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Abstract 

People have played strategy games recreationally for millennia, yet the process by which 

they make decisions in these complex, sequentially contingent environments remains 

underexplored. Psychological work has suggested two important components: “chunking” by 

decomposing a game position into relevant features, and “thinking ahead” by iteratively 

simulating a move and evaluating the expected outcome (Miller, 1956; Chase & Simon, 1973; de 

Groot, 1978). However, this body of research has not yet produced a generative model capable of 

directly predicting the move a given person will make in a given position. In the meantime, 

artificial intelligence researchers have produced sophisticated algorithms to play games with 

performance beyond human expertise. We adapt some of these algorithms as generative models 

for human gameplay by freeing and then fitting parameters to individual subjects playing an 

unfamiliar combinatorial game. In doing so, we quantitatively corroborate the qualitative 

findings of past psychological research and establish a new experimental paradigm for research 

on human gameplay and procedural rationality. 

Keywords: ​combinatorial games, computational models, procedural rationality 
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Computational Modelling of Human Cognition in Combinatorial Strategy Games  

For millennia, humankind has played a variety of strategy games for sport (Romain, 

2000). Some well-known examples include chess, checkers, go, and backgammon. A few of 

these games, such as nim, even have formal solutions; for others, including chess and go, there 

now exist sophisticated computer algorithms that outplay even the strongest human players (van 

den Herik et al., 2002; Silver et al., 2016). However, despite the success of artificial intelligence 

researchers at developing such powerful programs, there has been relatively little progress on a 

complementary question: how do people play strategy games? 

Chess and Psychology 

For psychologists, chess has been the paradigmatic strategy game for the last 50 years. 

Some foundational studies were performed by Adriaan de Groot, who impelled chess players of 

varying skill level to narrate their thoughts aloud as they considered chess positions (de Groot, 

1946/1978). He found that players talked explicitly about considering individual moves and 

planned several moves ahead. While it may seem intuitive that the more moves a player 

considers, the better their chances of finding the best available move, de Groot concluded that 

chess experts actually consider a smaller number of candidate moves in greater detail than 

novices.  

Chase and Simon later showed players preconfigured arrangements of chess pieces 

(Chase & Simon, 1973). Some of these arrangements were positions taken from real chess 

games; others were pieces randomly scattered on the board. The researchers asked players of 

varying skill to recreate the most recently seen board from memory. Novice players showed little 

difference in their ability to remember the configuration of pieces of real or random positions, 
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and on random positions expert chess players performed no better than novices. However, expert 

chess players were substantially better than novices at recreating the configurations from real 

positions. Chase and Simon concluded that the development of skill at chess involved improved 

ability to recognize functionally relevant arrangements of pieces, which they call “chunks” 

following Miller (1956), that arise regularly during chess play. 

Chase and Simon’s finding can be used to tell a deeper story about de Groot’s 

observations (Simon & Schaeffer, 1990). Expert chess players use relevant chunks or features to 

quickly evaluate and sort candidate moves, freeing them to plan ahead more efficiently (Miller, 

1956; Chase & Simon, 1973; Gobet & Simon, 1998a). Because they can plan ahead more 

efficiently, they can spend more time and resources considering the most promising candidates in 

greater detail. Other work has explored the effect of various manipulations on game-related 

performance, importantly demonstrating that in addition to the benefits of learning good features, 

spending more time deliberating also improves performance for experts and novices alike 

(Moxley et al., 2012). 

Chess and Artificial Intelligence 

Similar pre-experimental intuitions contributed to the development of computer 

algorithms for chess. Claude Shannon, inspired by de Groot’s work, presented one of the earliest 

designs for a chess-playing computer, or agent (de Groot, 1946/1978; Shannon, 1950). Shannon 

begins the development of his agent by describing an algorithm that builds a game tree by 

iteratively exploring all available moves, the resulting moves available to the opponent, and so 

on until each branch of the constructed tree terminates in a win, draw, or loss. Once every 
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possible sequence of moves has been explored, the agent can work backward from game ends to 

determine whether a forced win or draw is available and the appropriate moves to make.  

As Shannon observes, following chess statistics from de Groot (1946/1978), the number 

of possible legal games of chess from the starting position is on the order of 10​120​, which would 

require over 10​90​ years to calculate at a rate of 1 position per millisecond (Shannon, 1950). Even 

on modern hardware, such an algorithm would require multiple lifetimes of the universe just to 

make the first move. Shannon also suggests an alternative method that stores the optimal move 

for each possible position in an associative array and observes that because the number of 

possible positions is on the order of 10​43​, which exceeds estimates of the number of molecules in 

the universe, such a method is likewise infeasible (Simon & Schaeffer, 1990).  1

Shannon circumvents these problems by describing what is now called a heuristic search 

algorithm (Shannon, 1950; Hart, Nilsson, & Raphael, 1968; Allis, 1994; Russell & Norvig, 

2009). Heuristic search algorithms have two main components: a heuristic function, and a tree 

search procedure. The heuristic function takes a game position as an argument and returns a 

value. The higher the value, the better the position is estimated to be. For the tree search 

algorithm, Shannon uses a “minimax” procedure that finds the sequence of a small, fixed number 

moves resulting in a position with the maximum heuristic value given that the opponent selects 

moves that minimize the value of the resulting position. Shannon’s algorithm does so by first 

simulating all possible moves for the player, all possible moves for the opponent in each of the 

1     For reference, in artificial intelligence this sort of algorithm is known as a pattern database (Culberson & 

Schaeffer, 1998). 
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resulting positions, and so on for a limited number of turns. It then works backwards from the 

most distant moves by selecting moves for the opponent that minimize the heuristic value and 

moves for the current player that maximize the heuristic value. With a good heuristic function, 

many fewer moves need be explored explicitly to achieve good performance. However, finding a 

good heuristic function, particularly for games with complicated rules like chess, can be quite 

difficult. 

There is a clear, intuitive analogy between heuristic search and the psychological findings 

of de Groot and Chase and Simon. The way in which experts have learned the roles of 

functionally relevant features can be represented by the heuristic function, and the way in which 

experts think ahead can likewise be represented by the building of game trees by a computer 

algorithm. Heuristic search, a product of artificial intelligence research, is naturally interpretable 

as a computational model of human cognition (de Groot, 1978; Simon & Schaeffer, 1990). 

Simon and Schaeffer’s synthesis of early chess psychology research into a “chunking 

theory” constitutes a model description of the family of heuristic search algorithms: they present 

a verbal description of a computational procedure that picks out a relational structure between its 

inputs and outputs (Simon & Schaeffer, 1990; Weisberg, 2013). However, psychologists have 

yet to cache out Simon and Schaeffer’s model descriptions and actually test a full heuristic 

search algorithm as a generative model by fitting parameters to data from human gameplay. 

Subsequent research has instead been focused on the relationship between chess knowledge qua 

memorized chunks, or features, and expertise. Despite the well-established theoretical 

relationship between search and chunking, research on tree search has by and large been 

quiescent, excepting a handful of simulation studies (Miller, 1956; Simon & Gilmartin, 1973; de 
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Groot, 1978; Berliner & Ebeling, 1988; Gobet & Charness, 2006). Essentially, researchers have 

treated the chunking-search model description as a syntactic view theory and attempted to 

investigate chunking indirectly without testing predictions from a generative model (da Costa & 

French, 1990; Suppe, 2000). 

Advantages of Modeling 

Traditionally, psychologists have adopted a syntactic view of theorization emphasizing 

deductive systems of propositions. However, philosophers of science overwhelmingly favor 

semantic views, which focus on the evaluation of models as representational structures, for 

theoretical and practical advantages (Cartwright, 1983; da Costa & French, 1990; Suppe, 2000; 

Weisberg, 2013). Importantly, explicit computational modelling allows graded quantitative 

evaluations of theoretical quality. The core normative question of a model on a semantic view is 

not whether the model is falsified by observations, but rather how well the model represents the 

target phenomena (van Fraassen, 1980; van Fraassen, 2008; Weisberg, 2013).  While richer 2

evaluations are inherently desirable, they have two further advantages. First, following Weisberg 

(2013), models are interpreted structures, and as such have individual components, substructures, 

and variables. These components can be evaluated individually in two ways. First, they can be 

removed from the model one at a time to determine their contribution to the overall predictive 

success of the model; this is sometimes called model lesioning, analogous to the study of the 

2     As a familiar case, typical between-groups statistical significance testing is an exemplar of 

hypothetico-deductive testing for whether a hypothetical proposition derived from a syntactic theory is falsified by 

evidence. Effect sizes and other statistical measures are typically not directly predicted from a theory and therefore 

become secondary concerns in theory evaluation. 
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effects of brain lesions. Second, model components can also be evaluated by interpreting them as 

or relating them to measures of secondary observable phenomena.  3

These two approaches to component evaluation can be thought of as roughly 

corresponding to Weisberg’s distinction between dynamical and representational fidelity criteria. 

Dynamical (predictive) fidelity criteria “deal only with the [model’s] predictions about how a 

real-world phenomenon will behave,” while representational fidelity criteria measure “how well 

the structure of the model maps onto the target system of interest” (Weisberg, 2013).  The first 4

approach to analyzing model components, lesioning, evaluates the importance of components 

using predictive accuracy, for example as measured by log-likelihood, as the predictive fidelity 

criterion. The second approach, using inferred component variables to predict secondary 

empirical measures, is best understood as a representational fidelity measure because it directly 

evaluates similarity between a real phenomenon and a model component construed as 

representing that phenomenon. 

The quantifiability of model quality allows for the side-by-side relative comparison of 

multiple models. In syntactic accounts of theorization, models are understood as mere 

illustrations or demonstrations and are not of direct theoretical interest. As a result, side-by-side 

comparison of theories is not possible because theories and deduced hypotheses themselves are 

3     For example, the main phenomena of interest in a forced choice task might be the stimulus and the response, but 

response times may also be recorded and compared to model components. 

4     Weisberg develops his account of mathematical modeling primarily with reference to dynamical models, but it 

applies equally to other types of mathematical and computational models. Our models are not dynamic, so for clarity 

I will be using the term predictive fidelity instead of dynamical fidelity. 
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evaluated as propositions, which can only take one of two values: true or false. Comparing 

models’ predictive performance directly thus allows for a more thorough, comprehensive 

evaluation of competing theories. 

Misunderstanding of Modeling 

The semantic view, widely accepted by contemporary philosophers of science, is poorly 

understood by many practicing scientists. Their lack of exposure is made abundantly clear by the 

recent disagreements over the increasingly popular practice of Bayesian modelling. Due to their 

commitment to Popperian hypothetico-deductivism and falsifiability, critics of Bayesian 

modelling in psychology accidentally target all of generative modelling (Marcus & Davis, 2013; 

Bowers & Davis, 2012a). Fortunately, their criticisms are defused by correctly rejecting 

hypothetico-deductivism as a metatheory appropriate to modelling. Unfortunately, proponents of 

Bayesian modelling appear incapable of making this response, due to the same acceptance of 

Popperian science or a naive Bayesian inductivist picture (Suppe, 2002; Jones & Love, 2011; 

Bowers & Davis, 2012b; Gelman & Shalizi, 2012; Griffiths et al., 2012; Gelman & Shalizi, 

2013). Tellingly, papers on both sides in this discourse fail to cite any of the highly relevant 

philosophical work produced over the last 50 years.   5

5     The lone exception appears to be Gelman and Shalizi (2012), who at least attempted to engage with 

contemporary philosophers. While they correctly identify that the common folk-scientist account of Bayesian 

inference as induction is troubled, they fail to recognize and consider alternatives to hypothetico-deductivism. 
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It is thus important to set the record straight by rejecting the shoehorning of scientific 

modelling into the outmoded Popperian picture.  The most visible anti-Bayesian mistakes can be 6

largely understood as variants of two criticisms: models are not falsifiable, and models are 

unavoidably configured post-hoc (Bowers & Davis, 2012a; Marcus & Davis, 2013). ,  Both 7 8

mistakes directly result from attempts to treat models as though they are hypothetico-deductive 

theories.  

The first criticism is a ​non sequitur​: of course models are not falsifiable. Models are not 

propositions; they are not in the business of being true or false (Popper, 1959; Suppes, 1961; van 

Fraassen, 1980; Cartwright, 1983; da Costa & French, 1990; Brading & Landry 2006).  If a 9

6     ​A thorough defense of the semantic view and a full accounting of the syntactic view’s inadequacies is well 

beyond the scope of this paper and more adequately treated elsewhere by philosophers. The body of this literature is 

enormous, but some excellent examples can be found in Quine (1951), Suppes (1961, 1967), Suppe (1977, 1989, 

2000), van Fraassen (1980, 2008), Cartwright (1983), da Costa & French (1990), Frigg (2006), and Weisberg 

(2013). 

7     Many Bayesians have further discursive problems, as observed by Bowers and Davis (2012b), that result from 

equivocation over the relationship between Bayesian models, rationality, and whether or not the brain literally 

implements Bayesian inference. 

8     I am again bracketing the concerns of Gelman and Shalizi (2012, 2013), who make important observations about 

the apparent adoption of a form of inductivism by some contemporary Bayesian modelers and raise appropriate 

objections. 

9     To elaborate a little, models are more like maps than they are like propositions. If we are using a map to 

navigate, we might evaluate it on its accuracy in portraying the relevant aspects of the landscape, but we would not 

describe the map itself as being “true” or “false”. A map is a physical object that represents the physical world as 
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researcher says a model is false, either they are making an overly casual statement about how 

well the model captures what it is intended to capture, or they are deeply confused. When Popper 

originally introduced falsifiability as a demarcation criterion, it was in the context of the 

positivist received view, or syntactic view, of theories, in which theories are understood strictly 

as deductive systems of theoretical axioms and hypothetical propositions (Popper, 1959; Suppe, 

2000). However, while Popperian theory continues to be taught in introductory philosophy of 

science courses, it is no longer widely accepted among professional theoreticians (Hempel, 1974; 

Suppe, 2000; Frigg, 2006). Falsifiability is not a suitable criterion for evaluating models, and the 

only reason to attempt to apply it to models is the reflexive presupposition of Popper’s account 

of scientific theorization. 

The second criticism is likewise addressed if we correctly understand models as distinct 

from the hypotheses used in null-hypothesis significance testing (NHST) paradigms. In NHST, 

post-hoc hypothesizing is largely problematic in multidimensional data because researchers can 

“fish” or “dredge” for significant test statistics across many variables, increasing the probability 

of false positives. While fitting free parameters in a computational model is in some sense 

likewise sifting through a large hypothesis space, the model structure, or the uninstantiated 

model description in Weisberg’s terminology, is typically the object of interest, not individual 

parameter settings and their corresponding instantiated model.  

being a certain way, and is evaluable with respect to our intentions for it, such as successful navigation. Likewise, 

models in science, even when not concrete objects, are intentional representations, not propositions (van Fraassen, 

2008; Weisberg, 2013). 
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A variant of this objection targets the comparison of multiple models on a  single data set. 

However, when comparing multiple models, the primary objective is not to find a model with the 

highest raw performance, but rather to select the model with highest relative performance. In this 

case, each additional model actually reduces the even-odds probability of a given model being 

selected.  

Problems with Chess as an Experimental Paradigm 

The desirability of a model to cash out the model description suggested by Simon and 

Schaeffer (1990) is clear; nonetheless, contrary to Chase and Simon, we find that chess and other 

natural games present several problems as “model environments” (Chase & Simon, 1973). First, 

chess is too familiar to the general population. Chess experts have typically played thousands of 

hours, many novices already have a general sense of some important patterns, and almost every 

subject accessible to experimenters will have played the game previously. Second, paradoxically, 

chess is also too difficult for both human and computer players. The difficulty has three sources: 

heterogenous pieces, complex rules, and a relatively large board. Together, the first two entail 

that subjects must remember a large ruleset and potentially learn a large number of complex 

features, and that a heuristic search algorithm requires a complicated, burdensome heuristic 

function. The third source of difficulty results in the previously discussed immensity of the game 

tree in chess. 

However, understanding how people play chess specifically is not the real prize; like 

Simon, we are interested in the more general question of how people think ahead, idealized as 

the play of strategy games (Simon & Schaeffer, 1990). To this end, we selected a more suitable 

combinatorial game of perfect information, recorded human subjects playing, and used a variety 
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of artificial intelligence algorithms as generative models of their decisions. Combinatorial games 

are deterministic, and in games of perfect information, all players have exactly the same 

knowledge about the state of the game (Berlekamp & Conway, et al., 1982). These properties 

help isolate the cognitive processes involved in thinking ahead by eliminating the need for 

players to consider uncertainty about the outcomes of their moves or the moves available to their 

opponent. Additionally, combinatorial games can in principle be played perfectly, though often 

not so in practice, which supports the use of psychometric techniques, such as estimating a 

player’s general strength (​Neumann & Morgenstern, 1944; Shannon, 1950​). 

An Alternative To Chess: (​m, n, k​) Games 

To avoid the problems with chess as an experimental paradigm, we selected an m, , )( n k  

game as our fundamental task.  games are a broad class of games, previously studied bym, , )( n k  

mathematicians and computer scientists, in which players take turns placing pieces on an ​m​ by ​n 

grid, and the first player to place ​k​ of their own pieces in a row in any orientation wins the game 

(van den Herik et al., 2002; Wu & Huang 2005). A well-known example of an  game ism, , )( n k  

tic-tac-toe: players take turns placing pieces on a 3 by 3 grid, and the first player to place 3 

pieces in a row wins. Tic-tac-toe, however, is far too simple a game to be of experimental 

interest: the game is guaranteed to be tied if the both players play perfectly, and most people can 

learn perfect play with relative ease if they have not already (Uiterwijk & van den Herik, 2000). 

We chose to use the game (4, 9, 4), which has a 4 by 9 grid on which players must place 

4 in a row to win (Figure 1). As a combinatorial game of perfect information, (4, 9, 4) retains 

many of chess’s useful properties with a much more manageable level of theoretical and 
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practical complexity. Unlike chess, the number of available moves in a position is exactly equal 

to the number of unoccupied squares, and unlike tic-tac-toe, strategy is nontrivial and subjects 

cannot easily learn perfect play. The state space of (4, 9, 4) is about 10​20​, many orders of 

magnitude smaller than chess’s 10​43​ and larger than tic-tac-toe’s 765. Furthermore, (4, 9, 4) is an 

unfamiliar game to most people, so subjects are reliably novices, moderating the influence of 

past experience as occurs in the study of chess. The simplicity of the rules means subjects can 

nevertheless learn to play with minimal instruction. Because of these virtues, (4, 9, 4) is well 

suited as an experimental game for the study of cognitive processes underlying human play. 

Using (4, 9, 4) To Study Human Gameplay 

To determine the quality of heuristic search as a representation of how people think ahead 

in strategy games, we recorded human subjects playing (4, 9, 4) against each other in pairs and 

used a heuristic search algorithm as a generative model by freeing and fitting parameters in the 

tree building procedure and the heuristic function. We additionally employ several alternative 

models that are not consistent with the model description explored in prior research. Each of our 

models takes a representation of a game board that a player saw as input and returns a prediction 

for the corresponding move made by that player. We fit each model’s parameters to individual 

subjects and use the average negative log-likelihood of the model’s predictions on the test set as 

our predictive fidelity measure. 

Models.​ Our first model is a heuristic search algorithm, HS, which approximately 

corresponds to Chase and Simon and de Groot’s qualitative characterization of reasoning in 

chess by using a heuristic function to evaluate positions and explore only the most promising 

branches of the decision tree. The second model is a Monte Carlo tree search algorithm, MCTS, 
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which uses random simulations of game tree branches to find the most promising moves at each 

depth (Abramson & Korf, 1987; Kocsis & Szepesvári, 2006; Enzenberger et al., 2010). The third 

model, NT, makes a decision using the heuristic function from HS, but does not build a game 

tree. Fourth, NT + C​opp​ is NT with the addition of an “opponent scaling” parameter that gives a 

relative boost or discount to the aggregate value of the opponent’s position in HS’s heuristic 

function. Fifth, CN is a convolutional neural network, a popular class of algorithms in image 

recognition that has recently seen some success in artificial intelligence gameplay (Clark & 

Stokey, 2014; LeCun, Bengio, & Hinton, 2015; Silver et al., 2016). Finally, we use a fitted 

softmax function, SM, and an optimal-random mixture model, OR, as unstructured control 

models. All models treat trials as independent and identically distributed; we do not model 

dependence between trials.  More extensive descriptions of each model and theoretical 10

discussion are available in the supplementary information. 

Based on the similarities between of heuristic search algorithms and successful cognitive 

model descriptions, we expected that HS would have the highest performance as measured by 

cross-validated log-likelihood of the model’s predictions of moves in subject gameplay data. Our 

other models are alternative hypotheses that are inconsistent with the model description 

suggested by past researchers, despite Monte Carlo tree search and convolutional neural 

networks having been demonstrated as powerful game playing algorithms in their own right. We 

additionally predict that the response time of subjects will correlate with internal properties of 

HS, such as the number of positions simulated by the model before it makes a response. The 

10     To be completely clear, in reality the trials are neither identically nor independently distributed. 
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ability to make secondary predictions using internal model features is critical to establishing the 

success of heuristic search as a model of decision making in games by quantifying the 

representational fidelity of at least one internal component. 

Methods 

Participants 

We recruited 40 participants aged 20 to 28 in pairs from the New York University student 

community. Participants were only required to have corrected-to-normal vision and be proficient 

enough in spoken English to understand the experiment instructions. Participants were each 

compensated $12 for approximately one hour of participation. 

Research Design 

The study is within-subjects and observational. The researchers lack control over the 

stimuli seen by the subjects or the number of times subjects see identical stimuli, which instead 

result directly from the decisions of subjects. Thus, the “independent” measure is not completely 

controlled and randomized by the experimenter. We construct an environment with certain rules 

and then passively observe subjects’ behavior in response to particular states of that 

environment. As we lack control over the particularities of stimuli within that environment, we 

do not believe our study is properly called experimental. As we do not analyze any preexisting 

differences between subjects, our study is likewise not properly called quasi-experimental. We 

recorded behavior of subjects in a relatively uncontrolled environment, so by these delineators 

our project is fundamentally observational. However, because we use maximum likelihood 

estimation in probabilistic models instead of conventional hypothesis testing, we perform similar 
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analyses to those we would should we have chosen to use a controlled repeated-measures design 

with independent randomized trials. 

Procedures 

After signing consent forms and receiving written and verbal instructions, each 

participant in a pair was seated in a separate room at a computer terminal. The experiment, coded 

as a web application, was launched in Google’s Chrome web browser. The two browsers 

communicated and recorded data through an Apache-PHP server with a MySQL database. 

Participants were allowed to play against each other for one hour plus the amount of time 

required to finish their final game. There was no time limit on individual moves; participants 

were free to deliberate as long as they wished. Participants were permitted to take breaks as 

desired, but once they began playing they were not allowed to interact directly until the end of 

the experiment. 

Each game began with a blank nine by four playing board (Figure 1). The player with 

black pieces went first. Each player took turns placing one of their playing pieces on an empty 

square. The first player to place four of their own pieces in a row won the game. Games could 

also end in draws, either when the entire board was full with neither player achieving a 

four-in-a-row, or when both players agreed to a draw by clicking a button. Participants took turns 

as Black and White in alternating games. 

Measures 

We recorded each position each participant saw, the color they were currently playing, 

the move they made in response to that position, when they requested a draw, and the time it 

took for them to respond after their opponent’s move updated on their screen. 
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Results 

Predictive fidelity measure 

As measured by cross validated log-likelihood, the heuristic search model HS 

outperforms all other models we tested, with an average negative log likelihood of 2.05 ± .04 

(Figure 2), a 35% improvement over the negative log likelihood of random guessing at 3.20. All 

models are significantly better than both chance and the relatively unstructured control models 

SM and OR. Figure 3 shows the distribution of average negative log likelihoods per subject; 

figures 4 and 5 show more detail for the relative performance of each model on different 

subjects. The lesioning comparison demonstrated that tree building, the three-in-a-row feature, 

random feature dropping, and the stop condition were all significant contributors to performance 

(Figure 6). The remaining components in the analysis may have contributed, but their 

contributions were not significant. Figure 7 shows that CN significantly outperforms HS on the 

first two moves, but consistently underperforms from the ninth move on. Additionally, Figure 7 

illustrates that the width of the Bayesian credible interval for the mean of model performance 

increases as the number of moves in the game increases. 

Representational fidelity measure: Response time 

Players’ response times are roughly exponentially distributed across the population, and 

median response times were strongly correlated within pairs of players with ​R​2​ = .​42​, p < ​.001 

(Figure 8). Additionally, average response time is lower when the board is either very empty or 

very full, and response times increase as play continues until about five moves before the end of 

a game, where response time drops off precipitously (Figure 9). Finally, to a varying degree, 
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response times also correlate with the number of positions explored during search by HS after 

fitting (Figure 10).  

Discussion 

Findings 

Scientific models are evaluated against two kinds of fidelity criteria: dynamical, or 

predictive, fidelity criteria, and representational fidelity criteria (Weisberg, 2013). Our measure 

for the predictive fidelity criterion is the average negative log-likelihood per subject. Because we 

are primarily interested in the relative performance of multiple models, we are not deeply 

concerned with a specific criterion. Instead, we use a “chance” model, which makes a move at 

random, as well as two minimally structured models, SM and OR, to establish several 

performance baselines that we correctly expect all competitive models to beat. 

The heuristic search model HS was effectively tied for best performance with the treeless 

model augmented with opponent scaling, NT + C​opp​, on the gameplay data we collected. While 

the mean negative log likelihood for NT + C​opp ​is strictly less than that for HS, its 95% 

confidence interval contains the mean performance of the HS model, so we cannot confidently 

say that their performance is distinguishable on our chosen predictive fidelity criterion alone. 

However, using additional measures for representational fidelity allows us to further 

distinguish between these two models. In this case, we are able to use HS to attempt predictions 

for other empirical measures, allowing for the evaluation of performance against representational 

fidelity criteria. Specifically, we can use the number of moves explored by HS during tree 

building as a representation of how much thought a subject gives to a particular position, 

allowing us to predict response times for some subjects (Figure 10).  
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However, the successfulness of the prediction is at best mixed - for more than half the 

subjects, there is no significant correlation at ​p ​< .001, and for at least one, the correlation is at ​p 

< .05​ ​and negative. Because there are 40 correlations being performed, ​p​ < .001 is the most 

appropriate threshold for accepting the statistical hypothesis that log tree size is correlated with 

log response times. In Figure 10, we report bootstrapped means (​n ​= 10,000) for the Pearson 

correlation coefficient between log tree size and log response times. Given the 

poor-to-nonexistent correlation for most of our subjects, it is readily apparent that despite the 

weak average correlation across the population, we cannot claim this analysis as evidence that 

HS faithfully represents the unobservable cognitive process that results in observable response 

times. 

This failure presents an opportunity to raise another criticism of HS. While we take the 

model description advanced by past research as a starting point, HS diverges from the classical 

account in critical ways. Most importantly, as contrary to the description of the chunking theory 

in Gobet and Simon (1998) and Simon and Gilmartin’s (1973) simulation work on their EPAM 

model, the heuristic function in HS has a very small number of fixed features. Thus, HS is unable 

to do one of the important things suggested by past research, which is add high level features to 

its heuristic function to make search more efficient. For example, in (4, 9, 4) there are some 

complex patterns that guarantee a win two moves in advance. A model that could learn such 

representations nonlinearly would be able to search two moves fewer to find that positions with 

these features had high heuristic values. If human cognition is more similar to classical chunking 

descriptions of chess, then HS may not build trees in the same way as people, which is consistent 

with the general lack of relationship between tree size and response times. 
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Regardless, because NT + C​opp​ lacks the tree search procedure, it also entirely lacks the 

components we interpret as the amount of deliberation in which a subject engages. We are 

therefore unable even to attempt to use NT + C​opp​ to make the same response time prediction; 

there is no component to NT + C​opp​ that could similarly be interpreted as a predictor of thinking 

time. One important caveat is that we could similarly take the total operations performed by each 

algorithm as the predictor for response time, but do so is too literal in principle and too 

burdensome in practice. We therefore count the additional representational capacity of HS as a 

strong reason to prefer it over NT + C​opp​, even though its representation is largely unsuccessful.  11

Furthermore, despite its departures from chunking theory’s details, HS is the only model 

we created that is consistent with past research on chess. The remaining models were developed 

from other artificial intelligence algorithms without much attention to human cognition. For 

example, we regard MCTS to be cognitively implausible. Humans almost certainly do not 

simulate many hundreds of random moves. Past work on chess expertise is consistent with this 

intuition: even chess experts do not recount considering hundreds of moves (de Groot, 1978; 

11     There is a third possible predictor for response time that could be developed, for example, from the entropy of 

the likelihood distribution output from the models. However, it is not clear that this response time prediction should 

be  counted as a representational fidelity measure, but rather as the predictive fidelity measure for a different model 

that incorporates likelihood from the first model to make response time predictions. In other words, to do so would 

be to invert the current measures: the correct prediction of response time becomes a predictive measure, and the 

correct prediction of subject moves becomes a representational measure. We are primarily interested in how humans 

make moves, not how much time they require to think, and so inverting the criteria does not serve our purposes. 

Appropriate alternatives must be components measures of the process that produces the model predictions, not a 

property of the model predictions. 
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Chase & Simon, 1973). CN and HS are more psychologically plausible than MCTS, but 

regardless, both are worse than HS in predictive performance. 

Despite the lower predictive performance of CN, we do not believe we have exhaustively 

explored the possibilities provided by neural networks. One important concern is that CN is 

handicapped in this analysis due to a lack of data. Even with data augmentation, attempting to fit 

CN’s weights to individual subjects results in extreme overfitting and low test set performance of 

3.36, or close to random, indicating that more data is necessary to achieve good test set 

performance on individual subjects. The superior early game fit and the response of CN to an 

empty board (Figures 7 and 11) further suggest that the network is capable of even better 

performance, particularly in the earliest stages of the game. The reason for the particular shape is 

that some subjects prefer to play the first move on a corner, and some prefer to play closer to the 

center (Figure 12). In general, because CN is close to HS in performance and is prone to 

overfitting (Figure 13), we believe that with more data, CN may have a greater capacity to 

capture individual differences. Collectively, these observations imply that simply collecting more 

data might enable CN’s performance to equal or surpass HS. We plan to explore this potential in 

future experiments with much more data per subject. 

The fact that convolutional neural networks require so much training data is itself an 

important shortcoming. Because CN has no built-in game-specific knowledge, it must learn how 

to play from trial and error, as corresponds to the gradient descent fitting procedure. However, 

subjects are able to immediately grasp the rules and do not require thousands of trials to learn to 

play successfully. Additionally, the features learned by CN (Figure S3) are 4 by 4 by 2 tensors 

with non-binary elements. It is plausible but unintuitive that subjects learn such large, flexible 
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feature representations; even though CN most clearly matches our intuitions about neural 

implementations, it fails to correspond to the self-reports of chess players in past research (de 

Groot, 1946/1978). 

Somewhat paradoxically, even though CN’s lack of game knowledge is troubling from an 

experimental perspective, its ability to perform well also provides reason to take CN’s predictive 

performance seriously and continue to develop neural networks as models for our task. Unlike 

HS, which has hard-coded features selected according to a game-related criterion, CN learns to 

imitate subjects entirely from scratch. This task is nontrivial, and when we added to CN the 

nonlinearity that prevents illegal moves, we were able to halve the number of required features 

(Figure S4) while significantly improving prediction quality in the best-fitting model. Thus we 

understand that “batteries included” task knowledge is an advantage both intuitively and 

empirically. In fact, we speculate that learning game rules may occupy the bulk of the network’s 

training data requirements; in the future, we may examine networks with partially hard-coded 

features and weights and attempt pretraining networks using reinforcement learning. 

Another concern for HS is the indistinguishability of the predictive performance of HS 

and HS​agg ​(Figure 2). If fitting parameters to individual subjects produces little improvement over 

fitting to the data aggregated across subjects, there are three possible circumstances. First, HS 

may also be suffering from insufficient data, and individual fits per subject are below potential as 

a result. However, we find no correlation between the number of observations and the fit of HS 

for each subject (​R​2​ ​= .01, ​p​ = .47). Second, it may be that HS does not have the capacity to 

capture substantial individual differences. With 10 free parameters, however, HS should be 

sufficiently flexible to capture a variety of behaviors. Finally, there might not be substantial 
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individual differences in the first place, as (4, 9, 4) is easy enough for subjects to learn to play 

quite well. Because the game has neither complicated rules nor a large state space, there is 

comparatively little variety in successful strategies and winning patterns. As a result, subject 

behavior may converge as skill increases such that there is relatively little individual difference 

for HS to learn. 

Our component lesioning analysis provides some useful insights. Primarily, we can look 

at components for different model subprocesses - the heuristic function, the tree construction 

procedure, and noise - to evaluate their relative importance. One important takeaway is that all 

the components except the four-in-a-row feature appear to be essential. It might appear 

surprising that the feature indicating a win is inessential, but it is actually redundant with the tree 

building algorithm, which returns fixed values for terminal nodes, or the ends of games. The fact 

that virtually all components are necessary is further surprising in light of the success of NT + 

C​opp​, which replaces all the tree building components in lesioning analysis as well as the tree 

itself and achieves very similar performance. This circumstance might indicate that the extra 

complexity of HS results in a less successful fitting procedure, that the additional parameters in 

HS contribute to overfitting beyond improved performance, or that the scaling parameter NT + 

C​opp ​captures a feature of behavior not included in HS. The former case has no simple solution, 

and the second case could be ameliorated by collecting more data, as is the case for CN. We plan 

to address the third case in future work by modifying the heuristic function of HS to include a 

scaling term for the opposing player at each step in the tree building procedure. 

Additionally, we do not know the generality of the model’s representation of cognition 

for this game; to establish this, we will be pursuing extensions of the game (4, 9, 4) to forced 
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choice, puzzles, qualitative judgments of positions, and other related tasks. In future work, we 

will pay particularly close attention to qualitative judgments as a new measure of 

representational fidelity; these judgments can be directly related to the heuristic function value in 

HS. Finally, we also do not know the generality of the model class defined broadly as heuristic 

search as suitable representations for other strategy games. Parallel future work demonstrating 

whether heuristic search is the best performing model for a variety of games with varying rules 

and geometries will be essential to fully understand how heuristic search relates to human 

cognition. 

Studying cognition in strategy games might appear abstract and esoteric, but 

combinatorial gameplay cleanly exposes some of the essential elements for more general 

reasoning and decision making, such as value judgements and the anticipation of consequences. 

In general, on any given day a person will plan sequences of actions many times, whether for 

mundane activities like ordering a set of errands or for sophisticated decisions like military 

strategy. Strategy games are an idealized environment in which the processes underlying 

complicated decision making in natural environments are isolated without being reduced away 

entirely. Consequently, our work applies not only to replicating human gameplay, but to 

furthering our understanding of the fundamentals of human reasoning by establishing a new 

experimental paradigm for the study of sequential decision making and procedural rationality.  

Our heuristic search model is tied for the best performance on our predictive fidelity 

measure, and we can generate secondary predictions from its components. We therefore take 

heuristic search to be the best supported general family of models for combinatorial gameplay. 

Importantly, our heuristic search model captures critical features of, and by its success 
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corroborates, the cognitive story told by Chase and Simon and de Groot’s pioneering work, 

building on the past success of heuristic search model descriptions. Most importantly, heuristic 

search’s success as a model of reasoning in combinatorial games provides evidence that heuristic 

search plays an important role in more general decision making. 
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Figure 1: ​Example positions from a game of (4, 9, 4). The move made by the current player is 

indicated by an outline of the corresponding color. In the last board at the bottom right, White 

wins by making a vertical four-in-a-row. 
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Figure 2:​ Comparison of difference in model performance between HS and other models. SM​agg 

is the softmax model trained on aggregate data. OR is the optimal-random mixture model. CN is 

the convolutional neural network. MCTS is the Monte Carlo tree search model. NT is the 

heuristic function from the heuristic search model. NT + C​opp​ is NT with an additional free 

parameter that scales the value of the opponent’s pieces in the heuristic function. HS​agg​ is HS 

trained on data aggregated across subjects. 
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Figure 3​: Histograms of the average negative log likelihood per subject for the four competitive 

models. 
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Figure 4:​ Pairwise comparison for all competitive models. The axes are negative log likelihood 

relative to chance, with higher values indicating a better fit. Each dot is one subject’s average fit. 

  



 
 
 
 
HUMAN REASONING IN STRATEGY GAMES         40 

 

Figure 5: ​Distributions of negative log likelihood difference from HS for MCTS, and NT + C​opp​, 

and CN. On the left is the negative log likelihood (NLL) difference from HS for each 

combination of subject and model, ordered by HS NLL. On the right are histograms of the 

difference in NLL from HS. Lower values indicate better performance relative to HS. 
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Figure 6: ​ Lesioning analysis results from removing each HS component. NT is HS’s heuristic 

function with no tree building. The -f​x​ models are removals of features from the heuristic 

function: 4-in-a-row, 3-in-a-row, 2 adjacent, distance to center, feature drop rate, tree branch 

pruning factor, and lapse rate, respectively. 
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Figure 7: ​Mean log-likelihood relative to chance by number of moves played. A higher value 

indicates a better performance. 
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Figure 8:​ Top left: histogram of response times for entire population. Bottom left: correlation 

between median response times for pairs of players. Right: scatter plots of median response 

times and model log likelihoods for each player for CN, NT + C​opp​, and HS. 
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Figure 9​: Mean response time as a function of number of pieces on the board (top) and number 

of moves left in the current game (bottom). 

  



 
 
 
 
HUMAN REASONING IN STRATEGY GAMES         45 

 

Figure 10​: Correlation between the log tree size built by HS and the response time of subjects. 

Top, the histogram of the bootstrapped mean of subject-by-subject correlations between the log 

of response time and the log of tree size built by HS. Bottom, the mean of the bootstrapped 

correlation per subject. Asterisks indicate an original correlation ​p​ value < .05, .01, and .001 

respectively. 
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Figure 11:​ Example predictions for Black by the convolutional network model. The move the 

subject actually makes is indicated by an outline. The more probability assigned by the model to 

a location, the brighter the green. 
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Figure 12:​ Above is empirical distribution of symmetrized opening moves, compared with the 

prediction from CN (see inset). Location 0 includes the four corners, and location 13 includes the 

two centermost squares. Below is a normalized 2D histogram of each human player’s opening 

preference; black indicates 100% of openings in the corresponding location. 
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Figure 13:​ The training set and validation set performance traces from training CN on the fourth 

cross-validation split. 
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Supplement 

Models 

Heuristic Search. ​The heuristic search model (HS) works by iteratively selecting moves, 

simulating their independent addition to the board (“expanding a node”), evaluating the resulting 

position, and “backpropagating” the values by updating the values of previously visited positions 

accordingly (Figure S1). The evaluation step calls a heuristic function that takes a weighted sum 

of features, or configurations of pieces present on the board, and returns a single value: 

 (s) (s ) (s ) (0, 1)H = ∑
 

i
w fi i self − ∑

 

i
w fi i opponent + N   

where ​s​ is a game position, ​s​self​ and ​s​opponent​ respectively are the arrangement of a player’s own 

pieces and that of their opponent, ​f​i​ ​is the number of occurrences of feature ​i ​in ​s​, and ​w​i​ is the 

corresponding weight for that feature. The features are four in a row (a win), three in a row of 

four with one open space (commonly called a “threat”), two adjacent in a row of four with two 

open spaces, two nonadjacent in a row of four with two open spaces, and a “center” feature that 

counts the number of pieces in the three centermost columns of the game board (Figure S2). The 

first four features can be in any orientation (horizontal, vertical, or diagonal). Together they are 

an exhaustive combination of  of a player’s pieces in a four by one section of the2, ]n∈ [ 4  

game board. 

The heuristic value is then backpropagated to the previous position according to a 

minimax rule. If the position was the player’s own position, then the maximum value of all direct 

children of its parent is backpropagated; if the position was the opponent’s, then the minimum 

value is backpropagated (Figure S1). The model then selects a new unexplored position by 
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following a path of maximum value for the current player and minimum value for the opponent 

to a previously unexpanded node. 

There are a total of 10 free parameters in the heuristic search model. As previously 

discussed, there is one parameter ​w​i​ for each feature weight, for 5 free parameters in the heuristic 

function. Another parameter in the heuristic function is the feature drop rate ​δ​. The feature drop 

rate is the probability with which an instance of a feature  ​f​i​ is not counted and represents 

subjects failing to notice the presence of of a feature at some location. 

There is an additional lapse rate parameter ​λ​, which is a probability with which the model 

builds no tree and instead randomly selects a move from a uniform distribution over all legal 

moves. After expanding a node, a “pruning” module removes further branches of the decision 

tree for which the heuristic value is below the maximum value less a threshold parameter ​t​p​. 

Pruning is representative of subjects ignoring some options when those options appear to be 

relatively unpromising. 

Finally, there are two parameters governing stopping conditions, or when the model stops 

iteratively adding and pruning nodes from a tree and makes a move based on the maximum value 

of explored moves.  The first is a random early stop parameter ​γ​ which is the probability with 

which the model stops updating the game tree after each backpropagation. The second is a 

threshold ​t​s​; when the difference between the values of the best and second best move exceeds 

the stopping threshold, the model stops iterating and selects the best move. 

Monte Carlo Tree Search. ​The second model implements a parameterized Monte Carlo 

tree search (MCTS) algorithm, based on the UCT algorithm (Kocsis & Szepesvári, 2006).  The 

MCTS model simulates a number of random chains of moves through the end of a game, 
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backpropagates the number of wins and the number of visits to each node, then selects a new 

move to explore based on the ratio of wins to visits for each available move. The exact 

expression for the selection is the UCB1 policy (Auer, Cesa-Bianchi, & Fischer, 2002): 

rgmax V (m) c  a m∈M +  √ N (p )m

log(N (p))   

where ​m​ is a move from the set of legal moves ​M​ at position ​p​, ​V​(​m​) is the average value of 

game ends reached from move ​m, p​m​ is the position that results from move ​m ​, ​N ​(​p ​) is the number 

of visits to position ​p​, and ​c​ is a free parameter called the exploration coefficient. The 

exploration coefficient loosely represents how inclined a player is to explore new moves that 

they had not previously considered. After selecting a previously unexplored node, the algorithm 

performs a random “rollout” by simulating random moves until it reaches a won, drawn, or lost 

position. It then backpropagates the game theoretical value from that position (1, 0, and -1, 

respectively) through all parent nodes. After a fixed number of rollouts, the model makes the 

move corresponding the highest move with the highest value. 

Convolutional Neural Network.​ A typical convolutional neural network is composed of 

several layers: an input layer, which takes in image-like data with each pixel being represented 

by one node, or element in a tensor; hidden layers, which perform some operation on the value of 

each node in the previous layer, and an output layer, which typically has one node for each of a 

number of possible classification label (LeCun, Bengio, & Hinton, 2015). Hidden layers are 

typically of one of two primary types: a convolutional layer, or a fully connected layer. 

Convolutional layers iteratively multiply sections of their input with each of a number of filters, 

producing a vector of responses for each filter at each location. Fully connected layers perform a 
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vector product between their weight parameters and their inputs. A fairly minimal structure for a 

convolutional neural network is then an input layer, a single convolutional layer, and a single 

fully connected output layer. This minimal layer structure is what we use for our model CN. 

We treat our inputs as a 9 by 4 image (the game board), which we represent as a rank 3 

tensor with dimensionality (2, 4, 9) - there are two channels in the 4 by 9 image, one for one’s 

own pieces, and one for the opponent’s pieces. The convolutional layer we use contains 32 filters 

of dimensionality (2, 4, 4). Each filter is iteratively moved across the input image, producing a 

tensor of filter responses. We then apply a rectified linear function to the filter responses, and 

then pass to a fully connected output layer of 36 units, one for each location on the game board. 

We subsequently apply a softmax function to the output layer to convert the class label 

prediction into a probability distribution over possible moves. Finally, we filter the output by the 

input image and renormalize the distribution to prevent assignment of any probability to illegal 

moves.  

After exploring a number of different layer structures, which we do not report, we 

eventually settled on the above architecture. To decide the number of filters to use in our 

architecture and to measure the effect of including the legal move filter, we trained each of the 

two architectures with 9 different numbers of filters, from 1 to 256 by powers of 2 (Figure S4). 

We chose our architecture first according to best fit and second according to lowest number of 

filters. 

Control Models. ​A fourth model uses the heuristic function from the heuristic search 

model but does not build a game tree at all and just selects the most promising move according to 

the heuristic function’s valuations. This “no tree” model (NT) allows us to comparatively 
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evaluate the importance of building a game tree to our HS model. The fifth model, NT + C​opp​, is 

NT with an additional parameter that scales the value of the heuristic function for the opponent’s 

position. The sixth model is a mixture model (OR) that either makes the best available move or a 

random move drawn from a uniform distribution over legal moves. The final model is a softmax 

model (SM) that estimates a weight parameter for every location on the board, returning a 

normalized distribution over available moves. SM is entirely a control model that essentially 

represents subjects as having independent relative preferences for every location regardless of 

any other features present on the board, and we do not expect it to perform well at all; its 

presence is to establish a baseline at which a minimally structured model performs for 

comparison. 

Fitting Procedures 

HS, MCTS, NT, NT + C​opp​, and the lesion models are fitted using multilevel coordinate 

search (Huyer & Neumaier, 1999). In the five-fold cross-validation scheme, the data is divided 

into five groups. Each group is set aside once as a test set while the remaining four are used for 

training. CN is trained using gradient descent with Nesterov momentum (Sutskever, Martens, 

Dahl, & Hinton, 2013). SM is trained using gradient descent, and OR is computed analytically. 

In our analyses, we report the test set log likelihood for every data point. 

In the five-fold cross-validation scheme for CN. we use five rotations each with three 

groups as a training set, one group as a validation set, and one group as a test set. The purpose of 

the validation set is for early stopping, a method that prevents overfitting by halting network 

training when the error on the independent validation set stops decreasing. Because early 

stopping essentially minimizes error on the validation set as well as the training set, the test set 
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remains important as a fully independent measure of the model’s ability to generalize to unseen 

data. We use random dropout with ​p ​=.75 between the convolution and output layer during 

training to prevent filter coadaptation and encourage independent features (Srivistava et al., 

2014).  

We use the negative log likelihood instead of accuracy because it is more informative. 

For example, players see and respond to a blank board many times over the course of an 

experiment, but they may not always make the same choice. The negative log likelihood 

provides a principled measure of the match between the empirical distribution of a player’s 

choices. In other words, using predictive accuracy does not allow us to answer questions about to 

what degree a model’s prediction is incorrect for a given position. To maximize the accuracy of 

this prediction for a given move, the probability distribution of the model be exactly equal to the 

empirical distribution of a player’s choices. 

We report cross-validated values instead of information criteria because they are the most 

natural way of protecting analyses from overfitted models (Stone, 1974). Popular 

information-criterion methods, like Bayes or Aikake information criteria, are best used when 

cross-validation is not feasible. Rather than directly measuring overfitting, information criteria 

heuristically regularize by the number of free parameters; as such, when a model is prohibitively 

difficult to fit or data is excessively sparse, information criteria can be useful (Stone, 1977; 

Gelman, Hwang, & Vehtari, 2013). However, the number of free parameters is not the 

fundamental problem in constraining computational models; overfitting is, and free parameters 

are only ​prima facie​ problematic insofar as they allow for overfitting. Cross-validation directly 
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addresses the problem that information criteria propose to ameliorate and is the more principled 

choice when feasible. 

The biggest practical obstacle in using a neural network as a model with this 

experimental data set is a lack of data. We have an average of only 137 data points per subject 

with a standard deviation of about 61. For perspective, most training sets for neural networks, 

especially in image classification, contain 10,000 to 100,000 image-label pairs. As a result, when 

we attempted to train the network on individual subjects, we found an average negative 

log-likelihood of 3.36, or close to random guessing, on the test set examples. We attempted an 

increase in the random dropout rate from .75 to .95, but this only reduces test error to 3.04. 

Because the training set error with dropout at .75 drops below 1.80 during fitting, we can 

conclude confidently that the mismatch is overwhelming due to overfitting, and that 

regularization via dropout is insufficient to move past the problem with this little data. 

Statistics 

The NumPy and SciPy packages for Python were used for all analyses and results figures. 

Error bars and bands for figures are 95% Bayesian credibility regions for the reported statistic 

unless otherwise indicated. Statistics for the entire subject population are calculated from the raw 

negative log likelihoods for every data point for HS, HS​agg​, CN, NT, NT + C​opp​, and lesioned 

models. Statistics for SM, SM​agg​, and MCTS are reported by averaging first across subjects; log 

likelihoods and predictive distributions for individual observations are not currently available. 

Implementations 
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HS, MCTS, NT, and OR, and their respective variants are all implemented in C++. SM is 

implemented in Python with NumPy and SciPy. CN is implemented in Python with Theano and 

Lasagne (Al-Rfou et al., 2012). 
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Figure S1:​ Demonstration of heuristic search algorithm. Each square represents a game position, 

and each edge represents the addition of a game piece to the board at a specific location. The 

grey square is the starting position (what the subject sees and the input to the model); the black 

squares are positions that result from a player’s own moves, and the white squares are positions 

that result from the opponent’s moves. Each row is an iteration; from left to right, the steps are 

select and expand​, ​evaluate​, and ​backpropagate​. Note that it is the ​minimum​ value of an 

opponent’s moves and the ​maximum​ value of one’s own moves that is backpropagated. 
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Figure S2:​ Demonstration of feature presence. Purple is ​f​2a​, green is ​f​3​, and orange is ​f​2u​. Pieces 

with the blue dots count towards the “center” feature. Not shown is ​f​4​, the four-in-a-row feature 

that results in a win. 

  



 
 
 
 
HUMAN REASONING IN STRATEGY GAMES         59 

                         

Figure S3:​ Some example filters learned by model CN. Each filter is a (2, 4, 4) volume, with two 

channels for the current player’s pieces and their opponent’s pieces. Each pair of patches in this 

image is a single filter; the left patch in each pair is for the player’s own pieces, and the right 

patch is for their opponent’s. Darker elements in a patch indicates that the filter responds ​less 

strongly to the presence of a piece at that location in its receptive field. 
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Figure S4:​ The negative log likelihood of the trained model for each combination of neural 

network architecture (with or without the legal move filter) and each number of filters on a log​2 

scale. 

 

 


