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We consider social networks in which information propagates directionally across layers of rational agents.
Each agent makes a locally optimal estimate of the state of the world, and communicates this estimate
to agents downstream. When agents receive some information from a common source their estimates are
correlated. We show that the resulting redundancy can lead to the loss of information about the state of the
world across layers of the network, even when all agents have full knowledge of the network’s structure.
A simple algebraic condition identifies networks in which information loss occurs, and we show that all
such networks must contain a particular network motif. We also study random networks asymptotically
as the number of agents increases, and find a sharp transition in the probability of information loss at the
point at which the number of agents in one layer exceeds the number in the previous layer.

1. Introduction

While there are billions of people on the planet, we exchange information with only a small fraction of
them. How does information propagate through such social networks, shape our opinions, and influence
our decisions? How do our interactions impact our choice of career or candidate in an election? More
generally, how do we as agents in a network aggregate noisy signals to infer the state of the world?

These questions have a long history. The general problem is not easy to describe using a tractable
mathematical model, as it is difficult to provide a reasonable probabilistic description of the state of the
world. We also lack a full understanding of how perception [1, 2], and the information we exchange [3]
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shapes our decisions. Progress has therefore relied on tractable idealized models that mimic some of the
main features of information exchange in social networks.

Early models relied on computationally tractable interactions, such as the majority rule assumed
in Condorcet’s Jury Theorem [4], or local averaging assumed in the DeGroot model [5]. More recent
models rely on the assumption of rational (Bayesian) agents who use private signals, measurements or
observations of each other’s actions to maximize utility. Such models of information sharing are often
used in the economics literature, sometimes in combination with ideas from game theory. For instance,
in a series of papers Mossel, Tamuz and collaborators considered the propagation of information on
an undirected network of rational agents, and showed that all agents on an irreducible graph integrate
information optimally in a finite number of steps [6]. A similar setup was used by Acemoglu et al. [7]
to examine herd behaviour in a network. Mueller-Frank [8] considered model social networks where
private information of each agent is represented by a finite partition of the state space, and showed that
in networks of non-Bayesian agents information is typically not aggregated optimally, but optimality is
achieved in the presence of a single Bayesian agent [9]. These, and related works (reviewed in [10]), refer
to such abstract models as “social networks”, and we follow this convention for simplicity. However, we
note that this is at odds with the more traditional definition of this term [11].

Simplified models about how information is exchanged are also used in the political science literature
to explain tendencies observed in social groups, and to fit to data. For example, Ortoleva and Snowberg
used dependent Gaussian random variables to model the experimentally observed neglect of redundancies
in information received by human observers [12]. They used this model to show how neglect of correlations
can explain overconfidence in a sample of 3000 adults from the 2010 Cooperative Congressional Election
Study (CCES) [13]. On the other hand, Levy and Razin show that similar correlation neglect can also lead
to positive outcomes, as observers rely on actual information in forming opinions, rather than political
orientation [14].

Such social network models of information propagation are generally either sequential or iterative.
In sequential models, agents are ordered and act in turn based on a private signal and the observed action
of their predecessors [15, 16]. In iterative models, agents make a single or a sequence of measurements,
and iteratively exchange information with their neighbours [6, 17]. Sequential models have been used to
illustrate information cascades [18], while iterative models have been used to illustrate agreement and
learning [19].

Here we consider a sequential model in which information propagates directionally through layers of
rational agents. The agents are part of a structured network, rather than a simple chain. As in the sequen-
tial model, we assume that information transfer is directional, and the recipient does not communicate
information to its source. This assumption could describe the propagation of information via print or any
other fixed medium.

We assume that at each step, a layer of agents receive information from those in a previous layer.
This is different from previous sequential models where agents received information in turn from all their
predecessors as in [15, 20–22]. Importantly, the same information can reach an agent via multiple paths.
Therefore, information received from agents in the previous layer can be redundant. Unlike in models
of information neglect [13], we assume that agents take into account these redundancies in making
decisions. We show that, depending on the network structure, even rational agents with full knowledge
of the network structure cannot always resolve these redundancies. As a result, an estimate of the state
of the world can degrade over layers. We also show that network architectures that lead to information
loss can amplify an agent’s bias in subsequent layers.
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LOSS OF INFORMATION IN FEEDFORWARD SOCIAL NETWORKS 3

Fig. 1. Illustration of the general setup. Agents in the first layer (top layer in the figure) make measurements, x1, x2 and x3, of a
parameter s. In each layer agents make an estimate of this parameter, and communicate it to agents in the subsequent layer. Arrows
indicate the direction in which information is propagated. We show that information about s degrades across layers in the network
in panel (a), but not in the network in (b).

As an example, consider the network in Fig. 1(a). We assume that the first-layer agents make measure-
ments x1, x2 and x3 of the state of the world, s, and that these measurements are normally distributed with
equal variance. This assumption means that minimum-variance unbiased estimators for these parameters
are always linear combinations of individual measurements [23]. Each agent makes an estimate, ŝ(1)

1 , ŝ(1)

2

and ŝ(1)

3 , of s. The superscript and subscript refer to the layer and agent number, respectively. An agent
with global access to all first-layer estimates would be able to make the optimal (minimum-variance)

estimate ŝideal = 1
3

(
ŝ(1)

1 + ŝ(1)

2 + ŝ(1)

3

)
of s.

All agents in the first layer then communicate their estimates to one or both of the second-layer
agents. These in turn use the received information to make their own estimates, ŝ(2)

1 = 1
2 (ŝ

(1)

1 + ŝ(1)

2 ) and
ŝ(2)

2 = 1
2 (ŝ

(1)

2 + ŝ(1)

3 ). An agent receiving the two estimates from the second layer then takes their linear
combination to estimate s. However, in this network no linear combination of the locally optimal estimates,
ŝ(2)

1 and ŝ(2)

2 , equals the best estimate, ŝideal, obtainable from all measurements in the first layer. Indeed,

ŝ = β1ŝ(2)

1 + β2ŝ(2)

2 = β1

(
ŝ(1)

1 + ŝ(1)

2

)
+ β2

(
ŝ(1)

2 + ŝ(1)

3

)
�= ŝideal = 1

3

(
ŝ(1)

1 + ŝ(1)

2 + ŝ(1)

3

)
,

with the inequality holding for any choice of β1, β2. Moreover, assume the estimates of first-layer agents
are biased, and ŝ(1)

i = xi + bi. If the other agents are unaware of this bias, then, as we will show, the final
estimate is ŝ = ( 1

4 , 1
2 , 1

4 ) · (ŝ(1)

1 + b1, ŝ(1)

2 + b2, ŝ(1)

3 + b3) = ( 1
4 , 1

2 , 1
4 ) · ŝ(1) + ( 1

4 , 1
2 , 1

4 ) · (b1, b2, b3). Thus the
bias of the second agent in the first layer, a(1)

2 , has disproportionate weight in the final estimate.
In this example the information about the state of the world, s, available from second-layer agents is

less than that available from first-layer agents. In the preceding example the measurement x2 is used by
both agents in the second layer. The estimates of the two second-layer agents are therefore correlated,
and the final agent cannot disentangle them to recover the ideal estimate. We will show that the type of
subgraph shown in Fig. 1(a), which we call a W-motif, provides the main obstruction to obtaining the
best estimate in subsequent layers.

2. The model

We consider feedforward networks having n layers and identify each node of a network with an agent.
The structure of the network is thus given by a directed graph with agents occupying the vertices. Agents
in each layer only communicate with those in the next layer. For convenience, we will assume that layer
n consists of a single agent that receives information from all agents in layer n − 1 . This final agent in
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the last layer therefore makes the best estimate based on all the estimates in the next-to-last layer. We
will use this last agent’s estimate to quantify information loss in the network. Two example networks are
given in Fig. 1, with the single agent in the final, third layer not shown.

We assume that all agents are Bayesian, and know the structure of the network. Every agent estimates
an unknown parameter, s ∈ R, but only the agents in the first layer make a measurement of this parameter.
Each agent makes the best possible estimate given the information it receives and communicates this
estimate to a subset of agents in the next layer. We also assume that measurements, xi, made by agents in
the first layer are independent and normally distributed with mean s, and variance σ 2

i , that is xi ∼ N (s, σ 2
i ).

Furthermore, every agent in the network knows the variance of each measurement in the first layer, σ 2
i .

Also, for simplicity, we will assume that all agents share an improper, flat prior over s. This assumption
does not affect the main results.

An agent with access to all of the measurements, {xi}i, has access to all the information available
about s in the network. This agent can make an ideal estimate, ŝideal = argmaxs p(s|x1, ..., xn). We assume
that the actual agents in the network are making locally optimal, maximum-likelihood estimates of s, and
ask when the estimate of the final agent equals the ideal estimate, ŝideal.

Individual estimate calculations

Each agent in the first layer only has access to its own measurement, and makes an estimate equal to
this measurement. We therefore write ŝ(1)

i = xi. We denote the jth agent in layer k by a(k)

j . Each of these

agents makes an estimate, ŝ(k)

j of s, using the estimates communicated by its neighbours in the previous
layer. Under our assumptions, the posterior computed by any agent is normal and the vector of estimates
in a layer follows a multivariate Gaussian distribution. As agents in the second layer and beyond can
share upstream neighbours, the covariance between their estimates is typically non-zero. We show that
under the assumption that the variance of the initial measurements and the structure of the network are
known to all agents, each agent knows the full joint posterior distribution over s for all agents it receives
information from.

Weight matrices

We define the connectivity matrix C(k) for 1 ≤ k ≤ n − 1 as,

C(k)

ij =
{

1, if a(k)

j communicates with a(k+1)

i

0, otherwise.
(2.1)

An agent receives a subset of estimates from the previous layer determined by this connectivity matrix. The
agent then uses this information to make its own, maximum-likelihood estimate of s. By our assumptions,
this estimate will be a linear combination of the communicated estimates [23]. Denoting by ŝ(k) the vector
of estimates in the kth layer, we can therefore write ŝ(k+1)

i = w(k+1)

i · ŝ(k), and

ŝ(k+1) = W (k+1)ŝ(k).

Here W (k+1) is a matrix of weights applied to the estimates in the kth layer.
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Weighting by precision

We can write ŝ(1) = W (1)x where W (1) is the identity matrix and x is the vector of measurements
made in the first layer. We assume that all measurements have finite, non-zero variance. Using standard
estimation theory results [23], we can compute the optimal estimates for agents in the second layer.
Defining wi := 1

σ2
i

, we can calculate W (2) entrywise: w(2)

ij is 0 if agent a(2)

i does not communicate with

a(1)

j . Otherwise w(2)

ij = w(1)
j∑

k→i w(1)
k

, where the sum is taken over all agents in the first layer that communicate

with agent a(2)

i . Therefore,

ŝ(2) = W (2) ŝ(1) = W (2)W (1)x . (2.2)

Covariance matrices

The estimates in the second layer and beyond can be correlated. Let Lk be the number of agents in the
kth layer and for 2 ≤ k ≤ n − 1 define �(k) = (ξ

(k)

ij ) as the Lk × Lk covariance matrix of estimates in the
kth layer,

ξ
(k)

ij = Cov(ŝ(k)

i , ŝ(k)

j ).

When all of the weights are known, we have

ŝ(k) = W (k)ŝ(k−1) = W (k)W (k−1)ŝ(k−2) = · · · =
(

k−2∏
l=0

W (k−l)

)
ŝ(1). (2.3)

The ith row of
(∏k−2

l=0 W (k−l)
)

is the vector of weights that the agent a(k)

i applies to the first-layer estimates,

since its entries are the coefficients in s(k)

i .
The complete covariance matrix, �(k), can therefore be written as

�(k) = Cov(ŝ(k)) = Cov(W (k)ŝ(k−1)) = W (k) Cov(ŝ(k−1))
(
W (k)

)T
(2.4)

=
(

k−2∏
l=0

W (k−l)

)
Cov(ŝ(1))

(
k−2∏
l=0

W (k−l)

)T

=
(

k−2∏
l=0

W (k−l)

)
Diag

(
1

w1
, · · · ,

1

wL1

)(k−2∏
l=0

W (k−l)

)T

.

Now the ith agent in layer k ≥ 3, a(k)

i , can use �(k−1) to calculate w(k)

i . If the agent is not connected to
all agents in the (k − 1)th layer, it uses the submatrix of �(k−1) with rows and columns corresponding to
the agents in the previous layer that communicate their estimates to it. We denote this submatrix R(k−1)

i .
As in [24], we assume that we remove edges from the graph so that all submatrices R(k−1)

i are invertible,
but all estimates are the same as in the original network.
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An agent thus receives estimates that follow a multivariate normal distribution, N (ŝ(k−1)

j→i , R(k−1)

i ), see

[23]. The weights assigned by agent a(k)

i to the estimates of agents in the previous layer are therefore (see
also [24]),

w̃(k)

i =
1T

(
R(k−1)

i

)−1

1T
(

R(k−1)

i

)−1
1

. (2.5)

We define w(k)

i by using the corresponding entries from w̃(k)

i and setting the remainder to zero. In the
following, we describe the maximum-likelihood estimate that can be made from all the estimates in a
layer. For simplicity, we denote this final estimate by ŝ. The following results are standard [23].

Proposition 1 The posterior distribution over s of the final agent is normal with

ŝ = 1T (�(n−1))−1

1T (�(n−1))−1 1
ŝ(n−1) and Var [ŝ] = 1

1T (�(n−1))−1 1
, (2.6)

where �(n−1) is defined by Equations (2.4) and (2.5). Here ŝ is the maximum-likelihood, as well as
minimum-variance, unbiased estimate of s.

It follows from Equation (2.3) that the estimate of any agent in the network is a convex linear
combination of the estimates in the first layer.

Examples

Returning to the example in Fig. 1(a) we have

C(1) =
(

1 1 0
0 1 1

)
, W (2) =

(
1
2

1
2 0

0 1
2

1
2

)
, �(2) =

(
1
2

1
4

1
4

1
2

)
, (�(2))−1 = 16

3

(
1
2 − 1

4− 1
4

1
2

)

The final agent applies the weights W (3) = (
1
2 , 1

2

)
to the estimates from the second layer. We thus

have the final estimate ŝ = (
1
4 , 1

2 , 1
4

) · ŝ(1) with Var [ŝ] = 3
8 . The variance of the ideal estimate is 1

3 .
On the other hand, the final agent in the example in Fig. 1(b) makes an ideal estimate: Here W (2) =⎛

⎝ 1
2

1
2 0

1
2 0 1

2
0 1

2
1
2

⎞
⎠, �(2) =

⎛
⎝ 1

2
1
4

1
4

1
4

1
2

1
4

1
4

1
4

1
2

⎞
⎠, and after inverting �(2) we see that applying a weight of 1

3 to every

agent in the second layer gives the ideal estimate, ŝ = (
1
3 , 1

3 , 1
3

) · ŝ(1).

Remark If the agents have a proper normal prior with mean χ and variance σ 2
p , then agents in the first

layer make the estimate,

ŝ(1)

i = σ−2
i

σ−2
i + σ−2

p

xi + σ−2
p

σ−2
i + σ−2

p

χ ,
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with a similar form in the following layers. This does not change the subsequent results as long as all
agents have the same prior. Also, if each agent in the network makes a measurement, the general ideas
remain unchanged.

3. Results

We ask what graphical conditions need to be satisfied so that the agent in the final layer makes an ideal
estimate. That is, when does knowing all estimates of the agents in the (n − 1)st layer give an estimate
that is as good as possible given the measurements of all first-layer agents. We refer to a network in which
the final estimate is ideal as an ideal network.

Proposition 2 A network with n layers and σ 2
i �= 0 for i = 1, . . . , L1, is ideal if and only if the vector

of inverse variances, (w1, ..., wL1), is in the row space of the weight matrix product (
∏n−3

l=0 W (n−1−l)).

Proof. In this setting the ideal estimate is

ŝideal = 1∑
i wi

L1∑
i=1

wiŝ
(1)

i . (3.1)

The network is ideal if and only if there are coefficients βj ∈ R such that

ŝideal =
Ln−1∑
j=1

βj ŝ
(n−1)

j .

Matching coefficients with Equation (3.1), we need

1∑
j wj

L1∑
i=1

wiŝ
(1)

i = (
β1, ..., βLn−1

) · ŝ(n−1),

or equivalently,

1∑
j wj

(
w1, ..., wL1

) · ŝ(1) = (
β1, ..., βLn−1

) · W (n−1)ŝ(n−2)

= (
β1, ..., βLn−1

) ·
(

n−3∏
l=0

W (n−1−l)

)
ŝ(1).

Equality holds exactly when (w1, ..., wL1) is in the row space of
(∏n−3

l=0 W (n−1−l)
)

. �

In particular, a three-layer network with σ 2
i = σ for all i ∈ {1, . . . , L1} is ideal if and only if the vector

�1 = (1, 1, ..., 1) is in the row space of the connectivity matrix C(1) defined by Equation (2.1). We will use
and extend this observation below.
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Fig. 2. A W-motif spanning three layers.

3.1 Graphical conditions for ideal networks

We say that a network contains a W-motif if two agents downstream receive common input from a first-
layer agent, as well as private input from two distinct first-layer agents. Examples are shown in Figs 1(a)
and 2. A rigorous definition follows.

We will show that all networks that are not ideal contain a W-motif. However, the converse is not
true: The network in Fig. 1(b) contains many W-motifs, but is ideal. Therefore ideal networks can contain
a W-motif, as the redundancy introduced by a W-motif can sometimes be resolved. Hence, additional
graphical conditions determine if the network is ideal.

As shown in Fig. 2, in a W-motif there is a directed path from a single agent in the first layer to two
agents in the third layer. There are also paths from distinct first-layer agents to the two third-layer agents.
This general structure is captured by the following definitions.

Definition 1 The path matrix Pkl, l < k, from layer l to layer k is defined by,

Pkl
ij =

{
1, if there is a directed path from agent a(l)

j to agent a(k)

i

0, otherwise.

Definition 2 A network contains a W-motif if a path matrix from the first layer, Pk1, has a 2×3 submatrix

equal to

(
1 1 0
0 1 1

)
(modulo column permutation). Graphically, two agents in layer k are connected to

one common, and two distinct agents in layer 1.

Theorem 1 A non-ideal network in which every agent communicates its estimate to the subsequent layer
must contain a W-motif. Equivalently, if there are no W-motifs, then the network is ideal.

The proof of this theorem can be found in Appendix A. Intuitively, any agent receives estimates that
are a linear combination of first-layer measurements. If there are no W-motifs, any two estimates are either
obtained from disjoint sets of measurements, or the measurements in the estimate of one agent contain
the measurements in the estimate of another. When measurements are disjoint, there are no correlations
between the estimates and thus no degradation of information. When one set of measurements contains
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the other, then the estimates in the subset are redundant and can be discarded. Therefore, this redundant
information does not cause a degradation of the final estimate.

3.2 Sufficient conditions for ideal three-layer networks

We next consider only three-layer networks. This allows us to give a graphical interpretation of the
algebraic condition describing ideal networks in Proposition 2. To do so, we will use the following
corollary of the proposition.

Corollary 1 Let C(1) be defined as in Equation (2.1). Then a three-layer network is ideal if and only if
the vector m�1 is in the row space of C(1) over Z for some non-zero m ∈ N.

The proof is straightforward and provided in Appendix B for completeness. Note that the corollary is
not restricted to the case where first-layer agents have equal variance measurements; whether the network
is ideal or not depends entirely on the connection matrix C(1). The ith row of the matrix C(1) corresponds
to the inputs of agent a(2)

i , and the sum of the jth column is the out-degree of agent a(1)

j . Therefore,
Corollary 1 is equivalent to the following: If each second-layer agent applies equal integer weights to all
of its received estimates, then a three-layer network is ideal if and only if, for some choice of weights,
the weighted out-degrees of all agents in the first layer are equal. Hence, we have the following special
case:

Corollary 2 A three-layer network is ideal if all first-layer agents have equal out-degree in each
connected component of the network restricted to the first two layers.

In the connected network in Fig. 1(a), the second agent in the first layer has greater out-degree than
the others, while the agents in the first layer of the connected network in Fig. 1(b) have equal out-degree.

Some row reduction operations can be interpreted graphically. Let g be the input-map which maps
an agent, a(2)

i , to the subset of agents in the first layer that it receives estimates from. Formally, let P(A)

denote the power set of a set A, then g : {a(2)

1 , . . . , a(2)

L2
} → P{a(1)

1 , . . . , a(1)

L1
} is defined by a(1)

j ∈ g(a(2)

i ) if

agent a(1)

j communicates with agent a(2)

i , that is if C(1)

ij = 1.

If g(a(2)

i ) ⊆ g(a(2)

j ) for some i �= j, then some of the information received by a(2)

j is redundant, as

it is already contained in the estimate of agent a(2)

i . We can then reduce the network by eliminating the
directed edges from g(a(2)

i ) to a(2)

j , so that in the reduced network g(a(2)

i ) ∩ g(a(2)

j ) = ∅. This reduction
is equivalent to subtracting row i from row j of C(1) resulting in a connection matrix with the same row
space. By Proposition 2, the reduced network is ideal if and only if the original network is ideal. This
motivates the following definition.

Definition 3 A three-layer network is said to be reduced if g(a(2)

i ) is not a subset of g(a(2)

j ) for all
1 ≤ i �= j ≤ L2.

Reducing a network eliminates edges, and results in a simpler network structure. In a three-layer
network, this will not affect the final estimate: Since reduction leaves the row space of C(1) unchanged,
the final estimate in the reduced and unreduced network is the result of applying the same weights to
the first-layer estimates. This reduction procedure often simplifies identification of ideal networks to a
counting of out-degrees (see Corollary 2).
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10 S. STOLARCZYK ET AL.

Fig. 3. Example of a two-step network reduction. It is difficult to tell whether the network on the left is ideal. However, after the
reduction, all first-layer agents in each of the five connected components have equal out-degree. The network is therefore ideal.

Example

In Fig. 3, we illustrate a two-step reduction of a network. In both steps, an agent (colored differently)
has an input set which is overlapped by the input sets of some other second-layer agents (with bolded
borders). We use this to cancel the common inputs to the bolded agents and simplify the network. In the
first step, note that the lighter agent receives input (in a lighter shade) from a single first-layer agent.
We use this to remove all of the other connections (in the lightest shade) emanating from this first-layer
agent. In the second step, we again see that the lighter agent receives input (in the medium shade) that
is overlapped by input to the agent next to it. We can thus remove the redundant inputs (in the lightest
shade) to the bolded agent. The reduced network has 5 connected components all containing vertices
with equal out-degree. Hence, this network is ideal by Corollary 2.

3.3 Variance and bias of the final estimate

We next consider how the variance and bias of the estimate in layer n depend on the network structure. By

definition, the variance of the ideal estimate is Var(ŝ) =
(∑L1

i=1 wi

)−1
. If the variances of the individual

estimates are bounded above as the size of the network increases, the final estimate in an ideal network
is consistent: As the number of measurements increases the final estimate converges in probability to
the true value of s [23]. We next show that the final estimate in non-ideal networks is not necessarily
consistent. We also show that biases of certain first-layer agents can have a disproportionate impact on
the bias of the final estimate.

Example (variance maximizing network structure)

Figure 4 shows an example of a network structure for which the variance of the final estimate converges to
a positive number as the number of agents in the first layer increases. We assume that all first-layer agents
make measurements with unit variance. We will show that as the number of agents in both layers increases,
the variance of the final estimate approaches 1/4. Let the estimate of the central agent be s(1)

1 . Then each
agent in the second layer makes an estimate 1

2 (s
(1)

1 + s(1)

i ) for some i �= 1. By symmetry the single agent in

the last layer averages all estimates from the second layer to obtain ŝ = 1
2 (s

(1)

1 + 1
L1−1

∑L1
i=2 s(1)

i ). Therefore,
the estimate of the central agent (which communicates with all agents in the second layer) receives a
much higher weight than all other estimates from the first layer. The variance of the final estimate thus
equals

Var(ŝ) = 1

4
+ 1

4(L1 − 1)
.

Hence, the final estimate is not consistent, as its variance remains positive as the number of first-layer
agents, L1, diverges. Given a restriction on the number of second-layer agents, we show that this network
leads to the highest possible variance of the final estimate:

Downloaded from https://academic.oup.com/comnet/article-abstract/doi/10.1093/comnet/cnx032/4124869/Loss-of-information-in-feedforward-social-networks
by New York University user
on 19 September 2017



LOSS OF INFORMATION IN FEEDFORWARD SOCIAL NETWORKS 11

Fig. 4. Example of a network with an inconsistent final estimate. The larger and smaller nodes represent agents in the first and
second layer, respectively. Each second-layer agent receives input from the common, central agent and a distinct first-layer agent,
and thus L2 = L1 − 1.

Proposition 3 The final estimate in the network in Fig. 4 has the largest variance among all three-layer
networks with a fixed number L1 ≥ 4 of first-layer, and L2 ≥ L1 − 1 second-layer agents, assuming that
every first-layer agent makes at least one connection.

The idea of the proof is to limit the possible out-degrees of the agents in the first layer and show that
the structure in Fig. 4 has the highest variance for this restriction. The proof is provided in Appendix C.

In general, we conjecture that for the final estimate to have large variance, some agents upstream must
have a disproportionately large out-degree, with the remaining agents making few connections. On the
other hand, as the in-degree of a second-layer agent increases, the variance of its estimate shrinks. Thus
when a few agents communicate information to many, the resulting redundancy is difficult to resolve
downstream. But when downstream agents receive many estimates, we expect the estimates to be good.
We next show that the biases of the agents with the highest out-degrees can have an outsized influence
on the estimates downstream.

Propagation of biases

We next ask how biases in the measurements of agents in the first layer propagate through the network.
Ideally, such biases would be averaged out in subsequent layers. To simplify the analysis we assume
constant, additive biases, ŝ(1)

i = xi + bi, with the constant bias, bi. Downstream agents are unaware of
these biases, and therefore assume them to be zero. Since all estimates in the network are convex linear
combinations of first-layer measurements, the final estimate will have the form

ŝ =
∑

αi (xi + bi) =
∑

αixi +
∑

αibi, (3.2)

and thus will have finite bias bounded by the maximum of the individual biases.
We have provided examples of network structures where the estimate of a first-layer agent was given

higher weight than others, even when all first-layer measurements had equal variance. Equation (3.2)
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12 S. STOLARCZYK ET AL.

shows that this agent’s bias will also be disproportionately represented in the bias of the final estimate.
Indeed, in the example in Fig. 1(a), the estimate of second agent in first layer has weight 1

2 , and its bias
will have twice the weight of the other agents in the final estimate. Similarly, the bias of the central agent
in Fig. 4 will account for half the bias of the final estimate as n → ∞. Thus even if the biases, bi, are
distributed randomly with zero mean, the asymptotic bias of the final estimate does not always disappear
as the number of measurements increases.

More generally, networks that contain W-motifs can result in biases of first-layer agents with dispro-
portionate impact on the final estimate. As with the variance, we conjecture that the bias of agents that
communicate their estimates to many agents downstream will be disproportionately represented in the
final estimate. Equivalently, if the network contains agents that receive many estimates, we expect the
bias of the final estimate to be reduced.

3.4 Inference in random feedforward networks

We have shown that networks with specific structures can lead to inconsistent and asymptotically biased
final estimates. We now consider networks with randomly and independently chosen connections between
layers. Such networks are likely to contain many W-motifs, but it is unclear whether these motifs are
resolved and whether the final estimate is ideal. We will use results of random matrix theory to show that
there is a sharp transition in the probability that a network is ideal when the number of agents from one
layer exceeds that of the previous layer [25].

We assume that connections between agents in different layers are random, independent and made
with fixed probability, p. We will use the following result of [26], also discussed by [25]:

Theorem 2 (Komlos) Let ξij, i, j = 1, . . . , n be i.i.d. with non-degenerate distribution function F(x).
Then the probability that the matrix X = (ξij) is singular converges to 0 with the size of the matrix,

lim
n→∞ P(det X = 0) = 0.

Corollary 3 For a three-layer network with independent, random, equally probable (p = 1/2)
connections from first to second-layer, as the number of agents L1 and L2 increases,

L1

L2
≤ 1 =⇒ P(ŝ = ŝideal) → 1,

and

L1

L2
> 1 =⇒ P(ŝ = ŝideal) → 0.

The proof is given in Appendix D. The same proof works when L1/L2 ≤ 1 and the probability of a
connection is arbitrary, p ∈ (0, 1]. We conjecture that the result also holds for L1/L2 > 1 and arbitrary
p, but the present proof relies on the assumption that p = 1/2. Figure 5 shows the results of simulations
which support this conjecture: The different panels correspond to different connection probabilities, and
the curves to different numbers of agents in the first layer. As the number of agents in the second layer
exceeds that in the first, the probability that the network is ideal approaches 1 as the number first-layer
agents increases. With 100 agents in the first layer, the curve is approximately a step function for all
connection probabilities we tested.
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Fig. 5. The probability that a random, three-layer network is ideal for connection probabilities p = 0.1 (left), 0.5 (centre) and 0.9
(right). In each panel, the different curves correspond to different, but fixed numbers of agents in the first layer. The number of
agents in the second layer is varied. There is a sharp transition in the probability that a network is ideal when the number of agents
in the second layer exceeds the number in the first. Simulation details can be found in Appendix E.

Fig. 6. The probability that a random, four-layer network is ideal for connection probabilities p = 0.1 (left), 0.5 (centre) and 0.9
(right). Each curve corresponds to equal, fixed numbers of agents in the first two layers, with a changing number of agents in the
third layer. Simulation details can be found in Appendix E.

More than 3 layers

We conjecture that a similar result holds for networks with more than three layers:

Conjecture For a network with n layers with independent, random, equally probable connections
between consecutive layers, as the total number of agents increases,

Lk ≤ Lk+1 for 1 ≤ k < n − 1 =⇒ P(ŝ = ŝideal) → 1

and

L1 > Lk for some 1 < k < n =⇒ P(ŝ = ŝideal) → 0.

Figure 6 shows the results with four-layer networks with different connection probabilities across
layers. The number of agents in the first and second layers are equal, and we varied the number of agents
in the third layer. The results support our conjecture.

With multiple layers (n ≥ 4) , if L1 > L2 then the network will not be ideal as in the limit the estimate
of s will not be ideal already in the second layer by Corollary 3. If the number of agents does not decrease
across layers, we conjecture that the probability that information is lost across layers is small when the
number of agents is large. Indeed, it seems reasonable that the products of the random weight matrices
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14 S. STOLARCZYK ET AL.

will be full rank with increasing probability allowing us to apply Proposition 2. However, the entries in
these matrices are no longer independent, so classical results of random matrix theory no longer apply.

4. Conclusion

We examined how information about the world propagates through layers of rational agents. We assumed
that at each step, a group of agents makes an inference about the state of the world from information
provided by their predecessors. The setup is related, but different from information cascades where a
chain of rational agents make decisions in turn [15, 20–22], or recurrent networks where agents exchange
information iteratively [6]. The assumption that the observed variables in our analysis follow a Gaussian
distribution simplified the analysis considerably. However, we believe that the main results hold under
more general assumptions. Our preliminary work shows that when agents in the first layer make a Boolean
measurement the presence of W-motif is necessary to prevent ideal information propagation. For more
general measurements, for instance a sample from the exponential family of distribution, a non-linear
estimator would be needed, and the analysis becomes more complicated.

Related results have been obtained by Acemoglu, et al. [7] who considered social networks in which
individuals receive information from a random neighbourhood of agents. They show that agents can make
the right choice, or infer the correct state of the world as network size increases when a finite group of
agents does not account for most of the information that is propagated through the network. However, the
setting of this study is somewhat different from ours: Agents are assumed to only observe each other’s
actions, but do not share their belief about the binary state of the world.

We translated the question about whether the estimate of the state of the world degrades across layers
in the network to a simple algebraic condition. This allowed us to use results of random matrix theory
in the case of random networks, find equivalent networks through an intuitive reduction process, and
identify a class of networks in which estimates do not degrade across layers, and another class in which
degradation is maximal.

Networks in which estimates degrade across layers must contain a W-motif. This motif introduces
redundancies in the information that is communicated downstream and may not be removed. Such redun-
dancies, also known as ‘bad correlations,’ are known to limit the information that can be decoded from
neural responses [27, 28]. This suggests that agents with large out-degrees and small in-degrees can hin-
der the propagation of information, as they introduce redundant information in the network. On the other
hand, agents with large in-degrees integrate information from many sources, which can help improve
the final estimate. However, the detailed structure of a network is important: For example, an agent with
large in-degree in the second layer can have a large out-degree without hindering the propagation of
information as it has already integrated most available first-layer measurements.

To make the problem tractable, we have made a number of simplifying assumptions. We made the
strong assumption that agents have full knowledge of the network structure. Some agents may have to
make several calculations in order to make an estimate, so we also do not assume bounded rationality [29].
This is unlikely to hold in realistic situations. Even when making simple decisions, pairs of agents are
not always rational [3]: When two agents each make a measurement with different variance, exchanging
information can degrade the better estimate.

The assumption that only agents in the first layer make a measurement is not crucial. We can obtain
similar results if all agents in the network make independent measurements, and the information is
propagated directionally, as we assume here. However, in such cases, the confidence (inverse variance of
the estimates) typically becomes unbounded across layers.
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28. Bhardwaj, M., Carroll, S., Ma, W. J. & Josić, K. (2015) Visual decisions in the presence of measurement

and stimulus correlations. Neural Comput., 27, 2318–2353.
29. Bala, V. & Goyal, S. (1998) Learning from neighbours. Rev. Econ. Stud., 65, 595–621.

Appendix A. Proof of Theorem 1

We start with the simpler case of a W-motif between the first two layers and then extend it to the general
case. We begin with definitions that will be used in the proof.

Let g be the input-map which maps an agent to the subset of agents in the first layer that it receives
information from (through some path). That is, g(a(j)

i ) is the set of agents in the first layer that provide
input to a(j)

i . It is intuitive—and we show it formally in Lemma A1—that a network contains a W-motif
if each of the inputs to two agents, A and B are not contained in the other, and their intersection is not
empty. That is, g(A) �⊆ g(B) and g(B) �⊆ g(A), but g(A) ∩ g(B) �= ∅. If these conditions are met, we
also say that the inputs of A and B have a non-trivial intersection. If g(A) ⊆ g(B), we say that the input
of B overlaps the input of A: every agent which contributes to the estimate of A also contributes to the
estimate of B.

Similarly, we let f be the output-map which maps an agent, a(j)
i , to the set of all agents in the next,

j +1st, layer that receive input from a(j)
i . We first prove a few lemmas essential to the proof of Theorem 1.

Lemma A1 Assume a network does not contain a W-motif and there are two agents, a(k)

i1
and a(k)

i2
, with

g(a(k)

i1
) ∩ g(a(k)

i2
) non-empty. Then g(a(k)

i1
) overlaps or is overlapped by g(a(k)

i2
).

Proof. We prove the claim by contradiction. If one input does not overlap the other, then there are two
distinct first-layer agents a(1)

n1
and a(1)

n2
such that a(1)

n1
∈ g(a(k)

i1
)\g(a(k)

i2
) and a(1)

n2
∈ g(a(k)

i2
)\g(a(k)

i1
). This means

Pk1
i1n1

= Pk1
i2n2

= 1 and Pk1
i1n2

= Pk1
i2n1

= 0. Since the inputs of the agents have non-empty intersection, we
also have Pk1

i1m = Pk1
i2m = 1 for some m. Thus there is a 2 ×3 submatrix of Pk1 which, up to rearrangement

of the columns, is equal to

(
1 1 0
1 0 1

)
and the network contains a W-motif, contrary to assumption. �

Every agent’s estimate is a convex linear combination of estimates in the first layer, given by Equation
(2.3). We will use the corresponding weight vectors in the following proofs. We show that in networks
without W-motifs, agents will only be receiving collections of estimates with weight vectors which
pairwise either have disjoint support (non-zero indices) or the support is contained in the support of the
other agent. Thus, with no W-motifs, no two agents have inputs with non-trivial intersection. The next
two lemmas will allow us to easily calculate the estimates of such agents.
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Lemma A2 Let r, s, t be positive integers, wi = σ−2
i , and consider three weight vectors applied by three

agents in layer k, a(k)

1 , a(k)

2 and a(k)

3 , to the estimates of the first layer:

v1 =
(

w1∑r
i=1 wi

, . . . ,
wr∑r
i=1 wi

, 0, . . . , 0

)

v2 =
(

w1∑r+s
i=1 wi

, · · · ,
wr+s∑r+s
i=1 wi

, 0, . . . , 0

)

v3 =
(

0, . . . , 0,
wr+s+1∑r+s+t
i=r+s+1 wi

, . . . ,
wr+s+t∑r+s+t
i=r+s+t wi

, 0, . . . , 0

)
.

An agent a(k+1)

i in f (a(k)

1 ) ∩ f (a(k)

2 ), but not in f (a(k)

3 ), will use weight vector v2. An agent a(k+1)

i in
f (a(k)

2 ) ∩ f (a(k)

3 ), but not f (a(k)

1 ), will use weight vector

v4 =
(

w1∑r+s+t
i=1 wi

, . . . ,
wr+s+t∑r+s+t
i=1 wi

, 0, ..., 0

)
.

Proof. First, consider an agent receiving the first two estimates with weights v1 and v2. Suppose
that a fictitious agent receives a collection of estimates with weight vectors {z1, ..., zr+s}, where zi =
(0, . . . , 0, 1, 0, . . . , 0), that is, each estimate equals the measurement of agent a(1)

i . This fictitious agent
can obtain any linear combination of the first r + s measurements. The linear combination with low-
est variance has weights given by v2. Therefore, an agent receiving measurements corresponding to the
weight vectors v1 and v2 cannot do better than the estimate of agent a(k)

2 with weights given by v2.
A similar argument works when estimates are received from agents a(k)

2 and a(k)

3 . Since these two
agents make locally optimal estimates based on non-overlapping sets of measurements in the first layer,
the best estimate is obtained by combining the two sets of measurements. This is precisely the estimate
corresponding to the weights given by vector v4. �

Lemma A3 Suppose an agent, a(k)

i , receives a collection of estimates such that for any pair, there is
a relabelling of agents in the first layer that makes the pair look like v1 and v2 or like v2 and v3 in
Lemma A2. Then, up to some relabelling of the agents in the first layer, that agent will make an estimate
with corresponding weight vector

v =
(

w1∑r
i=1 wi

, . . . ,
wr∑r
i=1 wi

, 0, . . . , 0

)
.

Proof. Let the vectors zi be defined as in the proof of Lemma A2. Relabel the first-layer agents so that only
the first r entries of the weight vector applied by agent a(k)

i are non-zero. Then a fictitious agent receiving
estimates with weight vectors zi, 1 ≤ i ≤ r can construct any estimate that agent a(k)

i can obtain. The
optimal estimate of this fictitious agent has weight vector v. Hence if some linear combination of the weight
vectors of estimates communicated to agent a(k)

i equals v, this linear combination defines the best estimate.
Then for each j = 1, ..., r, we can find a weight vector, vj, which is non-zero in the jth entry with

support that contains the support of every other weight vector which is non-zero in the jth entry. Such a
vector exists by the assumption that any two vectors have disjoint support or the support of one contains
the other. Therefore, we can find the weight vector with maximal support for each entry. If we take the
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distinct elements of {vj : 1 ≤ j ≤ r}, then these maximal weight vectors will have disjoint support that
partitions the first r indices. Therefore,

v = 1∑r
i=1 wi

∑
vj distinct

⎛
⎜⎝ r∑

i=1,vi
j non-zero

wi

⎞
⎟⎠ vj,

which shows the lemma. �

We now state and prove the three-layer case of Theorem 1 and then use it to finish the proof of
Theorem 1.

Proposition A1 If a three-layer network is not ideal and every first-layer agent communicates with at
least one second-layer agent, then the network must contain a W-motif.

Proof. Assume the network does not contain a W-motif. Given a first-layer agent a(1)

i , Lemma A1 says
that for any two agents in f (a(1)

i ), one agent’s input must overlap the other. Two second-layer agents thus
receive estimates with input sets where one overlaps the other, or the sets do not intersect. Thus the set
of weight vectors in the second layer satisfies the assumptions of Lemma A3. As all agents from the first
layer communicate with the final agent, the network is ideal. �

To obtain the proof of Theorem 1, we use induction with Proposition A1 as a base case.

Proof of Theorem 1.. Assume the network has n layers, there are no W-motifs, and every agent (except
those in the first layer) receives input from at least one other agent. Lemma A1 implies that in the
second layer each pair of agents has either disjoint input or one overlaps the other. Thus in the
third layer, by relabelling the agents, each agent makes an estimate with weight vector of the form:

1∑r
i=1 wi

(w1, . . . , wr , 0, . . . , 0).

Now assume that any estimate in layer k can be put in this form by relabelling the agents. Since there
are no W-motifs, Lemma A1 implies that set of measurements used by agents a(k)

i1
and a(k)

i2
is disjoint or

overlapping. This again allows us to apply Lemma A3 and any agent in layer k + 1 makes an estimate
whose weight vector again has the form 1∑r

i=1 wi
(w1, . . . , wr , 0, . . . , 0). Applying the same argument to the

final agent, where every entry will be non-zero in some penultimate-layer agent’s weight vector, we have
that the network is ideal.

�

Appendix B. Proof of Corollary 1

We will show that a three-layer network is ideal if and only if m�1 is in the row space of C(1) over Z for
some m ∈ N. We do this by first showing that the network is ideal if and only if �1 is in the row space of
C(1) over R, and then we show that this is equivalent to m�1 being in the row space of C(1) over Z.

By Proposition 2, a three-layer network is ideal if and only if (w1, . . . , wL1) is in the row space of
W (2). We claim that this is equivalent to �1 being in the row space of C(1): Multiplying each row of W (2)

by the common denominator of the non-zero entries gives

R(W (2)) = R(C(1)Diag(w1, . . . , wL1)),
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where R denotes the row space. By definition, �1 is a linear combination of the rows of C(1) if and only if

1 =
∑

i

βiC
(1)

ij , ∀j.

This holds if and only if

wj =
∑

i

βiwjC
(1)

ij , ∀j.

The last equality is equivalent to

(w1, . . . , wL1) =
∑

i

βi(C
(1)Diag(w1, . . . , wL1))i,

which means (w1, . . . , wL1) is in the row space of W (2). Hence, for three-layer networks, the network is
ideal if and only if the vector �1 is in the row space of C(1) over R.

Thus it remains to show that �1 ∈ R(C(1)) over R is equivalent to �1 ∈ R(C(1)) over Z. If m�1 ∈ R(C(1))

over Z, then it is a linear combination of the rows of C(1) with integer coefficients. Multiplying the
coefficients of this linear combination by 1

m shows that �1 is in the row space of C(1) and hence the network
is ideal.

If �1 is in the row space of C(1) over R, then by closure of Qn this means there is some linear combination
of the rows of C(1) over Q which is equal to �1:

L2∑
i=1

αiC
(1)

i = �1, αi ∈ Q.

Multiplying both sides by the absolute value of the product of the denominators of the non-zero αi shows
that

L2∑
i=1

βiC
(1)

i = m�1, βi ∈ Z

for some m ∈ N and thus m�1 is in the row space of C(1) over Z.

Appendix C. Proof of Proposition 3

We will show that the network architecture that maximizes the variance of the final estimate for a given
number of first and second-layer agents is the one shown in Fig. 4. To simplify notation we write L1 = n
and L2 = m.

Lemma C1 If d = (d1, ..., dn) is the vector of out-degrees in the first layer, so di = |f (a(1)

i )|, then to
maximize the variance of the final estimate, d must equal (m, 1, . . . , 1), up to relabelling.

Proof of Claim. Given a network structure consider the naïve estimate:

1

Z

∑
i

|g(a(2)

i )|ŝ(2)

i = 1∑
ij C(1)

ij

∑
i

C(1)

i · ŝ(1), (C.1)
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where Z is a normalizing factor that makes the entries of the corresponding vector of weights sum to 1.
This estimate can always be made and is the same as using a linear combination of estimates of agents a(1)

j

with weights di∑n
j=1 dj

. Thus the variance of the optimal estimate of the agent in the final layer is bounded

above by the variance of the naïve estimate in Equation (C.1). By assumption 1 ≤ dj ≤ m for all j. For
the network in Fig. 4, this naïve estimate equals the final estimate. Thus it is sufficient to show that the
naïve estimate has maximal variance when d = (m, 1, . . . , 1), up to relabelling.

The variance, V , of the naïve estimate is:

V(d1, . . . , dn) =
∑

j

(
dj∑n

k=1 dk

)2

.

If we treat the degrees as continuous variables then V is continuous on d ∈ [1, m]n and we can
calculate the gradient of V to find the critical points.

∂V

∂di
= 2

(
di∑
k dk

) ∑
k dk − di(∑

k dk

)2 +
∑
j �=i

2

(
dj∑
k dk

) −dj(∑
k dk

)2 .

Setting ∂V
∂di

= 0 and multiplying both sides by 1
2

(∑n
k=1 dk

)3
gives

0 = di(
∑
k �=i

dk) −
∑
j �=i

d2
j =

∑
j �=i

dj(di − dj).

This shows that d = k�1 for k = 1, . . . , m are the only critical points, since if there exist di ≤ dj, for all
j �= i and di < dk for some k �= i then the right hand side would be negative. These critical points are
the first-layer out-degrees of ideal networks by Corollary 2, hence they are minima. This implies that V
takes on its maximum values on the boundary.

The boundary of [1, m]n consists of points where at least one coordinate is 1 or m. Since V is invariant
under permutation of the variables, we set d1 equal to one of these values and investigate the behaviour
of V on this restricted set.

First set d1 = m. Setting ∂V
∂di

to 0 on this boundary gives:

0 = m(di − m) +
∑
j �=i,1

dj(di − dj).

One critical point is thus m�1. If di ≤ dj for j �= i and di < m then again the right hand side would be
negative. Hence di = m for all i, and there are no critical points on the interior of {m} × [1, d]n−1.

Next if d1 = 1, setting ∂V
∂di

to 0 on this boundary and multiplying by −1 gives:

0 = 1 − di +
∑
j �=i,1

dj(dj − di).

Here a critical point is �1. If di ≤ dj for j �= i and 1 < di < m then again the right hand side would be
negative. Hence di = 1 for all i, and there are no critical points on the interior of {1} × [1, d]n−1. If we
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iterate this procedure, we see that the maximum value of V must occur on the corners of the hypercube
[1, d]n.

Choose one of these corners, c, and, without loss of generality, assume that the first l coordinates are
m and the last n − l coordinates are 1, 1 ≤ l < n. Then

V(c) =
l∑

j=1

(
m∑n

k=1 dk

)2

+
n∑

j=l+1

(
1∑n

k=1 dk

)2

=
(

1

lm + (n − l)

)2 (
lm2 + (n − l)

)

= lm2 + n − l

l2m2 + 2lm(n − l) + (n − l)2

= l(m2 − 1) + n

l2(m − 1)2 + l2n(m − 1) + n2
.

Under the assumption that m ≥ n − 1, a lengthy algebra calculation that we omit shows that this is
maximized for l = 1. Hence the maximum value of V is achieved at (m, 1, . . . , 1), or any of its coordinate
permutations.

�

Finally, to have d = (m, 1, . . . , 1), one first-layer agent, a(1)

1 , communicates with all second-layer
agents and every other agent has exactly one output. Since there are at least n − 1 agents in the second
layer, this means that each first-layer agent must communicate with a distinct second-layer agent and
each second-layer agent must receive input from a(1)

1 . Otherwise, some agent in the second layer would
receive only the input from a(1)

i and thus the final estimate could use that estimate to decorrelate all of
the second-layer estimates.

So, the naïve estimate for an alternative network has smaller variance than the ideal estimate for the
ring network in Fig. 4. Hence the final estimate in any alternative network will have smaller variance.
Since the only network with d = (m, 1, . . . , 1) is the network in Fig. 4, we have shown that this structure
maximizes the variance of the final estimate among all networks with L2 ≥ L1 − 1.

Appendix D. Proof of Corollary 3

Whether or not ŝideal = ŝ is determined by C(1). For simplicity, we drop the superscript and refer to this
connectivity matrix as C. By our assumption, this is a random matrix with P(Cij = 0) = P(Cij = 1) =
1/2.

First assume that there are at least as many second-layer agents as there are first-layer agents: L2 ≥ L1

or L1
L2

≤ 1. Then C is a random L2 × L1 matrix with i.i.d. non-degenerate entries that has more rows than
columns. By Theorem 2, this means that the L1 × L1 submatrix formed by the first L1 rows and columns
is non-singular with probability approaching 1 as L1, L2 → ∞. Thus the probability that the row space
of C contains the vector �1 converges to 1 with the size of the network.

Next assume that there are fewer second-layer agents than first-layer agents, that is L2 < L1 or L1
L2

> 1.

We will show that the probability that the row space of C contains �1 goes to zero as L1, L2 → ∞. Since
increasing the number of rows will not decrease the probability that C contains a vector in its row space
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we assume that L2 = L1 − 1 and let L1 = n:

lim
L1,L2→∞

P(ŝ = ŝideal) ≤ lim
n→∞ P(�1 ∈ R(C(n − 1, n))),

where C(n − 1, n) refers to the random matrix as before, and identifies that it has n − 1 rows and n
columns. We first use:

P(�1 ∈ R(C(n − 1, n))) ≤ P(

(�1
C

)
is singular)

since if �1 is the row space of C, then attaching that row of ones to it would create a singular matrix.

Lemma D1 P

(
det

((�1
C

))
= 0

)
→ 0 as n → ∞.

We can rewrite C = (
B v

)
, where v is the nth column of C and B is the remaining submatrix. We

claim

det

((�1
C

))
= −1k det

((�1 1
B̃ �0

))
= −1k+n+1 ∗ det(B̃), (D.1)

where B̃ is a random (n − 1) × (n − 1) matrix distributed like C. Assuming this claim, then by [26] :

P

(
det

((�1
C

= 0

)))
= P

(
det(B̃) = 0

)
→ 0 as n → ∞.

Thus P(�1 ∈ R(M(n − 1, n))) → 0 as n → ∞.

To prove the first equality in Equation (D.1), we use row operations on

(�1 1
B v

)
: If vi = 1 then

subtract the first row from the ith row, (Bi vi), to get a vector whose entries are all 0 and −1. Then
(Bi vi) → −(B̃i 0) where (B̃i 0) is a vector of entries which are again either 0 or 1 with equal probability.
We do this for every row which has a 1 in its last entry and multiply the determinant a factor −1 and
denote the number of these reductions as k. Since P(Cij = 0) = 1

2 we also have P(B̃ij = 0) = 1
2 .

Appendix E. Details of simulations

All simulations were done in MATLAB. For the three-layer networks, we randomly generated binary
connection matrices and tested whether or not the vector �1 was in the row space. Each point in the
plots corresponds to the number of agents in the first two layers for a given connection probability and
was generated using at least 10,000 samples. The code used for these simulations can be found at the
repository https://github.com/Spstolar/FFNetInfoLoss.
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