞvis is the visual coherence level (that is, reliability: low, medium, or high),

in the i-th trial.

Maximum likelihood estimation. First, we fitted our models to the data via maximum

likelihood estimation, by finding the parameter vector θ� that maximizes the log likelihood in

Eq 10. For optimization of the log likelihood, we used Bayesian Adaptive Direct Search

(BADS; https://github.com/lacerbi/bads). BADS is a black-box optimization algorithm that

combines a mesh-adaptive direct search strategy [95] with a local Bayesian optimization search

step based on Gaussian process surrogates (see [80, 96] for an introduction to Bayesian optimi-

zation). Bayesian optimization is particularly useful when the target function is costly to evalu-

ate or the likelihood landscape is rough, as it is less likely to get stuck in local optima than

other algorithms, and may reduce the number of function evaluations to find the (possibly

global) optimum. In our case, evaluation of the log likelihood function for a single parameter

vector θ could take up to * 2-3 s for bisensory datasets, which makes it a good target for

Bayesian optimization. We demonstrated in a separate benchmark that BADS is more effective

than a large number of other MATLAB optimizers for our problem (‘causal inference’ problem

set in [78]). See S1 Appendix for more details about the algorithm and the optimization

procedure.

For each subject we first fitted separately the datasets corresponding to three tasks (unisen-

sory and bisensory heading discrimination, unity judgment), and then performed joint fits by

combining datasets from all tasks (summing the respective log likelihoods).

Posterior sampling. As a complementary approach to ML parameter estimation, for each

dataset and model we calculated the posterior distribution of the parameters,

pðθjdata;modelÞ / pðdatajθ;modelÞpðθjmodelÞ; ð11Þ

where p(data|θ, model) is the likelihood (see Eq 10) and p(θ|model) is the prior over parame-

ters. We assumed a factorized prior pðθjmodelÞ ¼
Qk

i¼1
pðyiÞ and a non-informative uniform

prior over a bounded interval for each model parameter (uniform in log space for scale param-

eters such as all noise base magnitudes, fixed criterion κc, and prior parameters σprior and

Δprior); see Table 2.

We approximated Eq 11 via Markov Chain Monte Carlo (MCMC) sampling. We used a

custom-written sampling algorithm that combines slice sampling [81] with adaptive direction
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sampling [82] and a number of other tricks (https://github.com/lacerbi/eissample). Slice sam-

pling is a flexible MCMC method that, in contrast with the common Metropolis-Hastings

transition operator, requires very little tuning in the choice of length scale. Adaptive direction

sampling is an ensemble MCMC method that shares information between several dependent

chains (also called ‘walkers’ [97]) in order to speed up mixing and exploration of the state

space. For details about the MCMC algorithm and the sampling procedure, see S1 Appendix.

Factorial model comparison

We built different observer models by factorially combining three factors: causal inference

strategy (Bayesian, fixed-criterion, or fusion); shape of sensory noise (constant or eccentricity-

dependent); and type of prior over heading directions (empirical or independent); see Fig 2A

and ‘Causal inference models’ section of the Methods for a description of the different factors.

For each subject, we fitted the different observer models, first separately to different tasks

(unity judgment and bisensory inertial discrimination), and then performed a joint fit by com-

bining datasets from all tasks (including the unisensory discrimination task). We evaluated the

fits with a number of model comparison metrics and via an objective goodness of fit metric.

Finally, we combined evidence for different model factors across subjects with a hierarchical

Bayesian approach.

We verified our ability to distinguish different models with a model recovery analysis,

described in S1 Appendix.

Model comparison metrics. For each dataset and model we computed a number of dif-

ferent model comparison metrics, all of which take into account quality of fit and penalize

model flexibility, but with different underlying assumptions.

Based on the maximum likelihood solution, we computed Akaike information criterion

with a correction for sample size (AICc) and Schwarz’s ‘Bayesian’ Information criterion (BIC),

AICc ¼ � 2LLðθ�Þ þ 2kþ
2kðkþ 1Þ

Ntrials � k � 1

BIC ¼ � 2LLðθ�Þ þ k logNtrials

ð12Þ

where Ntrials is the number of trials in the dataset and k is the number of parameters of the

model. The factor of −2 that appears in both definitions is due to historical reasons, so that

both metrics have the same scale of the deviance.

To assess model performance on unseen data, we performed Bayesian leave-one-out (LOO)

cross-validation. Bayesian LOO cross-validation computes the posterior of the parameters

given Ntrials − 1 trials (training), and evaluates the (log) expected likelihood of the left-out trial

(test); the procedure is repeated for each trial, yielding the leave-one-out score

LOO ¼
XNtrials

i¼1

log
Z

pðrijθÞpðθjD� iÞdθ; ð13Þ

where p(ri|θ) is the likelihood associated to the i-th trial alone, and pðθjD� iÞ is the posterior

over θ given all trials except the i-th one. Eq 13 can be estimated at prohibitive computational

cost by separately sampling from the leave-one-out posteriors via Ntrials distinct MCMC runs.

A more feasible approach comes from noting that all posteriors differ from the full posterior

by only one data point. Therefore, the leave-one-out posteriors can be approximated via

importance sampling, reweighting the full posterior obtained via MCMC. However, a direct

approach of importance sampling can be unstable, since the full posterior is typically narrower

than the leave-one-out posteriors. Pareto-smoothed importance sampling (PSIS) is a recent
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technique to stabilize the importance weights [52], implemented in the psisloo package

(https://github.com/avehtari/PSIS). Thus, Eq 13 is approximated as

LOO �
XNtrials

i¼1

log
PS

s¼1
wðsÞi pðrijθ

ðsÞ
Þ

PS
s¼1

wðsÞi
; ð14Þ

where θ(s) is the s-th parameter sample from the posterior, and wðsÞi are the Pareto-smoothed

importance weights associated to the i-th trial and s-th sample (out of S); see [53] for details.

PSIS also returns for each trial the exponent ki of the fitted Pareto distribution; if ki is greater

than 1 the moments of the importance ratios distribution do not exist and the variance of the

PSIS estimate is finite but may be large; this provides a natural diagnostic for the method [53]

(see S1 Appendix). LOO is our comparison metric of choice (see Discussion). LOO scores for

all models and subjects are reported in S1 Appendix.

Finally, we approximated the marginal likelihood of the model,

pðdatajmodelÞ ¼
Z

pðdatajθ;modelÞpðθjmodelÞdθ: ð15Þ

The marginal likelihood is a common metric of model evidence that naturally incorporates

a penalty for model complexity due to Bayesian Occam razor [71]. However, the integral in Eq

15 is notoriously hard to evaluate. Here we computed an approximation of the log marginal

likelihood (LML) based on MCMC samples from the posterior, by using a weighted harmonic

mean estimator [74]. The formula for the approximation is

LML ¼ � log
1

S

XS

s¼1

φðθðsÞÞ
pðθðsÞÞLðθðsÞÞ

 !

ð16Þ

where the sum is over S samples from the posterior, θ(s) is the s-th sample, p(θ) the prior, L(θ)

the likelihood, and φ(θ) is an arbitrary weight probability density. The behavior of the approxi-

mation depends crucially on the choice of φ; it is important that φ has thinner tails than the

posterior, lest the variance of the estimator grows unboundedly. We followed the suggestion of

[74] and adopted a finite support distribution over a high posterior density region. We fitted a

variational Gaussian mixture model to the posterior samples [98] (https://github.com/lacerbi/

vbgmm), and then we replaced each Gaussian component with a uniform distribution over an

ellipsoid region proportional to the covariance matrix of the component. The proportionality

constant, common to all components, was picked by minimizing the empirical variance of the

sum in Eq 16 [75].

Hierarchical Bayesian model selection. We performed Bayesian model selection at the

group level via a hierarchical approach that treats subjects and models as random variables

[54]. Group Bayesian Model Selection infers the posterior over model frequencies in the popu-

lation, expressed as Dirichlet distributions parametrized by the concentration parameter vec-

tor α. As a summary statistic we consider the protected exceedance probability ~φ, that is the

probabilty that a given model or model factor is the most likely model or model factor, above

and beyond chance [55]. For the i-th model or model factor,

~φi ¼ ð1 � BORÞφi þ
1

K
BOR;

where K is the number of models (or model factors), φi is the unprotected exceedance proba-

bility for the i-th model or model factor [54], and BOR is the Bayesian omnibus risk—the pos-

terior probability that the data may be explained by the null hypothesis according to which all
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models (or model factors) have equal probability [55]. For completeness, we report posterior

model frequencies and BOR in the figures, but we do not focus on model frequencies per se

since our sample size does not afford a more detailed population analysis.

To compute the posterior over model factors in the population we exploit the agglomerative

propery of the Dirichlet distribution, and sum the concentration parameters of models that

belong to the same factor component [54]. While the agglomerative property allows to easily

compute the posterior frequencies and the unprotected exceedance probabilities for each

model factor, calculation of the protected exceedance probabilities required us to compute the

BOR for the model factor setup (the probability that the observed differences in factor frequen-

cies may have arisen due to chance).

Additionally, the group Bayesian Model Selection method requires to specify a Dirichlet

prior over model frequencies, represented by a concentration parameter vector α0 � w, with

wk = 1 for any model k and α0 > 0. The common choice is α0 = 1 (flat prior over model fre-

quencies), but given the nature of our factorial analysis we prefer a flat prior over model factors

(α0 = average number factors / number of models), where the average number of factors is

� 2.33 for the bisensory tasks and � 2.67 for the joint fits. This choice entails that the concen-

tration parameter of the agglomerate Dirichlet distributions, obtained by grouping models

that belong to the same factor component, is of order *1 (it cannot be exactly one since differ-

ent factors have different number of components). When factor components within the same

factor had unequal numbers of models, we modified the prior weight vector w such that every

component had equal prior weight. We verified that our main results did not depend on the

specific choice of Dirichlet prior (Fig 7, third row).

Parameter compatibility metric. Before performing the joint fits, we tested whether

model parameters differed across the three tasks (unisensory and bisensory discrimination,

unity judgment). On one end of the spectrum, the fully Bayesian approach would consist of

comparing all combinations of models in which parameters are shared vs. distinct across tasks,

and check which combination best explains the data. However, this approach is intractable in

practice due to the combinatorial explosion of models, and undesirable in theory due to the

risk model overfitting. On the simplest end of the spectrum, we could look at the credible

intervals of the parameter posteriors for each subject and visually check whether they are

mostly overlapping for different tasks.

As a middle ground, we computed separately for each parameter what we defined as the

compatibility probability Cp, that is the probability that for most subjects the parameter is

exactly the same across tasks (H0), as opposed to being different (H1), above and beyond

chance.

For a given subject, let y1, y2, and y3 be the datasets of the three tasks. For a given parameter

θ (e.g., lapse rate), we computed the compatibility likelihoods

pðy1; y2; y3jH0Þ ¼

Z Y3

i¼1

giðyjyiÞ

" #

f ðyÞdy;

pðy1; y2; y3jH1Þ ¼
Y3

i¼1

Z

giðyjyiÞf ðyÞdy

� �

;

ð17Þ

where gi(θ|yi) is the marginal posterior over θ for the dataset yi, and f(θ) is the prior over θ.

Having computed the compatibility likelihoods for all subjects, we defined Cp as the protected

exceedance probability of model H0 vs. model H1 for the entire group.

For each subject and task, the marginal posteriors gi(θ|yi) were obtained as a weighted aver-

age over models, with weight equal to each model’s posterior probability for that subject

Bayesian comparison of causal inference strategies in heading perception

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006110 July 27, 2018 31 / 38

https://doi.org/10.1371/journal.pcbi.1006110


according to the group Bayesian Model Selection method via LOO, and considering only the

subset of models that include the parameter of interest (see Fig 5).

For the prior f(θ) over a given parameter θ, for the purposes of this analysis only, we fol-

lowed an empirical Bayes approach informed by the data and use a truncated Cauchy prior fit-

ted to the average marginal posterior of θ across subjects, defined over the range of the MCMC

samples for θ.

Absolute goodness of fit. Model comparison yields only a relative measure of goodness of

fit, but does not convey any information of whether a model is a good description of the data

in an absolute sense. A standard metric such as the coefficient of variation R2 is not appropri-

ate for binary data. Instead, we extended the approach of [56] and defined absolute goodness of
fit as

g modelð Þ � 1 �
ĤGðdataÞ þ LOOðmodelÞ
ĤGðdataÞ � Ntrials log 2

; ð18Þ

where ĤGðdataÞ is an estimate of the entropy of the data obtained via Grassberger’s estimator

[99] and LOO(model) is the LOO score of the model of interest.

The numerator in Eq 18 represents the Kullback-Leibler (KL) divergence between the dis-

tribution of the data and the distribution predicted by the model (that is, how well the model

captures the data), which is compared as a reference to the KL divergence between the data

and a chance model (at the denominator). See S1 Appendix for a derivation of Eq 18, and code

is available at https://github.com/lacerbi/gofit.

The cookbook

The Bayesian cookbook for causal inference in multisensory perception, or simply ‘the cook-

book’, consists of a recipe to build causal inference observer models for multisensory percep-

tion, and a number of algorithms and computational techniques to perform efficient and

robust Bayesian comparison of such models. We applied and demonstrated these methods at

different points in the main text; further details can be found here in the Methods and S1

Appendix. For reference, we summarize the main techniques of interest in Table 3.

Table 3. List of algorithms and computational procedures.

Description Code References

Model fitting
Efficient computation of log likelihood https://github.com/lacerbi/visvest-causinf This work

Maximum-likelihood estimation (optimization) https://github.com/lacerbi/bads [78]

Posterior estimation (MCMC sampling) https://github.com/lacerbi/eissample In preparation

Model evaluation and comparison
Leave-one-out cross validation (LOO) https://github.com/avehtari/PSIS [52, 53]

Estimate of the marginal likelihood https://github.com/lacerbi/marglike [74], in preparation

Parameter compatibility test https://github.com/lacerbi/comprob This work

Objective goodness of fit https://github.com/lacerbi/gofit [56], this work

Group Bayesian Model Selection spm_BMS function in the SPM12 package

http://www.fil.ion.ucl.ac.uk/spm/

[54, 55]

List of useful algorithms and computational procedures.

https://doi.org/10.1371/journal.pcbi.1006110.t003
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Supporting information

S1 Fig. Explicit causal inference; model fits of full data. Results of the explicit causal infer-

ence (unity judgment) task, for two models of interest. Proportion of ‘unity’ responses for a

given (svis, svest) heading direction pair (indexed from 1 to 99), and for different levels of visual

cue reliability. Points are data, lines are model fits (average fit across subjects). Error bars are

omitted for clarity. A: Best Bayesian model (Bay-X-E). B: Best fixed-criterion model (Fix-C).

Neither model appears clearly superior across all noise levels (see main text).

(TIF)

S1 Appendix. Supplemental methods. Cookbook for causal inference observers. Observer

model factors. Comparison between wrapped normal and von Mises noise. Computational

details. Absolute goodness of fit. LOO scores for all subjects and models.

(PDF)

Acknowledgments

We thank Bas van Opheusden and Shan Shen for useful discussions about absolute goodness

of fit. This work has utilized the NYU IT High Performance Computing resources and

services.

Author Contributions

Conceptualization: Luigi Acerbi, Kalpana Dokka, Dora E. Angelaki, Wei Ji Ma.

Data curation: Luigi Acerbi, Kalpana Dokka.

Formal analysis: Luigi Acerbi.

Funding acquisition: Kalpana Dokka, Dora E. Angelaki, Wei Ji Ma.

Investigation: Kalpana Dokka.

Methodology: Luigi Acerbi, Kalpana Dokka.

Software: Luigi Acerbi.

Supervision: Dora E. Angelaki, Wei Ji Ma.

Validation: Luigi Acerbi, Kalpana Dokka.

Visualization: Luigi Acerbi.

Writing – original draft: Luigi Acerbi, Kalpana Dokka.

Writing – review & editing: Luigi Acerbi, Kalpana Dokka, Dora E. Angelaki, Wei Ji Ma.

References
1. Hillis JM, Ernst MO, Banks MS, Landy MS. Combining sensory information: Mandatory fusion within,

but not between, senses. Science. 2002; 298(5598):1627–1630. https://doi.org/10.1126/science.

1075396 PMID: 12446912

2. Nardini M, Bedford R, Mareschal D. Fusion of visual cues is not mandatory in children. Proceedings of

the National Academy of Sciences. 2010; 107(39):17041–17046. https://doi.org/10.1073/pnas.

1001699107

3. Jacobs RA. Optimal integration of texture and motion cues to depth. Vision Research. 1999; 39

(21):3621–3629. https://doi.org/10.1016/S0042-6989(99)00088-7 PMID: 10746132

4. Ernst MO, Banks MS. Humans integrate visual and haptic information in a statistically optimal fashion.

Nature. 2002; 415(6870):429–433. https://doi.org/10.1038/415429a PMID: 11807554

Bayesian comparison of causal inference strategies in heading perception

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006110 July 27, 2018 33 / 38

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1006110.s001
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1006110.s002
https://doi.org/10.1126/science.1075396
https://doi.org/10.1126/science.1075396
http://www.ncbi.nlm.nih.gov/pubmed/12446912
https://doi.org/10.1073/pnas.1001699107
https://doi.org/10.1073/pnas.1001699107
https://doi.org/10.1016/S0042-6989(99)00088-7
http://www.ncbi.nlm.nih.gov/pubmed/10746132
https://doi.org/10.1038/415429a
http://www.ncbi.nlm.nih.gov/pubmed/11807554
https://doi.org/10.1371/journal.pcbi.1006110


5. Knill DC, Saunders JA. Do humans optimally integrate stereo and texture information for judgments of

surface slant? Vision Research. 2003; 43(24):2539–2558. https://doi.org/10.1016/S0042-6989(03)

00458-9 PMID: 13129541

6. Alais D, Burr D. The ventriloquist effect results from near-optimal bimodal integration. Current Biology.

2004; 14(3):257–262. https://doi.org/10.1016/j.cub.2004.01.029 PMID: 14761661

7. Hillis JM, Watt SJ, Landy MS, Banks MS. Slant from texture and disparity cues: Optimal cue combina-

tion. Journal of Vision. 2004; 4(12):967–992. https://doi.org/10.1167/4.12.1 PMID: 15669906

8. Helbig HB, Ernst MO. Optimal integration of shape information from vision and touch. Experimental

Brain Research. 2007; 179(4):595–606. https://doi.org/10.1007/s00221-006-0814-y PMID: 17225091

9. Fetsch CR, Turner AH, DeAngelis GC, Angelaki DE. Dynamic reweighting of visual and vestibular cues

during self-motion perception. The Journal of Neuroscience. 2009; 29(49):15601–15612. https://doi.

org/10.1523/JNEUROSCI.2574-09.2009 PMID: 20007484

10. Butler JS, Smith ST, Campos JL, Bülthoff HH. Bayesian integration of visual and vestibular signals for

heading. Journal of Vision. 2010; 10(11):1–23. https://doi.org/10.1167/10.11.23

11. de Winkel KN, Weesie J, Werkhoven PJ, Groen EL. Integration of visual and inertial cues in perceived

heading of self-motion. Journal of Vision. 2010; 10(12):1–10. https://doi.org/10.1167/10.12.1 PMID:

21047733

12. Butler JS, Campos JL, Bülthoff HH, Smith ST. The role of stereo vision in visual–vestibular integration.

Seeing and perceiving. 2011; 24(5):453–470. https://doi.org/10.1163/187847511X588070 PMID:

21888763

13. Dokka K, MacNeilage PR, DeAngelis GC, Angelaki DE. Multisensory self-motion compensation during

object trajectory judgments. Cerebral Cortex. 2015; 25(3):619–630. https://doi.org/10.1093/cercor/

bht247 PMID: 24062317

14. Dokka K, DeAngelis GC, Angelaki DE. Multisensory Integration of Visual and Vestibular Signals

Improves Heading Discrimination in the Presence of a Moving Object. The Journal of Neuroscience.

2015; 35(40):13599–13607. https://doi.org/10.1523/JNEUROSCI.2267-15.2015 PMID: 26446214

15. Brandwein AB, Foxe JJ, Butler JS, Russo NN, Altschuler TS, Gomes H, et al. The development of multi-

sensory integration in high-functioning autism: High-density electrical mapping and psychophysical

measures reveal impairments in the processing of audiovisual inputs. Cerebral Cortex. 2012; 23

(6):1329–1341. https://doi.org/10.1093/cercor/bhs109 PMID: 22628458

16. Stewart CR, Sanchez SS, Grenesko EL, Brown CM, Chen CP, Keehn B, et al. Sensory symptoms and

processing of nonverbal auditory and visual stimuli in children with autism spectrum disorder. Journal of

autism and developmental disorders. 2016; 46(5):1590–1601. https://doi.org/10.1007/s10803-015-

2367-z PMID: 25652601

17. Calvert GA, Brammer MJ, Iversen SD. Crossmodal identification. Trends in cognitive sciences. 1998;

2(7):247–253. https://doi.org/10.1016/S1364-6613(98)01189-9 PMID: 21244923

18. Körding KP, Beierholm U, Ma WJ, Quartz S, Tenenbaum JB, Shams L. Causal inference in multisen-

sory perception. PLoS ONE. 2007; 2(9):e943. https://doi.org/10.1371/journal.pone.0000943 PMID:

17895984

19. Sato Y, Toyoizumi T, Aihara K. Bayesian inference explains perception of unity and ventriloquism after-

effect: Identification of common sources of audiovisual stimuli. Neural Computation. 2007; 19

(12):3335–3355. https://doi.org/10.1162/neco.2007.19.12.3335 PMID: 17970656

20. Rohe T, Noppeney U. Cortical hierarchies perform Bayesian causal inference in multisensory percep-

tion. PLoS Biol. 2015; 13(2):e1002073. https://doi.org/10.1371/journal.pbio.1002073 PMID: 25710328

21. Rohe T, Noppeney U. Sensory reliability shapes perceptual inference via two mechanisms. Journal of

Vision. 2015; 15(5):1–22. https://doi.org/10.1167/15.5.22

22. Odegaard B, Wozny DR, Shams L. Biases in visual, auditory, and audiovisual perception of space.

PLoS Comput Biol. 2015; 11(12):e1004649. https://doi.org/10.1371/journal.pcbi.1004649 PMID:

26646312

23. Odegaard B, Shams L. The Brain’s Tendency to Bind Audiovisual Signals Is Stable but Not General.

Psychological Science. 2016; 27(4):583–591. https://doi.org/10.1177/0956797616628860 PMID:

26944861

24. Wozny DR, Beierholm UR, Shams L. Probability matching as a computational strategy used in percep-

tion. PLoS Computational Biology. 2010; 6(8):e1000871. https://doi.org/10.1371/journal.pcbi.1000871

PMID: 20700493

25. Wozny DR, Shams L. Computational characterization of visually induced auditory spatial adaptation.

Frontiers in Integrative Neuroscience. 2011; 5:75. https://doi.org/10.3389/fnint.2011.00075 PMID:

22069383

Bayesian comparison of causal inference strategies in heading perception

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006110 July 27, 2018 34 / 38

https://doi.org/10.1016/S0042-6989(03)00458-9
https://doi.org/10.1016/S0042-6989(03)00458-9
http://www.ncbi.nlm.nih.gov/pubmed/13129541
https://doi.org/10.1016/j.cub.2004.01.029
http://www.ncbi.nlm.nih.gov/pubmed/14761661
https://doi.org/10.1167/4.12.1
http://www.ncbi.nlm.nih.gov/pubmed/15669906
https://doi.org/10.1007/s00221-006-0814-y
http://www.ncbi.nlm.nih.gov/pubmed/17225091
https://doi.org/10.1523/JNEUROSCI.2574-09.2009
https://doi.org/10.1523/JNEUROSCI.2574-09.2009
http://www.ncbi.nlm.nih.gov/pubmed/20007484
https://doi.org/10.1167/10.11.23
https://doi.org/10.1167/10.12.1
http://www.ncbi.nlm.nih.gov/pubmed/21047733
https://doi.org/10.1163/187847511X588070
http://www.ncbi.nlm.nih.gov/pubmed/21888763
https://doi.org/10.1093/cercor/bht247
https://doi.org/10.1093/cercor/bht247
http://www.ncbi.nlm.nih.gov/pubmed/24062317
https://doi.org/10.1523/JNEUROSCI.2267-15.2015
http://www.ncbi.nlm.nih.gov/pubmed/26446214
https://doi.org/10.1093/cercor/bhs109
http://www.ncbi.nlm.nih.gov/pubmed/22628458
https://doi.org/10.1007/s10803-015-2367-z
https://doi.org/10.1007/s10803-015-2367-z
http://www.ncbi.nlm.nih.gov/pubmed/25652601
https://doi.org/10.1016/S1364-6613(98)01189-9
http://www.ncbi.nlm.nih.gov/pubmed/21244923
https://doi.org/10.1371/journal.pone.0000943
http://www.ncbi.nlm.nih.gov/pubmed/17895984
https://doi.org/10.1162/neco.2007.19.12.3335
http://www.ncbi.nlm.nih.gov/pubmed/17970656
https://doi.org/10.1371/journal.pbio.1002073
http://www.ncbi.nlm.nih.gov/pubmed/25710328
https://doi.org/10.1167/15.5.22
https://doi.org/10.1371/journal.pcbi.1004649
http://www.ncbi.nlm.nih.gov/pubmed/26646312
https://doi.org/10.1177/0956797616628860
http://www.ncbi.nlm.nih.gov/pubmed/26944861
https://doi.org/10.1371/journal.pcbi.1000871
http://www.ncbi.nlm.nih.gov/pubmed/20700493
https://doi.org/10.3389/fnint.2011.00075
http://www.ncbi.nlm.nih.gov/pubmed/22069383
https://doi.org/10.1371/journal.pcbi.1006110


26. Bejjanki VR, Knill DC, Aslin RN. Learning and inference using complex generative models in a spatial

localization task. Journal of Vision. 2016; 16(5):1–9. https://doi.org/10.1167/16.5.9

27. Beierholm UR, Quartz SR, Shams L. Bayesian priors are encoded independently from likelihoods in

human multisensory perception. Journal of Vision. 2009; 9(5):1–9. https://doi.org/10.1167/9.5.23 PMID:

19757901

28. van den Berg R, Vogel M, Josić K, Ma WJ. Optimal inference of sameness. Proceedings of the National

Academy of Sciences. 2012; 109(8):3178–3183. https://doi.org/10.1073/pnas.1108790109

29. Hospedales T, Vijayakumar S. Multisensory oddity detection as Bayesian inference. PLoS ONE. 2009;

4(1):e4205. https://doi.org/10.1371/journal.pone.0004205 PMID: 19145254

30. Magnotti JF, Ma WJ, Beauchamp MS. Causal inference of asynchronous audiovisual speech. Frontiers

in Psychology. 2013; 4:798. https://doi.org/10.3389/fpsyg.2013.00798 PMID: 24294207

31. Sawai Ki, Sato Y, Aihara K. Auditory time-interval perception as causal inference on sound sources.

Frontiers in Psychology. 2012; 3.

32. Zhou Y, Acerbi L, Ma WJ. The Role of Sensory Uncertainty in Simple Perceptual Organization. bioRxiv.

2018; p. 350082.

33. de Winkel KN, Katliar M, Bülthoff HH. Forced fusion in multisensory heading estimation. PLoS ONE.

2015; 10(5):e0127104. https://doi.org/10.1371/journal.pone.0127104 PMID: 25938235

34. de Winkel KN, Katliar M, Bülthoff HH. Causal Inference in Multisensory Heading Estimation. PLoS

ONE. 2017; 12(1):e0169676. https://doi.org/10.1371/journal.pone.0169676 PMID: 28060957

35. Ma WJ. Organizing probabilistic models of perception. Trends in Cognitive Sciences. 2012; 16

(10):511–518. https://doi.org/10.1016/j.tics.2012.08.010 PMID: 22981359

36. Qamar AT, Cotton RJ, George RG, Beck JM, Prezhdo E, Laudano A, et al. Trial-to-trial, uncertainty-

based adjustment of decision boundaries in visual categorization. Proceedings of the National Academy

of Sciences. 2013; 110(50):20332–20337. https://doi.org/10.1073/pnas.1219756110

37. Acerbi L, Ma WJ, Vijayakumar S. A Framework for Testing Identifiability of Bayesian Models of Percep-

tion. In: Advances in Neural Information Processing Systems 27. Curran Associates, Inc.; 2014. p.

1026–1034.

38. Angelaki DE, Gu Y, DeAngelis GC. Multisensory integration: Psychophysics, neurophysiology, and

computation. Current opinion in neurobiology. 2009; 19(4):452–458. https://doi.org/10.1016/j.conb.

2009.06.008 PMID: 19616425

39. Shams L, Beierholm UR. Causal inference in perception. Trends in cognitive sciences. 2010; 14

(9):425–432. https://doi.org/10.1016/j.tics.2010.07.001 PMID: 20705502

40. Colonius H, Diederich A. Formal models and quantitative measures of multisensory integration: a selec-

tive overview. European Journal of Neuroscience. 2018;. https://doi.org/10.1111/ejn.13813

41. de Winkel KN, Soyka F, Barnett-Cowan M, Bülthoff HH, Groen E, Werkhoven P. Integration of visual

and inertial cues in the perception of angular self-motion. Experimental Brain Research. 2013; 231

(2):209–218. https://doi.org/10.1007/s00221-013-3683-1 PMID: 24013788

42. Gu Y, Angelaki DE, DeAngelis GC. Neural correlates of multisensory cue integration in macaque

MSTd. Nature Neuroscience. 2008; 11(10):1201–1210. https://doi.org/10.1038/nn.2191 PMID:

18776893

43. Prsa M, Gale S, Blanke O. Self-motion leads to mandatory cue fusion across sensory modalities. Jour-

nal of Neurophysiology. 2012; 108(8):2282–2291. https://doi.org/10.1152/jn.00439.2012 PMID:

22832567

44. Chen SY, Ross BH, Murphy GL. Implicit and explicit processes in category-based induction: Is induction

best when we don’t think? Journal of Experimental Psychology: General. 2014; 143(1):227. https://doi.

org/10.1037/a0032064

45. Evans JSB. Dual-processing accounts of reasoning, judgment, and social cognition. Annu Rev Psychol.

2008; 59:255–278. https://doi.org/10.1146/annurev.psych.59.103006.093629 PMID: 18154502
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