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Efficient probabilistic inference in generic neural
networks trained with non-probabilistic feedback
A. Emin Orhan1 & Wei Ji Ma1,2

Animals perform near-optimal probabilistic inference in a wide range of psychophysical tasks.

Probabilistic inference requires trial-to-trial representation of the uncertainties associated

with task variables and subsequent use of this representation. Previous work

has implemented such computations using neural networks with hand-crafted and task-

dependent operations. We show that generic neural networks trained with a simple error-

based learning rule perform near-optimal probabilistic inference in nine common

psychophysical tasks. In a probabilistic categorization task, error-based learning in a generic

network simultaneously explains a monkey’s learning curve and the evolution of qualitative

aspects of its choice behavior. In all tasks, the number of neurons required for a given level of

performance grows sublinearly with the input population size, a substantial improvement on

previous implementations of probabilistic inference. The trained networks develop a novel

sparsity-based probabilistic population code. Our results suggest that probabilistic inference

emerges naturally in generic neural networks trained with error-based learning rules.
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When faced with noisy and incomplete sensory infor-
mation, humans and other animals often behave near-
optimally1–6. In many tasks, optimal behavior requires

that the brain compute posterior distributions over task-relevant
variables, which often involves complex operations such as
multiplying probability distributions or marginalizing over latent
variables. How do neural circuits implement such operations? A
prominent framework addressing this question is the probabilistic
population coding (PPC) framework, according to which the
population activity on a single trial encodes a probability
distribution rather than a single estimate and computations with
probability distributions can be carried out by suitable operations
on the corresponding neural responses7, 8. For example, Ma et al.7

showed that if neural variability belongs to a particular class
of probability distributions, the posterior distribution in cue
combination tasks can be computed with a linear combination of
the input responses. Moreover, in this scheme, the form of
neural variability is preserved between the input and the output,
leading to an elegantly modular code. In more complex tasks,
linear operations are insufficient and it has been argued that
multiplication and division of neural responses are necessary for
optimal inference9–13.

Upon closer look, however, these previous implementations of
PPC suffer from several shortcomings. First, the networks in these
studies were either fully manually designed, or partially manually
designed and partially trained with large amounts of probabilistic
data to optimize explicitly probabilistic objectives, for example,
minimization of Kullback-Leibler (KL) divergence. Therefore, this
literature does not address the important question of learning:
how can probabilistic inference be learned from a realistic
amount and type of data with minimal manual design of the
networks? Second, although there are some commonalities

between the neural operations required to implement probabil-
istic inference in different tasks, these operations generally differ
from task to task. For instance, it has been argued that some form
of divisive normalization of neural responses is necessary in tasks
that involve marginalization10. However, the specific form of
divisive normalization that individual neurons have to perform
differs substantially from task to task. Therefore, it is unclear if
probabilistic inference can be implemented in generic neural
networks, whose neurons all perform the same type of neurally
plausible operation. Third, in these studies, the number of
neurons used for performing probabilistic inference scales
unfavorably with the size of the input population (linearly in the
case of cue combination, but at least quadratically in all other
tasks). Therefore, the question of whether these tasks can be
implemented more efficiently remains open.

In this paper, we address these issues. We show that generic
neural networks trained with non-probabilistic error-based
feedback perform near-optimal probabilistic inference in tasks
with both categorical and continuous outputs. Generic neural
networks of the type we use in this paper have a long history14–16,
and have recently been linked directly to cortical responses17–20.
Our main contribution is to connect generic neural networks to
near-optimal probabilistic inference in common psychophysical
tasks. For these tasks, we analyze the network generalization
performance, the efficiency of the networks in terms of
the number of neurons needed to achieve a given level of
performance, the nature of the emergent probabilistic population
code, and the mechanistic insights that can be gleaned from the
trained networks. We also investigate whether the time course
of error-based learning in generic neural networks is realistic for
a non-linguistic animal learning to perform a probabilistic
inference task.
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Fig. 1 General task set-up and network architectures. a General task set-up. Input populations encode possibly distinct stimuli, si, with Poisson noise. The
amount of noise was controlled through multiplicative gain variables, gi, which varied from trial to trial. b Training and test conditions. In the “all g”
condition, the networks were trained on all possible gain combinations (represented by the blue tiles); whereas in the “restricted g” condition, they
were trained on a small subset of all possible gain combinations. In both conditions, the networks were then tested on all possible gain combinations.
c–i Network architectures used for the seven main tasks. Different colors represent different types of units. For tasks with continuous output variables c–e,
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Results
Tasks. We trained generic feedforward or recurrent neural
networks on nine probabilistic psychophysical tasks that are
commonly studied in the experimental and computational
literature. The main tasks were linear cue combination1–3,
coordinate transformation10, 16, Kalman filtering5, 6, 21, causal
inference4, 12, stimulus demixing10, binary categorization13, and
visual search with heterogeneous distractors11 (see “Methods”
section for task details). We also trained generic networks on two
additional “modular” tasks to be discussed below.

Networks. The networks all received noisy sensory information
about the stimulus or the stimuli in the form of a neural popu-
lation with Poisson variability (Fig. 1a). The hidden units of the
networks were modeled as rectified linear units (ReLUs). ReLUs
are commonly used in neural networks due to their demonstrated
advantage over alternative non-linearities in gradient-based
learning algorithms22. Linear (sigmoidal) output units were
used in tasks with continuous (categorical) outputs. Schematic
diagrams of the networks used for the seven main tasks are shown
in Fig. 1c–i. The Kalman filtering task requires memory, and is
thus implemented with a generic recurrent network. Other
differences between the network architectures are due entirely to
differences in the input and output requirements of different
tasks: different tasks have different numbers of inputs or outputs
and the outputs are continuous or categorical in different
tasks. Other than these task-dictated differences, the networks
are generic in the sense that they are composed of neurons
that perform the same type of biologically plausible operations
in all tasks.

Networks were trained to minimize mean squared error or
cross-entropy in tasks with continuous or categorical outputs,

respectively. Importantly, the networks were provided only with
the actual stimulus values or the correct class labels as feedback in
each trial. Thus, they did not receive any explicitly probabilistic
feedback, nor were they explicitly trained to perform probabilistic
inference.

For the main experiments, we manipulated sensory reliability
trial by trial via gain variables g multiplying the mean responses
of the input populations, with higher gains corresponding to
more reliable sensory information (Fig. 1a). We later consider
alternative ways of manipulating the sensory reliability
(see “Alternative representations of sensory reliability” section
below). In each task, networks were tested with a wide range of
gains or gain combinations (in tasks with more than a single
stimulus). To test the generalization capacity of the networks, we
trained them with a limited range of gains or gain combinations,
as well as with the full range of test gains or gain combinations.
The latter unrestricted training regime is called the “all g”
condition, whereas the former limited training regime is called
the “restricted g” condition in what follows (Fig. 1b). The specific
gain ranges and gain combinations used in each task are indicated
in the “Methods” section.

Trained generic networks implement probabilistic inference.
The performance of well-trained networks is shown in
Fig. 2c, d for both “all g” (black) and “restricted g” (red)
training conditions in all tasks (learning curves of the networks
are shown in Supplementary Fig. 1). For continuous tasks,
performance is measured in terms of fractional RMSE defined
as 100 × (RMSEnetw − RMSEopt)/RMSEopt, where RMSEnetw
is the root mean squared error (RMSE) of the trained
network, RMSEopt is the RMSE of the posterior mean estimate.
For categorical tasks, performance is measured in terms of
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Fig. 2 Performance of well-trained networks in the main tasks. a Optimal estimates vs. the network outputs in “all g” conditions of the continuous
tasks. Error bars represent standard deviations over trials. b Posterior probability of a given choice vs. the network output in “all g” conditions of the
categorical tasks. Error bars represent standard deviations over trials. For the SD task, where the output was four-dimensional, only the marginal posterior
along the first dimension is shown for clarity. c Performance in continuous tasks. d Performance in categorical tasks. Blue bars show the performance of
non-probabilistic heuristic models that do not take uncertainty into account. Note that optimal performance in the CT task does not require taking
uncertainty into account (see “Methods” section). Magenta bars show the performance of hand-crafted networks in categorical tasks reported in earlier
works. The asterisk in the VS task indicates that the information loss value reported in ref. 11 should be taken as a lower bound on the actual information
loss, since they were not able to build a single network that solved the full visual search task in that paper. In c, d, error bars (gray) represent means and
standard errors over 10 independent runs of the simulations. CC cue combination, CT coordinate transformation, KF Kalman filtering, BC binary
categorization, SD stimulus demixing, CI causal inference, VS visual search. Categorical tasks are labeled in green, continuous tasks in orange
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fractional information loss defined as the average
KL-divergence between the actual posterior and the network’s
output normalized by the mutual information between the
class labels and the neural responses13. With this measure, a
network that exactly reproduces the posterior achieves 0%
information loss, whereas a network that produces random
responses according to the prior probabilities of the classes
has 100% information loss. Figure 2a, b shows the optimal
outputs vs. the network outputs in “all g” conditions of the
continuous and categorical tasks, respectively (see Supplementary
Figs. 2–3 for the optimal vs. network estimates for individual
gain combinations in the cue combination and coordinate
transformation tasks).

To make sure that optimal performance in our tasks cannot be
easily mimicked by heuristic, non-probabilistic models, we also
calculated the performance of non-probabilistic reference models
that did not take the reliabilities of the inputs into account
(Fig. 2c, d, blue). In continuous tasks, the non-probabilistic
models estimated the individual cues or inputs optimally, but
combined them suboptimally by weighing them equally regard-
less of their reliability. Note that these models still performed a
non-trivial probabilistic computation, namely marginalizing out a
nuisance variable, i.e., the input gain, to come up with the optimal
estimate of the individual cues. Similarly, in categorical tasks, the
non-probabilistic models replaced the different reliability terms
for different inputs in the optimal decision rules by a common
reliability term (see “Methods” section). The large performance
gaps between these non-probabilistic models and the optimal
model suggest that approaching optimal performance in our
tasks requires correctly taking the reliabilities of the inputs
into account.

In categorical tasks, the output nodes of the networks
approximate the posterior probabilities of the classes given the
inputs (Fig. 2b, d). Theoretical guarantees ensure that this
property holds under general conditions with a wide range of loss
functions23 (see “Discussion” section).

Encoding of posterior width in the hidden layers. In continuous
tasks, training with the mean squared error loss guarantees
asymptotic convergence to the posterior mean. Do the networks
also represent information about the posterior uncertainty
in their hidden layers or do they discard this information?
Representation of posterior uncertainty is evident in the Kalman
filtering task, where accurate encoding of the posterior mean at a
particular moment already requires the encoding of the posterior
mean and the posterior width at the previous moment and the

optimal integration of these with the current sensory information
in the recurrent activity of the network.

For the linear cue combination and coordinate transformation
tasks, to test for the representation of posterior uncertainty in the
hidden layer, we plugged the trained hidden layers into a network
incorporating an additional input population and fixed their
parameters (Fig. 3a). The rest of the network was then trained
on a linear cue combination task with three input populations
(a similar modular task was designed in ref. 24). If the fixed
hidden layers do not encode the posterior width for the first two
inputs, the combined network cannot perform the three-input
cue combination task optimally. However, the combined
networks were able to perform the three-input cue combination
task with little information loss despite receiving information
about the first two inputs only through the fixed hidden layers
(Fig. 3b, c). This suggests that although the initial networks were
trained to minimize mean squared error, and hence were
asymptotically guaranteed to reproduce the posterior means
only, information about the posterior widths was, to a large
extent, preserved in the hidden layer. The precise format in which
posterior uncertainty is represented in the hidden layer activity
will be discussed in detail later (see “Sparsity-based representation
of posterior uncertainty” section below). The combined coordi-
nate transformation-cue combination (CT + CC) network also
illustrates the generic nature of the representations learned by the
hidden layers of our networks: the hidden layer of a network
trained on the coordinate transformation task can be combined,
without modification, with an additional input population to
perform a different task, i.e., cue combination in this example.

Generalization to untrained stimulus conditions. It has been
argued that truly Bayesian computation requires that the
components of the Bayesian computation, i.e., sensory likelihoods
and the prior, be individually meaningful to the brain25. Thus, if
we replace a particular likelihood for another, the system should
continue to perform near-optimally. We tested for a limited form
of such “Bayesian transfer” by examining whether the trained
networks generalize to unseen values or combinations of sensory
reliability (“restricted g” conditions). As shown in Fig. 2c, d
(red bars), the networks were able to generalize well beyond the
training conditions in all tasks. An example is shown in Fig. 4a
for the cue combination task. In this example, we trained a
network with only two gain combinations, g≡ (g1, g2)= (5, 5) and
g= (25, 25), and tested it on all gain combinations of the
form (g1, g2), where g1, g2 ∈ {5, 10, 15, 20, 25} with up to fivefold
gain differences between the two input populations (note that
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these gains are higher than those used in the main simulations to
make the optimal combination rule approximately linear). To
demonstrate that the trained networks performed qualitatively
correct probabilistic inference, we set up cue conflict conditions
similar to the cue conflict conditions in psychophysical studies2,
where we presented slightly different stimuli to the two input
populations and manipulated the degree of conflict between the
cues. The weights assigned to the first cue as a function of the
gain ratio, g1/g2, are shown in Fig. 4a both for the network and for
the optimal rule. The network achieved low generalization error
(fractional RMSE: 10.9%) even after as few as 50 training
examples in the impoverished training condition and performed
qualitatively correct probabilistic inference in the untrained
conditions. In particular, the network correctly adjusted
the weights assigned to the two cues even as the ratio of their
reliabilities varied over a 25-fold range (Fig. 4a).

The successful generalization performance of the neural
networks is a result of two factors. First, the target function is
invariant, or approximately invariant, to some of the gain
manipulations that differ between the training and test condi-
tions. In cue combination, for instance, the target function is
invariant to the scaling of the input populations by a common
gain g (Eq. 5). The second factor is the network’s inductive biases,
i.e., how it tends to behave outside the training domain. These
inductive biases depend on the details of the network
architecture26.

Alternative representations of sensory reliability. Thus far, we
have assumed that sensory reliability has a purely multiplicative
effect on the responses of input neurons. Although this
assumption likely holds for the effect of contrast on orientation
selectivity in visual cortex27, it is known to be violated for the
effect of motion coherence on direction selectivity28, 29 and for
the effect of contrast on speed selectivity30, and is unlikely to hold
in the general case. The importance of this observation is that the
linear Poisson-like PPC approach proposed in ref. 7 cannot
handle cases where “nuisance variables” such as contrast or
coherence do not have a purely multiplicative effect on neural
responses. By contrast, our approach does not make any
restrictive assumptions about the representation of stimulus
reliability in the input populations. We demonstrated this in two

cases (Fig. 4b, c): (i) cue combination with tuning functions of the
form reported in refs. 28, 29, where stimulus coherence affects
both the gain and the baseline of the responses (Fig. 4b, left) and
(ii) cue combination with tuning functions of the form reported
in ref. 30 for speed, where both the peak response and the
preferred speed depend on stimulus contrast (Fig. 4b, right).
These results provide evidence for the robustness of our approach
to variations in the way in which sensory reliability is encoded in
the input populations.

Sparsity-based representation of posterior uncertainty. We
now discuss how posterior uncertainty is represented in the
hidden layers of the trained networks. This discussion applies
only to our main experiments where sensory reliability in the
input populations is manipulated through purely multiplicative
gain. We first note that in tasks with continuous output variables,
the optimal solution is invariant to a multiplicative scaling g of
the input responses (see “Methods” section, Eqs. (5)–(8)). In such
gain-invariant (or approximately gain-invariant) tasks, we find
that posterior uncertainty is represented in the sparsity of hidden
layer activity. To understand the mechanism through which
this sparsity-based representation arises, we investigated the
conditions under which the network’s output would be invariant
to input gain scalings. We first derived an approximate analytical
expression for the mean response of a typical hidden unit μ, as a
function of the input gain g, the mean input μ to the hidden unit
for unit gain, and the mean μb and the standard deviation σb of
the biases of the hidden units (see “Methods” section).
To minimize the dependence of the mean hidden unit response
on g, we introduced the following measure of the total sensitivity
of μ to variations in g:

Tvar ¼
Z gmax

gmin

μ0 gð Þj jdg

where the prime represents the derivative with respect to g, and
numerically minimized Tvar with respect to μ, μb, and σb, subject
to the constraint that the mean response across different gains be
equal to a positive constant K. Tvar was minimized for a negative
mean input μ, positive μb, and a large σb value (black star in
Fig. 5a). We note that because the input responses are always
non-negative, the only way μ can be negative in our networks is if
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the mean input-to-hidden layer weight is negative. As an
approximate rule, decreasing μ and increasing μb or σb lead to
smaller Tvar values. A large μb causes a large proportion of the
input distribution to be above the threshold for low gains. The
negativity of the mean input μ implies that as the gain g increases,
the distribution of the total input to the unit shifts to the left
(Fig. 5b, top) and becomes wider, causing a smaller proportion of
the distribution to remain above the threshold (represented by
the dashed line in Fig. 5b), hence decreasing the probability that
the neuron will have a non-zero response (Fig. 5c, top). This
combination of large positive μb and negative μ causes the
sparsification of the hidden unit responses with increasing g.
Because increasing g also increases the variance of the total input
to the unit, the mean response for those inputs that do cross the
threshold increases (Fig. 5d, top). As a result, the mean response
of the neuron, which is a product of these two terms, remains
roughly constant (Fig. 5e, top).

We demonstrate this sparsification mechanism for a network
trained on the coordinate transformation task in Fig. 5f–i.
Because the coordinate transformation task is approximately
gain-invariant (see “Methods” section, Eq. (6)), the input-to-
hidden layer weight distribution in the trained network was
skewed toward negative values (Fig. 5f) and the mean bias of the
hidden units, μb, was positive (Fig. 5g), as predicted from our
simple mean-field model. Consequently, we found a strong
positive correlation between the sparsity of hidden layer
responses and the mean input response (r= 0.81, P< 10−6;
Fig. 5i), but no correlation between the mean hidden layer
response and the mean input response (r= 0.09, P> 0.05;
Fig. 5h).

The same type of analysis applies to the categorical tasks
as well. However, the difference is that for some of our tasks
with categorical outputs, in the optimal solution, the net
input to the output unit had a strong dependence on g.
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For example, in causal inference, the input to the sigmoidal
output unit scales approximately linearly with g (Eq. 10).
Similarly, in visual search, both global and local log-likelihood
ratios have a strong dependence on g (through ri in Eqs. (16)
and (17)). We emphasize that the distinction between
g-dependence and g-invariance is not categorical: different tasks
can have varying degrees of g-invariance or g-dependence
and parameter choices in the same task can affect its
g-dependence.

In the bottom panel of Fig. 5b–e, predictions from the mean-
field model are shown for a parameter combination where both μ
and μb are small and slightly negative (represented by the
magenta dot in Fig. 5a). This parameter combination roughly
characterizes the trained networks in the causal inference task
(Fig. 5j–m). In this case, because both μ and μb are close to 0, the
probability of non-zero responses as a function of g stays roughly
constant (Fig. 5c, bottom), causing the mean response to increase
with g (Fig. 5e, bottom).
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On the basis of our simple mean-field model, we therefore
predicted that for those tasks where the net input to the output
unit is approximately g-invariant, there should be a positive
correlation between the sparsity of hidden unit responses and the
input gain and no (or only a weak) correlation between the mean
hidden unit response and the input gain. On the other hand, in
tasks such as causal inference, where the net input to the output
unit has a strong g-dependence, we predicted a positive
correlation between the mean hidden unit response and the
input gain and no (or only a weak) correlation between the
sparsity of hidden unit responses and the input gain. We tested
these predictions on our trained networks and confirmed that
they were indeed correct (Fig. 6a, b). For causal inference, visual
search and stimulus demixing tasks, the correlation between the
mean input and the sparsity of hidden layer responses was weak
(Fig. 6f), whereas for the remaining tasks, it was strong and
positive. The opposite pattern was seen for the correlation
between the mean input and the mean hidden layer response
(Fig. 6a). In g-dependent tasks, such as causal inference, posterior
uncertainty is thus represented largely in the mean hidden layer
activity; whereas in approximately g-invariant tasks, such as
coordinate transformation, it is represented largely in the sparsity
of hidden layer activity. The sparsity-based representation of
posterior uncertainty in g-invariant tasks was again driven by
large negative mean input-to-hidden layer weights and large
positive mean biases (Fig. 6c, d).

The difference between these two types of tasks (g-invariant
and g-dependent) was also reflected in the tuning functions
that developed in the hidden layers of the networks. For
approximately g-invariant tasks, such as coordinate
transformation, increasing the input gain g sharpens the tuning
of the hidden units (Fig. 7a), whereas for g-dependent tasks, such
as causal inference, input gain acts more like a multiplicative
factor scaling the tuning functions without changing their shape
(Fig. 7b).

We finally emphasize that these results depend on the linear
read-out of hidden layer responses. In continuous tasks, for
example, if we use a divisively normalized decoder instead of a
linear read-out, posterior uncertainty is no longer encoded in the
sparsity of hidden layer responses, but in the mean hidden layer
response (Supplementary Fig. 6). Linear read-outs are frequently
used in the literature31–36, hence it is not an unrealistic
assumption.

Random networks. To investigate the architectural constraints
on the networks capable of performing near-optimal probabilistic
inference, we considered an alternative architecture, in which the
input-to-hidden layer weights and the biases of the hidden units
were set randomly and left untrained; only the hidden-to-output
layer weights and the biases of the output units were trained
(Fig. 8a). Such random networks can be plausible models of some
neural systems37, 38. Given the same amount of computational
resources, these networks performed substantially worse than
the fully trained networks (Fig. 8b). A well-known theoretical
result can explain the inefficiency of random networks39: the
approximation error of neural networks with adjustable hidden
units scales as O(1/n) with n denoting the number of hidden
units, whereas for networks with fixed hidden units, as in our
random networks, the scaling is much worse: O(1/n2/d), where
d is the dimensionality of the problem, suggesting that they need
exponentially more neurons than fully trained networks in order
to achieve the same level of performance.

Making the networks biologically more realistic. So far, we have
only considered feedforward networks with undifferentiated
neurons. To investigate whether introducing more biological
realism would severely constrain the capacity of the networks
to perform near-optimal probabilistic inference, following the
approach proposed in ref. 40, we trained fully recurrent networks
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with separate excitatory and inhibitory (EI) populations consist-
ing of rate neurons that respected Dale’s law: excitatory neurons
projecting only positive weights, inhibitory neurons-only negative
weights (see “Methods” section). The input populations were also
divided into excitatory and inhibitory subpopulations that obeyed
Dale’s law (Fig. 8c). The performance of these recurrent EI net-
works were slightly worse than, but not substantially different
from, the corresponding fully trained feedforward networks
(Fig. 8d). Moreover, recurrent neurons in these networks recoded
sensory reliability in a similar manner to the feedforward net-
works (Supplementary Fig. 4), suggesting that the main results
reported for feedforward networks are robust to the incorporation
of more biological realism into our networks.

Error-based learning accounts for the time course of behavior.
The dependence of the networks’ performance on the number of

training trials (Supplementary Fig. 1) suggests a possible expla-
nation for deviations from optimal inference sometimes observed
in experimental studies: i.e., insufficient training in the task.
Testing this hypothesis rigorously is complicated by possible prior
exposure of the subjects to similar stimuli or tasks under natural
conditions. Among the tasks considered in this paper, the binary
categorization task minimizes such concerns, because it involves
classifying stimuli into arbitrary categories. Moreover, in this task,
the behavior of both human and monkey observers were best
accounted for by heuristic models that were quantitatively sub-
optimal, but qualitatively consistent with the optimal inference
model13. Therefore, we sought to test the insufficient-training
hypothesis for suboptimal inference in this task.

The stimulus distributions for the two categories and
the decision boundaries predicted by the optimal (OPT) and
three suboptimal models (FIX, LIN, and QUAD) are shown in
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Fig. 9a, b. Different suboptimal models make different assump-
tions about the dependence of the decision boundary on the
sensory noise level, σ (Fig. 9b). In particular, the FIX model
assumes that the decision boundary is independent of σ, whereas
LIN and QUAD models assume that the decision boundary is a
linear or quadratic function of σ, respectively13. The learning
curve of a monkey subject who performed a large number of trials
in this task (monkey L in ref. 13) is shown in Fig. 9c together with
the performance of a neural network that received the same
sequence of trials as the subject. The input noise of the network
was matched to the sensory noise estimated for the subject and
the learning rate of the network was optimized to fit the learning
curve of the subject. The neural network was trained online,
updating its parameters after each trial, in an analogous manner
to how the monkey subject learned the task.

Besides providing a good fit to the learning curve of the subject
(Fig. 9c), the neural networks also correctly predicted the
progression of the models that best fit the subject’s data, i.e.,
early on in the training the QUAD model, then the LIN model
(Fig. 9d). When we performed the same type of analysis on
human subjects’ data, human observers consistently outper-
formed the networks and the networks failed to reproduce the
learning curves of the subjects (Fig. 9e). There might be several
possible non-exclusive explanations for this finding. First, prior to
the experiment, human observers were told about the task,
including what examples from each category looked like. This
type of knowledge would be difficult to capture with error-based
learning alone and might have given human observers a head-
start in the task. Second, human observers might have benefited
from possible prior familiarity with similar tasks or stimuli.
Third, human observers might be endowed with more powerful
computational architectures than simple generic neural networks
that allow them to learn faster and generalize better41.

Efficiency of generic networks. For each of our tasks, we
empirically determined the minimum number of hidden units, n*,
required to achieve a given level of performance (15% informa-
tion loss for visual search, 10% fractional RMSE, or information
loss for the other tasks) as a function of the total number of input
units, d, in our generic networks. An example is shown in Fig. 10a
for the causal inference task with d= 20 and d= 220. The scaling
of n* with d was better than O(d), i.e., sublinear, in all our tasks
(Fig. 10b and Supplementary Table 1). Previous theoretical work
suggests that this result can be explained by the smoothness
properties of the target functions and the efficiency of the generic
neural networks with adjustable hidden units. In particular,
Barron39 showed that the optimal number of hidden units in a
generic neural network with a single layer of adjustable hidden
units scales as Cf(d)/

ffiffiffi
d

p
with d, where Cf is a measure of the

smoothness of the target function, with more smooth functions
having lower Cf values. As an example, in ref. 39, it was shown
that for the d-dimensional standard Gaussian function, Cf can be
upper-bounded by

ffiffiffi
d

p
, leading to an estimate of O(1) hidden

units in terms of d. For some of our tasks (for example, binary
categorization; Fig. 10b), the scaling of n* with d was approxi-
mately constant over the range of d values tested, suggesting
smoothness properties similar to a d-dimensional standard
Gaussian. For the other tasks, the scaling was slightly worse, but
still sublinear in every case: in the worst case of coordinate
transformation, linear regression of log n* on log d yields a slope
of 0.56 (R2= 0.88, P< 10−6). We can gain some intuition about
the relatively benign smoothness properties of our tasks by
looking at the analytic expressions for the corresponding target
functions (Eqs. (5)–(17)): although the inputs are high dimen-
sional, the solutions can usually be expressed as smooth functions

of a small number of one-dimensional linear projections of the
inputs.

The efficiency of our generic networks contrasts sharply with
the inefficiency of the manually crafted networks in earlier PPC
studies7, 9–13: except for the linear cue combination task, these
hand-crafted networks used a quadratic expansion, which
requires at least O(d2) hidden units. Moreover, unlike generic
neural networks, these networks with hand-crafted hidden
units are not guaranteed to work well in the general case, if,
for example, the target function is not expressible in terms of
a quadratic expansion. Stacking the quadratic expansions
hierarchically to make the networks more expressive would
make the scaling of the number of hidden units with d even worse
(for example, ref. 11). The fundamental weakness of these hand-
crafted networks is the same as that of the random networks
reviewed above: they essentially use a fixed basis set theoretically
guaranteed to have much worse approximation properties than
the adjustable basis of hidden units used in our generic
networks39.

Discussion
We have shown that small generic neural networks trained with a
standard error-based learning rule, but without any explicitly
probabilistic feedback or training objective, implement probabil-
istic inference in simple psychophysical tasks and generalize
successfully beyond the conditions they are trained in. Our tasks
all assumed psychophysically realistic levels of sensory noise. At
these noise levels, simple heuristic non-probabilistic models that
do not take trial-to-trial uncertainty into account are unable to
mimic the performance of the trained networks and the optimal
models.

For tasks with continuous outputs, we trained our networks to
minimize the squared error loss function, which is minimized by
the posterior mean estimate. Given the universal approximation
guarantees for multilayer neural networks with rectified linear
hidden units42, it is not surprising that our networks can
approximate the posterior mean given enough hidden units
and training data. However, the findings that near-optimal
performance can be achieved even in small networks trained with
a relatively small number of training examples and that the
networks can generalize successfully beyond the training data
they receive depend on the particular problems we studied, in
particular, on their low-dimensional nature and their smoothness
properties, hence are not predicted by the universal approxima-
tion results. Moreover, representing the posterior mean is
necessary, but not sufficient for general probabilistic computa-
tion: it is also necessary to represent uncertainty on a trial-by-trial
basis. Using modular tasks, we showed that the networks
implicitly represent uncertainty as well, even though the repre-
sentation of posterior uncertainty is not required for performing
the trained task. This finding also holds when the networks are
trained with absolute error loss, rather than mean squared error
(Supplementary Fig. 5a). In general, we expect higher moments of
the posterior to be decodable from non-linear functions of the
hidden layer responses, even when the trained task does not
require the representation or use of such higher moments. This is
likely to be a generic property, since it is known that a small
number of random projections of the input have similar infor-
mation preservation guarantees under general conditions43, 44.

For tasks with categorical outputs, the output layer of a
multilayer neural network is asymptotically guaranteed to
converge to the posterior probabilities of the classes under a
broad class of loss functions23, including cross-entropy and
mean squared error (Supplementary Fig. 5b). For the particular
problems we studied, our results again show empirically that this
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convergence can be achieved relatively fast and does not require
large networks.

Random networks with only trainable read-out weights
performed poorly in our tasks. This can be understood as a
consequence of the poor approximation properties of such
networks39. On the other hand, making our networks biologically
more plausible by making them fully recurrent and introducing
separate excitatory and inhibitory populations throughout the
network that respect Dale’s law in their connectivity pattern did
not significantly impair the performance of the networks.

Our work is consistent with the PPC framework according to
which, by virtue of the variability of their responses, neural
populations encode probability distributions rather than single
estimates and computations with probability distributions can be
carried out by suitable operations on the corresponding neural
responses7, 8. However, our work disagrees with the existing
literature on the implementation of such computations. We show
that these computations do not require any special neural
operations or network architectures than the very generic
ones that researchers have been using for decades in the neural
network community14–16.

The recent literature on PPC respects the principle that
Poisson-like neural variability, i.e., exponential-family variability
with linear sufficient statistics7, be preserved between the input
and output of a network, because this leads to a fully modular
code that can be decoded with the same type of decoder
throughout the network7. To obtain actual networks, these studies
then postulate a literal, one-to-one correspondence between the
required neural computations that must be computed at the
population level and the computations individual neurons
perform. This literal interpretation leads to inefficient neural
architectures containing intermediate neurons that are artificially
restricted to summing or multiplying the activities of at most two
input neurons and that perform substantially different operations
in different tasks (for example, linear summation, multiplication,
or different forms of divisive normalization)7, 9–13.

Our generic networks are not necessarily inconsistent with the
principle of the preservation of Poisson-like variability between
the input and output of a network. Our categorical networks
already satisfy this principle, and our continuous networks satisfy
it approximately if, instead of a purely linear decoder, we use a
linear decoder that is then normalized by the total activity in the
hidden layer (Supplementary Fig. 6). However, our results show
that it is unnecessary and inefficient to postulate a direct corre-
spondence between population-level and individual-neuron
computations: standard neural networks with rectified linear
hidden units that perform the same type of operation indepen-
dent of the task implement population-level computations
required for optimal probabilistic inference far more efficiently.

Our results lead to several experimentally testable predictions.
First, for gain-invariant tasks, we predict a novel sparsity-based
coding of posterior uncertainty in cortical areas close to
the behavioral read-out. Stimulus manipulations that increase
sensory reliability, such as an increase in contrast of the stimulus,
would be expected to increase the sparseness of the population
activity in these areas. Another straightforward consequence of
this relationship would be a positive correlation between the
performance of the animal in the task and the population sparsity
of neurons recorded from the same areas. Second, for gain-
dependent tasks, such as causal inference, we predict a different
coding of posterior uncertainty based on the mean activity in
areas close to the read-out. Moreover, based on our mean-field
model of the mechanism underlying these two types of codes, we
expect a trade-off between them: the stronger the correlation
between sparsity and posterior uncertainty, the weaker the
relationship between the mean activity and posterior uncertainty

and vice versa. This can be tested with population recordings
from multiple areas in multiple tasks. Third, at the level of
single cells, we predict tuning curve sharpening with increased
input gain in tasks where a sparsity-based coding of reliability is
predicted (Fig. 7a). Such tuning curve sharpening has been
observed in cortical areas MT45, MST46, and MSTd29. On
the other hand, we expect the input gain to act more like a
multiplicative factor in tasks where a mean activity-based coding
of reliability is predicted (Fig. 7b).

Sparse and reliable neural responses have been observed under
natural stimulation conditions47–49. Inhibitory currents have
been shown to be crucial in generating such sparse and reliable
responses47, 50, reminiscent of the importance of negative mean
input in our mean-field model of the sparsity-based coding of
posterior uncertainty (Fig. 5b).

Our networks are highly idealized models of real
neural circuits. Although we validated our basic results
using biologically more realistic recurrent excitatory-inhibitory
networks (Fig. 8c, d), even these networks are simplistic models
that ignore much of the complexity of real neural circuits. For
example, real neural circuits involve several morphologically and
physiologically distinct cell types with different connectivity
patterns and with potentially distinct functions51. Real neurons
also implement a diverse set of complicated non-linearities,
unlike the simple rectification nonlinearity we assumed in our
networks. It remains to be determined what possible functional
roles this diversity plays in neural circuits.

However, even seemingly drastic simplifications can, in some
cases, yield insights about the brain. For example, cortical net-
works are usually highly recurrent, thus modeling them as feed-
forward networks might seem like an over-simplification.
However, networks with feedback connections can sometimes
behave effectively like a feedforward network52, 53. As another
example, feedforward networks also currently provide the best
characterization of the neural responses in higher visual cortical
areas17, 20, even though these areas are known to involve abun-
dant feedback connections both within the same area
and between different areas. Therefore, insights gained
from understanding simplified models can still be relevant for
understanding real cortical circuits.

Second, our networks were trained with the backpropagation
algorithm, which is usually considered to be biologically unrea-
listic due to its non-locality. Although the backpropagation
algorithm in its standard form, we have implemented is indeed
biologically unrealistic, biologically plausible approximations, or
alternatives, to backpropagation have been put forward
recently54, 55. Therefore, it is quite likely that one need not
compromise the power of backpropagation in order to attain
biologically plausibility.

Third, the stimuli that we used were far from naturalistic.
However, the computations required in our tasks capture the
essential aspects of the computations that would be required in
similar tasks with natural stimuli. Using simple stimuli allows
for the parametric characterization of behavior and makes the
derivation of the optimal solution more tractable. We have shown
here that new insights can be obtained by combining analytically
derived optimal solutions with neural networks. For example,
understanding the novel sparsity-based representation of
posterior uncertainty in the hidden layers of the networks in some
tasks but not in others relied on the analysis of the optimal
solutions in different tasks.

Finally, as exemplified by the inability of error-based learning
to account for the performance of human observers in the binary
categorization task, we do not expect error-based learning in
generic neural networks to fully account for all aspects of the
performance of human observers, and possibly non-human
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observers as well, even in simple tasks. Relatively mundane
manipulations, such as changing the target or the distractors, or
the number of distractors in a visual search task, changing the
duration of a delay interval in a short-term memory task
require wholesale retraining of generic neural networks, which
seems to be inconsistent with the way human observers, and
possibly non-human observers, can effortlessly generalize over
such variables. More powerful architectures that combine a neural
network controller with an external memory can both learn
faster and generalize better41, offering a promising direction
for modeling the generalization patterns of observers in simple
psychophysical tasks.

Methods
Neural networks. In all networks, the input units were independent Poisson
neurons: rin ~ Poisson(f(s, c)), where f is the vector of mean responses
(tuning functions), s is the stimulus, and c is a stimulus contrast or coherence
variable that controls the quality of sensory information. For the main results
presented in the paper, we assume that the effect of c can be described as a
multiplicative gain scaling: f(s, c) = g(c)f(s), where the individual tuning functions
comprising f(s) were either linear (stimulus demixing), von Mises (visual search),
or Gaussian (all other tasks).

To demonstrate the generality of our approach, we also considered two
alternative ways in which stimulus contrast or coherence can affect the responses of
the input population. In particular, for the cue combination task, we considered
tuning functions, where c did not have a purely multiplicative effect, but affected
the baseline responses as well28: f(s, c)= cf(s) + (1 − c)β with 0≤ c≤ 1, where β was
chosen such that the mean response of the input population was independent of c.
Second, again for the cue combination task with two cues, we considered tuning
functions where stimulus contrast c affected both the peak response and the
preferred stimuli of input neurons, as reported in ref. 30 for speed tuning in
area MT: f ðs; cÞ ¼ r0 þ AgðcÞexp � 1

2σ2 log sþs0
BgðcÞϕþs0

� �2� �
with the following

parameters: r0= 0.5, A= 5, s0= 1, σ= 1, B= 10, and g(c)= 1/((αc)−β + γ) with
α= 10, β= 2, γ= 3. The results for these two cases are shown in Fig. 4c.

The hidden units in both feedforward and recurrent networks were ReLUs. In
feedforward networks, the hidden unit responses are described by the equation:
rhid= [Winrin + b]+ and in recurrent networks by the equation: rhid,t+1= [Winrin,t+1
+Wrecrhid,t + b]+, where Win and Wrec are the input and recurrent weights,
respectively, and [⋅]+ denotes elementwise rectification. For tasks with continuous
output variables, the network output corresponds to a linear combination of the
hidden unit responses: y= wΤrhid + b, and in tasks with categorical variables, the
network output was given by a linear combination of the hidden unit responses
passed through a sigmoid nonlinearity: y= σ(wΤrhid + b).

In the recurrent EI networks, all connections were constrained to satisfy Dale’s
law as in ref. 40. The recurrent units are all rate-based neurons. The ratio of
excitatory to inhibitory neurons in both input and recurrent populations was 4:1.
Inputs were presented over 10 time steps, but the total input information was
equated to the total input information in the feedforward networks. The network’s
estimate was obtained from its output at the final, i.e., 10th time step. Other details
are the same as in the corresponding simulations in the feedforward case.

In random networks, input-to-hidden layer weights were sampled from a
normal distribution with zero mean and standard deviation

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2= nþ dð Þp

, where
d is the number of input neurons and n is the number of hidden neurons56; biases
of the hidden units were sampled from a normal distribution with zero mean and
standard deviation of 0.1.

In the main simulations, the networks had 200 hidden units. In cue
combination, modular cue combination, coordinate transformation, Kalman
filtering, binary categorization, and causal inference tasks, there were 50 input
neurons per input population. To make our results comparable to earlier results,
we used 20 input neurons per input population in the visual search task and
10 input neurons per input population in the stimulus demixing task.

Non-probabilistic models. For the Kalman filtering and all cue combination tasks,
we used heuristic, non-probabilistic reference models that estimated the individual
cues (and the past state in Kalman filtering) optimally, but combined them
suboptimally by weighting them equally regardless of their reliability. As indicated
before, these models still performed a non-trivial probabilistic computation,
namely marginalizing out a nuisance variable, i.e., the input gain, to come up with
the optimal estimate of the individual cues. We also note that for the coordinate
transformation task, unlike in cue combination or Kalman filtering, the optimal
combination rule does not depend on the reliabilities of the individual inputs. For
the categorical tasks, we also used non-probabilistic reference models that assumed
equal reliabilities for individual inputs. To give the reference models the best
chance to perform well, we chose the assumed common reliability of the inputs that
minimized the information loss.

Training procedure. The feedforward networks were trained with the
standard backpropagation algorithm14. The recurrent networks were trained with
backpropagation through time15. We used the Adam stochastic gradient descent
algorithm57 to implement backpropagation. The batch sizes for the updates were 10
for binary categorization, 500 for visual search, and 100 for the other tasks. In Fig. 9,
we used an online vanilla stochastic gradient descent algorithm with learning rate
decrease over trials described by η0/(1 + γt), where t is the trial number. The para-
meters η0 and γ were fit to the monkey’s learning curve.

Training conditions. The “all g” conditions in different tasks were as follows. In cue
combination and coordinate transformation tasks, all 25 pairs of the form (g1, g2)
with g1, g2 ∈ {0.25, 0.5, 0.75, 1, 1.25} were presented an equal number of times. In
Kalman filtering, g was uniformly drawn between 0.3 and 3 at each time step. In
binary categorization, the six gain values, g ∈ {0.148, 0.36, 0.724, 1.128, 1.428, 1.6},
were presented an equal number of times. These gain values were calculated from
the mean noise parameter values reported for the human subjects in ref. 13. In
causal inference, all 25 pairs of the form (g1, g2) with g1, g2 ∈ {0.5, 1, 1.5, 2, 2.5} were
presented an equal number of times. In stimulus demixing, following10, c was
uniformly and independently drawn between 2 and 9 for each source. In visual
search, g was randomly and independently set to either 0.5 or to 3 for each stimulus.

The “restricted g” conditions in different tasks were as follows. In cue
combination and coordinate transformation tasks, the two pairs (g1, g2) ∈ {(0.25,
0.25), (1.25, 1.25)} were presented an equal number of times. In Kalman filtering,
g was randomly and independently set to either 0.3 or to 3 at each time step. In
binary categorization, g was always 1.68. This gain value corresponds to 100%
contrast as calculated from the mean noise parameter values for the human
subjects reported in ref. 13. In causal inference, pairs of the form (g1, g2) ∈ {(0.5,
0.5), (2.5, 2.5)} were presented an equal number of times. In stimulus demixing,
c was either set to 2 for all sources or else set to 9 for all sources. Similarly, in visual
search, g was either set to 0.5 for all stimuli or else set to 3 for all stimuli.

Mean-field model of hidden unit responses. For a given input activity r, we
consider the responses of the hidden units as realizations of a random variable rhid.
The output weights are also assumed to be realizations of a random variable w. We
further assume that w and rhid are independent. The network’s output is then
proportional to 〈w〉〈rhid〉. We want to make this expression invariant to the input
gain g. We first introduce a measure of the total sensitivity of this expression to
variations in g. We will do this by computing the magnitude of the derivative of 〈w〉
〈rhid〉 with respect to g and integrating over a range of g values, but we first note
that the output weights are already gain invariant, hence we can just consider 〈rhid〉.
We now have to find an expression for 〈rhid〉. The net input to a typical hidden unit
is given by:

gwT
inrþ b � N μ� � gμþ μb; σ

2
� � g2σ2 þ σ2b

� � ð1Þ

where win are the input weights to a typical hidden unit. Then:

μ � rhidh i ¼ gwT
inrþ b

	 

þ

D E
¼ 1�Φ

�μ�
σ�

� �� �
μ� þ ϕ

�μ�
σ�

� �
σ� ð2Þ

where Φ(⋅) and ϕ(⋅) are the cdf and the pdf of the standard Gaussian distribution.
As mentioned above, we then introduce the following measure of the total
sensitivity of μ to variations in g:

Tvar ¼
Z gmax

gmin

μ0 gð Þj jdg ð3Þ

where the prime represents the derivative with respect to g. Because g always
appears as gμ or gσ in μ (Eq. 2), the parametrization in terms of g, μ, and σ is
redundant. We therefore set σ= 1, and hence expressed everything in terms of the
scale of σ. We then minimized Tvar numerically with respect to μ, μb, and σb subject
to the constraint that the mean response across different gains be equal to some
positive constant K:

1
gmax � gmin

Z gmax

gmin

μðgÞdg ¼ K>0 ð4Þ

This ensures that the degenerate solution where the hidden layer is completely
silent is avoided.

Task details. In the linear cue combination task, the objective is to combine two
cues, r1 and r2, encoding information about the same variable, s, in a statistically
optimal way. Assuming a squared error loss function, this can be achieved by
computing the mean of the posterior p(s|r1, r2). For a uniform prior distribution,
the posterior mean is given by an expression of the form7:

ŝopt ¼ ϕT r1 þ r2ð Þ
1T r1 þ r2ð Þ ; ð5Þ

where ϕ is the vector of preferred stimuli of input neurons and 1 is a vector of ones.
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This expression is approximate when the prior is not uniform over the entire
real line and the quality of the approximation can become particularly bad in the
high-noise regime considered in this paper. Thus, in practice, we computed
posterior means numerically, rather than using the above equation. The equation is
still useful, however, in helping us understand the type of computation the network
needs to perform to approximate optimal probabilistic inference. During
training, the two cues received by the input populations were always non-con-
flicting: s1= s2= s and the gains of the input populations varied from trial to trial.
The network was trained to minimize the mean squared error between its output
and the common s indicated by the two cues.

In the coordinate transformation task, the eye-centered location of an object in
1-d, s1, is encoded in a population of Poisson neurons with responses r1 and the
current eye position, s2, is similarly encoded in a population of Poisson neurons
with responses r2. The goal is to compute the head-centered location of the object,
which is given by s= s1 + s2. Assuming uniform priors, the optimal estimate of s
can be expressed as10:

ŝopt ¼ rT1Br2
rT1Ar2

ð6Þ

for suitable matrices B and A (see ref. 10 for a full derivation). Again, when the
priors are not uniform over the real line, this expression becomes only approximate
and posterior means are computed numerically.

In the Kalman filtering task, we considered a one-dimensional time-varying
signal evolving according to: st= (1 − γ)st−1 + ηt, where ηt � N 0; σ2η

� �
with γ= 0.1

and σ2η ¼ 1. At each time t, the stimulus was represented by the noisy responses,
rin,t, of a population of input neurons with Poisson variability. The input
population projected to a recurrent pool of neurons that have to integrate the
momentary sensory information coming from the input population with an
estimate of the signal at the previous time step (as well as the uncertainty associated
with that estimate) to perform optimal estimation of the signal at the current time
step. We decoded the estimate of the signal at each time step by a linear read-out of
the recurrent pool: ŝt ¼ wTrrec;t þ b. The network was trained with sequences of
length 25 using a squared error loss function. The posterior p(st|rin, 1:t) is Gaussian
with natural parameters given recursively by10:

μt
σ2t

¼ μin;t
σ2in;t

þ 1� γð Þμt�1

1� γð Þ2σ2t�1 þ σ2η
ð7Þ

1
σ2t

¼ 1
σ2in;t

þ 1

ð1� γÞ2σ2t�1 þ σ2η
ð8Þ

where μin,t and σ2in;t are the mean and variance of p(st|rin,t), which represents the
momentary sensory evidence encoded in the input population. These are, in turn,
given by μin,t= ϕΤrin,t/1┬rin,t and σ2in;t ¼ σ2f =1

Trin;t .
In the binary categorization task, the goal is to classify a noisy orientation

measurement into one of two overlapping classes that have the same mean but
different variances. Given a noisy activity pattern r over the input population
representing the observed orientation, the posterior probabilities of the two
classes can be calculated analytically. The log-likelihood ratio of the two categories
is given by13:

d � log
pðrjC ¼ 1Þ
pðrjC ¼ 2Þ ¼

1
2

log
1þ σ22a

Tr
1þ σ21aTr

� σ22 � σ21
� �

eTr
� �2

1þ σ21aTrð Þ 1þ σ22aTrð Þ

 !
ð9Þ

where e ¼ ϕ=σ2f and a ¼ 1=σ2f . The posterior probability of the first class is then
given by a sigmoidal function of d: p C ¼ 1 rjð Þ ¼ 1= 1þ expð�dÞð Þ.

In the causal inference task, the goal is to infer whether two sensory
measurements are caused by a common source or by two separate sources. The log-
likelihood ratio of these two hypotheses is given by12:

d ¼ z11z21
z12 þ z22 þ Js

� 1
2

z22z211
z12 þ Jsð Þ z12 þ z22 þ Jsð Þ

�

þ z12z221
z22 þ Jsð Þ z12 þ z22 þ Jsð Þ � log 1þ z12z22

Js z12 þ z22 þ Jsð Þ
� �� ð10Þ

where Js is the precision of the Gaussian stimulus distribution and:

σ2f z11 ¼ ϕT
1 r1 ð11Þ

σ2f z12 ¼ 1Tr1 ð12Þ

σ2f z21 ¼ ϕT
2 r2 ð13Þ

σ2f z22 ¼ 1Tr2; ð14Þ

where σ2f is the common variance of the Gaussian tuning functions of the

individual input neurons. ϕ1 and ϕ2 are the preferred stimuli of the neurons in the
first and second populations, respectively. For convenience, we assumed ϕ1= ϕ2.
The optimal probability of reporting “same cause” is then simply given by
p C ¼ 1jr1; r2ð Þ ¼ 1=ð1þ expð�dÞÞ.

In the stimulus demixing task, the goal is to infer the presence or absence of
different signal sources in a mixture of signals with unknown concentrations. As a
concrete example, the signals can be thought of as different odors, and the task
would then be to infer the presence or absence of different odors in an odor mixture
with unknown concentrations10. Following10, we assumed a linear mixing model:

oi ¼
X

k
wikcksk ð15Þ

where sk denotes the presence or absence of the k-th odor source, ck denotes its
concentration, oi is the concentration of the i-th odorant, and wik is the weight of
the k-th odor source in the i-th odorant. The task can then be formalized as the
computation of the posterior probability of the presence or absence of each odor
source, given noisy responses r ¼ rif gnoi¼1 of populations of Poisson neurons
encoding the odorants: i.e., p(sk= 1|r). The input populations were assumed to have
linear tuning for the odorants: ri ~ Poisson(oifi + bi), where fi and bi were random
vectors with positive entries10. As in ref. 10, we assumed four sources and four
odorants. The networks were trained to minimize the cross-entropy between the
network’s outputs and the correct source present/absent labels, sk.

In the visual search task, the goal is to infer the presence or absence of a target
stimulus sT among a set of heterogeneous distractors. The log-likelihood ratio of
the target presence is given by11:

d ¼ log
1
N

XN
i¼1

exp dið Þ ð16Þ

where N is the number of stimuli on the display (we assumed N= 4) and the local
target presence log-likelihoods di are given by:

di ¼ hi sTð ÞTri � log
1
π

Z π

0
exp hi sið ÞTri
� �

dsi

� �
ð17Þ

For independent Poisson neurons, the stimulus kernel h(s) is given by
hðsÞ ¼ log fðsÞ, where we assumed von Mises tuning functions for individual input
neurons. The integral in the second term on the right hand side was calculated
numerically.

Behavioral data. Human and monkey behavioral data used in Fig. 9 were obtained
from a previously published study13. Human behavioral data reported in Fig. 9e are
from six human subjects who completed the main experiment in ref. 13. The behavioral
data reported in Fig. 9c are from monkey L. Only incomplete behavioral data from
another monkey that completed the experiment (monkey A) were available. Because
data from all trials are needed to obtain a reliable estimate of the subject’s learning
curve, data from this monkey were not used in the current paper. For further details
about the experimental settings, subjects, and model fitting, see ref. 13.

Code availability. The code to reproduce the results reported in this paper is
available at the following public repository: https://github.com/eminorhan/
inevitable-probability.

Data availability. The behavioral data reported in Fig. 9 are available at the
following public repository: https://github.com/eminorhan/inevitable-probability.

Received: 4 December 2016 Accepted: 8 June 2017

References
1. Battaglia, P. W., Jacobs, R. A. & Aslin, R. N. Bayesian integration of visual and

auditory signals for spatial localization. JOSA 20, 1391–1397 (2003).
2. Ernst, M. O. & Banks, M. S. Humans integrate visual and haptic information in

a statistically optimal fashion. Nature 415, 429–433 (2002).
3. Hillis, J. M., Watt, S. J., Landy, M. S., Banks, M. S. Slant from texture and

disparity cues: optimal cue combination. J. Vis. 4, 967-92 (2004).
4. Körding, K. et al. Causal inference in multisensory perception. PLoS ONE 2,

e943 (2007).
5. Merfeld, D. M., Zupan, L. & Peterka, R. J. Humans use internal models to

estimate gravity and linear acceleration. Nature 398, 615–618 (1999).
6. Wolpert, D. M., Ghahramani, Z. & Jordan, M. I. An internal model for

sensorimotor integration. Science 269, 1880–1882 (1995).
7. Ma, W. J., Beck, J. M., Latham, P. E. & Pouget, A. Bayesian inference with

probabilistic population codes. Nat. Neurosci. 9, 1432–1438 (2006).
8. Zemel, R., Dayan, P. & Pouget, A. Probabilistic interpretation of population

codes. Neural Comput. 10, 403–430 (1998).

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-00181-8 ARTICLE

NATURE COMMUNICATIONS |8:  138 |DOI: 10.1038/s41467-017-00181-8 |www.nature.com/naturecommunications 13

https://github.com/eminorhan/inevitable-probability
https://github.com/eminorhan/inevitable-probability
https://github.com/eminorhan/inevitable-probability
www.nature.com/naturecommunications
www.nature.com/naturecommunications


9. Beck, J. M. et al. Probabilistic population codes for Bayesian decision making.
Neuron 60, 1142–1152 (2008).

10. Beck, J. M., Latham, P. E. & Pouget, A. Marginalization in neural circuits with
divisive normalization. J. Neurosci. 31, 15310–15319 (2011).

11. Ma, W. J., Navalpakkam, V., Beck, J. M., Berg, Rv & Pouget, A. Behavior and
neural basis of near-optimal visual search. Nat. Neurosci. 14, 783–790 (2011).

12. Ma, W. J. & Rahmati, M. Towards a neural implementation of causal inference
in cue combination. Multisens. Res. 26, 159–176 (2013).

13. Qamar, A. T. et al. Trial-to-trial, uncertainty-based adjustment of decision
boundaries in visual categorization. Proc. Natl Acad. Sci. USA 110,
20332–20337 (2013).

14. Rumelhart, D. E., Hinton, G. E. & Williams, R. J. Learning representations by
back-propagating errors. Nature 323, 533–536 (1986).

15. Williams, R. J., Zipser, D. Gradient-based learning algorithms for recurrent
networks and their computational complexity. In Back-Propagation: Theory,
Architectures and Applications (eds Chauvin, Y. & Rumelhart, D. E.) (Erlbaum,
1995).

16. Zipser, D. & Andersen, R. A. A back-propagation programmed network that
simulates response properties of a subset of posterior parietal neurons. Nature
331, 679–684 (1988).

17. Cadieu, C. F. et al. Deep neural networks rival the representation of primate IT
cortex for core visual object recognition. PLoS Comput. Biol. 10, e1003963 (2014).

18. Mante, V., Sussillo, D., Shenoy, K. V. & Newsome, W. T. Context-dependent
computation by recurrent dynamics in prefrontal cortex. Nature 503, 78–84 (2013).

19. Sussillo, D., Churchland, M. M., Kaufman, M. T. & Shenoy, K. V. A neural
network that finds a naturalistic solution for the prediction of muscle activity.
Nat. Neurosci. 18, 1025–1033 (2015).

20. Yamins, D. L. K. et al. Performance-optimized hierarchical models predict
neural responses in higher visual cortex. PNAS 111, 8619–8624 (2014).

21. Kwon, O.-S., Tadin, D. & Knill, D. C. A unifying account of visual motion and
position perception. Proc. Natl Acad. Sci. USA 112, 8142–8147 (2015).

22. Glorot, X., Bordes, A. & Bengio, Y. Deep sparse rectifier neural networks.
AISTATS 15, 315–323 (2011).

23. Hampshire, II J. B. & Perlmutter, B. A. Equivalence proofs for multilayer
perceptron classifiers and the Bayesian discriminant function. In Proceedings of
the 1990 Connectionist Models Summer School (eds Touretzky, D. et al.)
(Morgan Kaufmann, 1990).

24. Makin, J. G., Fellows, M. R. & Sabes, P. N. Learning multisensory integration
and coordinate transformation via density estimation. PLoS Comput. Biol. 9,
e1003035 (2013).

25. Maloney, L. T. & Mamassian, P. Bayesian decision theory as a model of human
visual perception: testing Bayesian transfer. Vis. Neurosci. 26, 147–155 (2009).

26. Neal, R. M. Bayesian learning for neural networks. Lecture Notes in Statistics
No. 118 (Springer-Verlag, 1996).

27. Sclar, G. & Freeman, R. D. Orientation selectivity in the cat’s striate cortex is
invariant with stimulus contrast. Exp. Brain Res. 46, 457–461 (1982).

28. Fetsch, C. R., Pouget, A., DeAngelis, D. C. & Angelaki, D. E. Neural correlates
of reliability-based cue weighting during multisensory integration. Nat.
Neurosci. 15, 146–154 (2012).

29. Morgan, M. L., DeAngelis, G. C. & Angelaki, D. E. Multisensory integration in
macaque visual cortex depends on cue reliability. Neuron 59, 662–673 (2008).

30. Krekelberg, B., van Wezel, R. J. A. & Albright, T. D. Interactions between speed
and contrast tuning in the middle temporal area: implications for the neural
code for speed. J. Neurosci. 26, 8988–8998 (2006).

31. Berens, P. et al. A fast and simple population code for orientation in primate
V1. J. Neurosci. 32, 10618–10626 (2012).

32. DiCarlo, J. J. & Cox, D. D. Untangling invariant object recognition. Trends
Cogn. Sci. 11, 333–341 (2007).

33. Graf, A. B. A., Kohn, A., Jazayeri, M. & Movshon, J. A. Decoding the activity of
neuronal populations in macaque primary visual cortex. Nat. Neurosci. 14,
239–245 (2011).

34. Haefner, R., Gerwinn, S., Macke, J. H. & Bethge, M. Inferring decoding
strategies from choice probabilities in the presence of correlated variability. Nat.
Neurosci. 16, 235–242 (2013).

35. Jazayeri, M. & Movshon, J. A. Optimal representation of sensory information
by neural populations. Nat. Neurosci. 9, 690–696 (2006).

36. Pitkow, X., Liu, S., Angelaki, D. E., DeAngelis, G. C. & Pouget, A. How can
single sensory neurons predict behavior? Neuron 87, 411–423 (2015).

37. Caron, S. J. C., Ruta, V., Abbott, L. F. & Axel, R. Random convergence of
afferent olfactory inputs in the Drosophila mushroom body. Nature 497,
113–117 (2013).

38. Stettler, D. D. & Axel, R. Representations of odor in the piriform cortex. Neuron
63, 854–864 (2009).

39. Barron, A. R. Universal approximation bounds for superpositions of a
sigmoidal function. IEEE Trans. Inf. Theory 39, 930–945 (1993).

40. Song, H. F., Yang, G. R. & Wang, X.-J. Training excitatory-inhibitory recurrent
neural networks for cognitive tasks: a simple and flexible framework. PLoS
Comput. Biol. 12, e1004792 (2016).

41. Graves, A. & Wayne, G. Hybrid computing using a neural network with
dynamic external memory. Nature 538, 471–476 (2016).

42. Leshno, M., Lin, V. Y., Pinkus, A. & Schocken, S. Multilayer feed-forward
networks with a non-polynomial activation function can approximate any
function. Neural Netw. 6, 861–867 (1993).

43. Candès, E. & Tao, T. Near-optimal signal recovery from random projections:
universal encoding strategies? IEEE Trans. Inf. Theory 52, 5406–5425
(2006).

44. Pitkow, X. Compressive neural representation of sparse, high-dimensional
probabilities. Adv. Neural Inf. Process. Syst. 25, 1349–1357 (2012).

45. Britten, K. H., Shadlen, M. N., Newsome, W. T. & Movshon, J. A. Responses of
neurons in macaque MT to stochastic motion signals. Vis. Neurosci. 10,
1157–1169 (1993).

46. Heuer, H. W. & Britten, K. H. Linear responses to stochastic motion signals in
area MST. J. Neurophysiol. 98, 1115–1124 (2007).

47. Crochet, S., Poulet, J. F. A., Kremer, Y. & Petersen, C. C. H. Synaptic mechanisms
underlying sparse coding of active touch. Neuron 69, 1160–1175 (2011).

48. Haider, B., Hausser, M. & Carandini, M. Inhibition dominates sensory
responses in the awake cortex. Nature 493, 97–100 (2013).

49. Vinje, W. E. & Gallant, J. L. Sparse coding and decorrelation in primary visual
cortex during natural vision. Science 287, 1273–1276 (2000).

50. Haider, B. et al. Synaptic and network mechanisms of sparse and reliable visual
cortical activity during nonclassical receptive field stimulation. Neuron 65,
107–121 (2010).

51. Harris, K. D. & Shepherd, G. M. G. The neocortical circuit: themes and
variations. Nat. Neurosci. 18, 170–181 (2015).

52. Goldman, M. S. Memory without feedback in a neural network. Neuron 61,
621–634 (2009).

53. Murphy, B. K. & Miller, K. D. Balanced amplification: a new mechanism
of selective amplification of neural activity patters. Neuron 61, 635–648 (2009).

54. Bengio, Y., Lee, D.-H., Bornschein, J. & Lin, Z. Towards biologically plausible
deep learning. Preprint at arXiv:1502.04156 (2015).

55. Lillicrap, T. P., Cownden, D., Tweed, D. B. & Akerman, C. J. Random synaptic
feedback weights support error backpropagation for deep learning. Nat.
Commun. 7, 13276 (2016).

56. Glorot, X. & Bengio, Y. Understanding the difficulty of training deep
feedforward neural networks. AISTATS 9, 249–256 (2010).

57. Kingma, D. & Ba, J. Adam: a method for stochastic optimization. Preprint at
arXiv:1412.6980 (2014).

Acknowledgements
This work was supported by Grant R01EY020958 from the National Eye Institute. We thank
Edgar Walker for providing us with the monkey behavioral data analyzed in this paper.

Author contributions
A.E.O. and W.J.M. designed the research; A.E.O. implemented the simulations; A.E.O.
and W.J.M. analyzed the results; A.E.O. and W.J.M. wrote the paper.

Additional information
Supplementary Information accompanies this paper at doi:10.1038/s41467-017-00181-8.

Competing interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/
reprintsandpermissions/

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2017

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-00181-8

14 NATURE COMMUNICATIONS | 8:  138 |DOI: 10.1038/s41467-017-00181-8 |www.nature.com/naturecommunications

http://dx.doi.org/10.1038/s41467-017-00181-8
http://npg.nature.com/reprintsandpermissions/
http://npg.nature.com/reprintsandpermissions/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications

	Efficient probabilistic inference in generic neural networks trained with non-probabilistic feedback
	Results
	Tasks
	Networks
	Trained generic networks implement probabilistic inference
	Encoding of posterior width in the hidden layers
	Generalization to untrained stimulus conditions
	Alternative representations of sensory reliability
	Sparsity-based representation of posterior uncertainty
	Random networks
	Making the networks biologically more realistic
	Error-based learning accounts for the time course of behavior
	Efficiency of generic networks

	Discussion
	Methods
	Neural networks
	Non-probabilistic models
	Training procedure
	Training conditions
	Mean-field model of hidden unit responses
	Task details
	Behavioral data
	Code availability
	Data availability

	References
	Acknowledgements
	Author contributions
	Competing interests
	ACKNOWLEDGEMENTS




