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Abstract
In laboratory visual search experiments, distractors are often statistically independent of

each other. However, stimuli in more naturalistic settings are often correlated and rarely

independent. Here, we examine whether human observers take stimulus correlations into

account in orientation target detection. We find that they do, although probably not opti-

mally. In particular, it seems that low distractor correlations are overestimated. Our results

might contribute to bridging the gap between artificial and natural visual search tasks.

Introduction
Visual target detection in displays consisting of multiple simple stimuli is a mainstay in visual
science. Within this group of tasks, two classes can be distinguished: ones in which the distrac-
tors are identical to each other (homogeneous), and ones in which they are not (heterogeneous)
[1]. Models have focused on homogeneous-distractor tasks, in which the value of the distrac-
tors is fixed across trials [2–9]. For example, an observer might be detecting a vertically ori-
ented target among distractors that are always tilted 5° clockwise, or a signal among N image
patches that otherwise consist of only pixel noise. In such conditions, human performance is
well described by either a model in which the observer uses a maximum-of-outputs rule [9, 10]
or a Bayesian maximum-a-posteriori rule [4, 10]. In another type of homogeneous-distractor
task, the distractors are identical to each other but their value varies across trials [11]. A limita-
tion of studies using homogeneous distractor sets is that stimuli outside the laboratory are
often heterogeneous. For example, when detecting an animal hidden in the bushes, a friend in
a crowd, keys in a cluttered drawer, or a tumor on a CT scan, distractors typically vary in their
features both across space and across time. Modeling work on heterogeneous search—which
has not been as extensive as modeling of homogeneous search—has found that a Bayesian-
observer model provides a good description of human search for a fixed target among distrac-
tors that are drawn independently from either a uniform [12, 13] or a normal distribution [11,
14] (although perhaps less so when the distribution is more complex [15]).
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The assumption of independent distractor is probably not correct in more naturalistic set-
tings, where distracting elements will often have structure amongst themselves and therefore
be correlated. Here, we ask whether human observers take stimulus correlations into account
when detecting a target among distractors, and in particular whether they may assume correla-
tions where none exist, as has been observed in other contexts [16–19]. We find that human
observers take correlations into account, but indeed overestimate low correlations.

Experimental Methods

Task
We conducted a target detection experiment in which observers were presented with four ori-
ented Gabor patches (Fig 1). The search target was a vertically oriented Gabor patch and was
present with probability 0.5 at a randomly chosen location. The task of the observers was to
report on each trial whether the target was present. We refer to orientations of patches that
were not the target as “distractors”. Distractor orientations were drawn from a multivariate
normal distribution. The marginal distribution of each distractor had a mean of 0° (vertical)
and a standard deviation of 15°. The amount of structure within a display was controlled by the
correlation coefficient, ρ, between distractor orientations. We used uniform correlations, which
mean that ρ was the same for all distractor pairs (Fig 1b). In a given experimental session, ρ
took one of four values: 0 (independent distractors), ⅓,⅔, or 1 (identical distractors).

Subjects
Eleven subjects (6 male, 5 female) participated in the experiment. All subjects had normal or
corrected-to-normal acuity and gave written informed consent. The study was approved by the
Institutional Review Board of the Baylor College of Medicine, Houston, Texas.

Fig 1. Experimental procedure and sample displays. (a) Time course of a trial, (b) Sample displays for each of the correlation coefficients used. In a given
experimental session, only one value of ρ was used.

doi:10.1371/journal.pone.0149402.g001
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Apparatus and stimuli
Stimuli were presented on a 21@ LCD monitor with a refresh rate of 60 Hz. Subjects viewed the
displays from a distance of approximately 60 cm. The background luminance was 33.1 cd/m2.
A set of 4 stimuli was shown on each trial. On target-present trials, the stimulus set consisted
of 1 target and 3 distractors while on target-absent trials, it consisted of 4 distractors. A target
was present on exactly half the trials. Each stimulus was a Gabor patch with a spatial frequency
of approximately 2.67 cycles/deg, a standard deviation of 0.26 deg, and a peak luminance of
136 cd/m2 (which corresponds to a Michelson contrast of 0.61). Stimuli were placed on an
invisible circle centered at the fixation cross, with a radius of 3.2 degrees of visual angle. On
each trial, the first stimulus was placed at a random position along the circle, and the other sti-
muli were placed so that the angular distance between two adjacent stimuli was always 45°. On
target-present trials, each location was equally likely to contain the target. The standard devia-
tion of the distractor distribution, σs, was fixed at 15° while the correlation coefficient, ρ, was
varied across different experimental sessions.

Procedure
Each subject participated in four sessions. Each session lasted about 50 minutes and was run
on a different day or on the same day with an interval of at least an hour between consecutive
sessions. No more than two sessions were run on a single day for a subject. Within each session
the correlation coefficient ρ was fixed at one of the values 0,⅓,⅔, or 1. The order of the ses-
sions was randomized across subjects. Each session consisted of one training block of 50 trials
and 6 testing blocks of 150 trials each. Each training trial began with the display of a fixation
cross at the center of the screen (500 ms), followed by the stimulus display containing 4 stimuli
(100 ms). After the stimuli were presented, only the fixation cross was displayed until the sub-
ject responded (Fig 1a). Subjects reported through a key press whether the target was present
or absent. After each response, feedback was provided by coloring the fixation cross green (cor-
rect) or red (incorrect) for 750 ms. During training, this was followed by a second presentation
of the stimuli for 2 s, with a blue circle identifying the target stimulus if one was present. Test-
ing trials were identical to training trials, except that feedback was provided only by changing
the color of the fixation cross; the stimuli were not redisplayed. A subject’s performance was
revealed after the completion of each block of 150 trials, along with the scores of the other sub-
jects who had completed the same session. Each subject completed a total of 3600 test trials. At
the beginning of the first session, we explained the trial procedure while demonstrating one
training trial step by step. After that, the subject completed 9 more practice trials in the pres-
ence of the experimenter. At the end of the first session, we told the subject that in the next ses-
sion, the type of display would be slightly different from what they had experienced in the first
session. We never told subjects explicitly about correlations.

Experimental Results
Distractor correlation had a significant effect on the proportion of correct responses (repeated-
measures ANOVA: F(3,40) = 15.75, p<0.0001; Fig 2a). This effect is still present when the hit
and false alarm rates are analyzed separately (hit rate: F(3,40) = 5.57, p = 0.0027; false-alarm
rate: F(3,40) = 8.14, p = 0.0002; Fig 2b) and seems to be mostly driven by the performance
increase in the ρ = 1 condition. To visualize the subject data and model fits, we computed two
summary statistics, separately for each ρ-condition: the proportion of target present responses
as function of both the standard deviation of the distractor set and as function of the minimum
difference between the orientation of the target and any distractor.
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On average, the proportion of “target present” responses decreases as a function of the stan-
dard deviation of the distractor set, except in the ρ = 1 condition (Fig 3a). Note that the number
of trials per bin differs both across bins and across correlation conditions (Fig 3b). In particu-
lar, in the target-absent trials, the standard deviation of a distractor set in the homogeneous
condition (ρ = 1) is always zero.

Similarly, the proportion of “target present” responses generally decreases with the mini-
mum angle between the distractors and the (vertical) target orientation (Fig 4a). The differ-
ences in the numbers of trials per bin (Fig 4b) produce a paradox: for example, in the target-
absent condition (Fig 4a, right), the entire ρ = 1 curve lies above the ρ = 0 curve, even though
subjects respond “target present” overall less in the ρ = 1 condition (Fig 2b). This is an instance
of Simpson’s paradox [20]; it is resolved by realizing that the trials in the ρ = 0 are heavily
weighted towards bins corresponding to smaller values (Fig 4b, right).

Models
To determine whether and how subjects took correlations into account in this visual search
task, we fitted the optimal-observer model and several alternative models to the data. Here, we
first describe the generative model—which specifies how observations are statistically related
to the stimuli—in its most general form. We then derive the optimal decision rule. Finally, we
give an overview of the models that we fitted to the data. All models are variations of the opti-
mal-observer model.

Specification of the generative model
The first step of Bayesian modeling is to define the task-relevant random variables and their
dependencies, collectively called the generative model. Although the number of stimuli, N, was
always 4 in our experiment, we present our model for general N. We denote target presence by
a binary variable T, with T = 0 denoting "target absent" and T = 1 denoting "target present".
The probability of target presence, p(T = 1), is equal to 0.5. When T = 1, a target location is cho-
sen with uniform probability. The target orientation is always vertical, which we define as 0°.
We denote the vector of stimulus orientations by s = (s1,. . .,sN).

Fig 2. Psychometric curves 1. (a) Proportion correct responses and (b) hit and false alarm rates as a function of distractor correlation. Throughout the
paper, error bars indicate one standard error of the mean (s.e.m).

doi:10.1371/journal.pone.0149402.g002
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On a target-absent trial, s is drawn from a N-dimensional multivariate normal distribution
with mean (0,. . .,0) and covariance Ss, which for N = 4 is

Ss ¼ s2
s

1 r r r

r 1 r r

r r 1 r

r r r 1

0
BBBB@

1
CCCCA:

Here, the correlation coefficient ρ is between 0 and 1. When ρ = 0, the orientations of all dis-
tractors are chosen independently (maximal heterogeneity); when ρ = 1, they are identical
(homogeneous). This design interpolates between the homogeneous and heterogeneous condi-
tions in an earlier study [11].

On a target-present trial with target at location j, the orientations of the N-1 distractors, s\j =
(s1,. . .,sj-1,sj+1,. . .,sN), are drawn from a (N-1)-dimensional multivariate normal distribution
with mean, 0N-1 = (0,. . .,0) and covariance, Ss\j. The notation \j refers to the set of distractors
when the target is present at location j. The (N-1)×(N-1) covariance matrix, Ss\j, is obtained by

Fig 3. Psychometric curves 2. (a) Proportion “target present” responses and (b) number of trials as a function of standard deviation of the distractor set
coefficient, averaged across subjects. Bin size was 2.5°, except that all trials with sample standard deviation greater than 17.5° are collected in the last bin.
The plots in (b) are entirely determined by the stimuli, not by the subject responses; they serve to emphasize that the points in the plots in (a) were computed
on widely differing numbers of trials.

doi:10.1371/journal.pone.0149402.g003
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removing the jth row and the jth column of Ss, and we write

pðsnjjT ¼ 1Þ ¼ N ðsnj; 0N � 1;SsnjÞ

We denote the observer's vector of stimulus measurements by x = (x1,. . ., xN). We assume
that the stimulus measurements are corrupted by zero-mean Gaussian noise, so that, for the ith

location, we have

pðxijsiÞ ¼ N ðxi; si; si2Þ:

We further assume that measurement noise is independent between locations.

Optimal decision rule
Optimal observers infer whether a target is present or not from the stimulus measurements, x,
by using their knowledge of the generative model. Specifically, an optimal observer computes p
(T = 1|x) and p(T = 0|x) and reports which possibility is more probable. This is equivalent to
computing the log posterior ratio,

d ¼ log
pðT ¼ 1jxÞ
pðT ¼ 0jxÞ ¼ log

pðxjT ¼ 1Þ
pðxjT ¼ 0Þ þ log

pðT ¼ 1Þ
pðT ¼ 0Þ ; ð1Þ

Fig 4. Psychometric curves 3. (a) Proportion “target present” responses and (b) number of trials as a function of minimum target-distractor orientation
difference for target present (left) and absent (right) trials. Bin size was 2°, except that all trials with minimum target-distractor orientation difference greater
than 10° are collected in the last bin. The plots in (b) are entirely determined by the stimuli, not by the subject responses; they help to reconcile the plots in (a)
with Fig 2b.

doi:10.1371/journal.pone.0149402.g004
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and reporting "target present" if d>0 and "target absent" otherwise. If the optimal observer
assumes equal probabilities for T = 0 and T = 1, then we find that d is given by (see
S1A Appendix)

d ¼ log
1

N

XN
j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Jjð1þ rs2

s

XN
i¼1

~J iÞ

~J jð1þ rs2
s

XN
i 6¼j

~J iÞ

vuuuuuuut exp � 1

2
ðJj � ~J j þ a~J 2j Þx2j þ ~J jaxj

XN
i 6¼j

~J ixi � ðanj � aÞ
XN
i;k 6¼j

~J i~J kxixk

 ! !
0
BBBBB@

1
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where

Ji ¼
1

s2
i

;

~J i ¼
1

s2
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s ð1� rÞ ;
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s
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s

XN
i¼1

~J i

; and
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rs2

s
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s

XN
i6¼j

~J i

:

Thus, the decision variable maps the stimulus measurements, x, and the variances of the
noise in each measurement, σ1

2,. . ., σN
2, to a real number. The dependence of the decision vari-

able on the measurements is complex and difficult to interpret in general. However, the cases ρ
= 0 and ρ = 1 are intuitive and tractable. When ρ = 0, distractor orientations are chosen inde-
pendently, and the decision variable is given by:

d ¼ log
1

N

XN

j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
j þ s2

s

s2
j

s
exp � s2

s x
2
j

2s2
j ðs2

j þ s2
s Þ

 !0
@

1
A:

In this case, the optimal observer makes a decision based on a weighted average of all stimu-
lus measurements [11]. The weights are determined by the uncertainty of each measurement.
A measurement closer to 0 provides stronger evidence that a target is present. When ρ = 1, all
distractors are identical and the decision variable is given by

d ¼ log
1

N

XN

j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Jjanj

q
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In this case, the optimal observer compares the squared weighted mean over all measure-
ments to the squared weighted mean over all observations excluding a putative target [11].
Roughly speaking, if the jth item is the target, the difference between these two quantities will
be more negative than if the target is absent, so the exponential term is higher, contributing to
the overall evidence for target presence.

So far, we have assumed that the observer knows that the frequencies of target-present and
target-absent trials are equal, and incorporates this knowledge. We do not make this assumption
in the models that we fit to data. Instead, we allow for the possibility that the observer behaves
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as if they believe that target-present trials occur with probability p(T = 1) = ppresent. As Eq 1

shows, this prior probability will appear in the expression for d as an additive term log
ppresent

1�ppresent
.

Model overview
The models that we fitted to the data have two factors: the observer's assumption about the dis-
tractor correlations, and the presence/absence of variability in the precision of stimulus mea-
surements. We considered four possibilities for the first factor and two for the second, giving a
total of 8 models (Table 1).

Observer’s assumption about ρ. An optimal observer has complete knowledge of the gen-
erative model, including the values of the correlations in all conditions, which we denote by a
vector ρ = (0,⅓,⅔,1). There are other assumptions about ρ that an observer could be making,
leading to suboptimal performance. We consider the following four possible assumptions:

• ρassumed = ρ = (0,⅓,⅔,1): the observer uses the correct values of distractor correlations (optimal).

• ρassumed = (0,0,0,0): the observer assumes that orientations are drawn independently of each
other in all four conditions (which is optimal only in the first condition).

• ρassumed = (α,α,α,α): the observer assumes that the distractor correlation is the same in all
four conditions. The assumed value for this correlation, α, is a free parameter fit to the data.

• ρassumed = (α,β,γ,δ): the observer assumes a different value for the distractor correlation
across experimental conditions The assumed correlations, α, β, γ, and δ are free parameters.

Presence of variability in encoding precision. Recent studies have found evidence that
the level of measurement noise can vary across trials and across locations within a trial [11, 13,
21–25]. Therefore, we considered two types of models:

• Equal-precision (EP) models, in which measurements have the same precision (inverse vari-
ance) across trials and stimuli. In this type of model measurement precision, Ji = J for all i.

• Variable-precision (VP) models, in which measurement precision is a random variable. In
line with previous work [13, 23], we assumed that each element in the precision vector

J = (J1,. . .,JN) follows a Gamma distribution with mean �J
t and scale parameter τ. Note that �J ,

and τ are hyperparameters in the VP models. Each value in the vector is sampled indepen-
dently across trials and stimuli.

Table 1. Summary of models. The models are organized according to two factors: the presence of variability in measurement precision (EP and VP), and
the observer’s assumption about the correlation coefficients, ρ.

Precision Model name Observer’s assumption about ρ Number of free parameters

EP EP1 ρassumed = ρ = (0,⅓,⅔,1) 2 (ppresent and J)

EP2 ρassumed = (0,0,0,0) 2 (ppresent and J)

EP3 ρassumed = (α,α,α,α) 3 (ppresent, J, and α)

EP4 ρassumed = (α,β,γ,δ) 6 (ppresent, J, α, β, γ, and δ)

VP VP1 ρassumed = ρ = (0,⅓,⅔,1) 3 (ppresent, �J , and τ)

VP2 ρassumed = (0,0,0,0) 3 (ppresent, �J , and τ)

VP3 ρassumed = (α,α,α,α) 4 (ppresent, �J , τ and α)

VP4 ρassumed = (α,β,γ,δ) 7 (ppresent, �J , τ, α, β, γ, and δ)

doi:10.1371/journal.pone.0149402.t001
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Model Comparison Results
Our main question is whether and how humans take into account stimulus correlations in
visual search. A secondary question that we address is whether the current study supports the
evidence for variability in encoding precision that we found in previous work on visual search
[11, 13]. We first present results pertaining to the second question, because they turned out to
be more clear-cut.

We used maximum-likelihood estimation to fit our 8 models to subject data (see S1B
Appendix for details on the methods and S1 Table for parameter estimates). We compared
models using the Akaike Information Criterion (AIC) and the Bayesian Information Criterion
(BIC) (see S1C Appendix). A parameter recovery analysis (see S1B Appendix) showed that in
our case, BIC recovers the correct model more reliably than AIC. We find that recovery is
good, but that correlations tend to be biased away from the extreme values 0 and 1.

Equal versus variable precision
We compared the fit of each equal-precision model with its variable-precision counterpart. Fig 5
shows that regardless of the observer’s assumption about correlations, the variable-precision
models better fit the data. This agrees with previous results [11, 13]. Therefore, we only consider
the variable-precision models in further analyses.

Do subjects take stimulus correlations into account?
We next examine whether subjects take into account correlations between distractor orienta-
tions when inferring the presence of a target. We found that suboptimal model VP4 provided
the best fit to the data of each of the 11 subjects (Fig 6a). On average, the AIC value of the VP4
model was 50±13 lower than that of the optimal (VP1) model, which provides strong evidence
against the hypothesis that human subjects take stimulus correlations into account in an opti-
mal manner. Model VP4 also outperforms VP2 and VP3 (on average by 128±38 and 65±16,
respectively), indicating that subjects do not assume zero or identical correlations across condi-
tions. Hence, it seems that the subjects did take stimulus correlations into account in their deci-
sions, but in a way that deviated substantially from the optimal strategy.

The estimates of the observer's assumed values of the correlation coefficient in the VP4
model are shown in Fig 6b. While these estimates suggest that subjects overestimate low corre-
lations and underestimate high ones, these estimates should be interpreted with caution, for
the following reasons:

Fig 5. AICmodel comparison for equal versus variable precision. Shown are AIC differences of EPmodels relative to VP models for each subject (left)
and averaged over subjects (right). Higher AIC mean worse fits. BIC results are consistent (S1a Fig).

doi:10.1371/journal.pone.0149402.g005
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• both the uncertainty in the parameter estimates within a subject and the variability across
subjects are large partly due to limited data;

• if a model does not fit well (as is the case in the ρ = 1 condition (Fig 7), its parameters are not
meaningful;

Fig 6. AICmodel comparison of VPmodels for observer’s assumption about ρ and parameter estimates of VP4model ρassumed. (a) Shown are AIC
differences of VP models relative to VP4 (most general) model for each subject (left) and averaged across subjects (right). (b) ML estimates of ρassumed from
the VP4 model for each subject (colors) and averaged (black). BIC results are consistent (see S1b Fig).

doi:10.1371/journal.pone.0149402.g006

Fig 7. Fits of the VP4model to the summary statistics. (a) Proportion correct (top), hit, and false-alarm rates (bottom) as a function of distractor
correlation. Proportion “target present” responses as a function of (b) standard deviation of the distractor set, and (c) minimum target-distractor orientation
difference, averaged across subjects, separately for target present (black) and target absent (red) trials. Numbers indicate root-mean square error (blue) and
R2 statistics (green) between model and data.

doi:10.1371/journal.pone.0149402.g007
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• in synthetic data generated from the VP4 model, the correlation coefficient is also misesti-
mated (see S1B Appendix), with a similar (but weaker) trend as in Fig 6b.

We can therefore conclude that human observers take correlations into account in this tar-
get detection task, however not optimally. Our models indicate that observers assume different
correlations under different conditions, but we cannot say precisely what correlations they do
assume.

Model fits
Amodel that wins in a model comparison does not necessarily fit the data well. To visualize
the performance of our best model, VP4, we show how it fits the psychometric curves from
Figs 2, 3 and 4 in Fig 7. For comparison, the fits of the optimal (VP1) model are shown in Fig 8.
Although the VP4 model provides an overall better fit, it also deviates from the data in appar-
ently systematic ways, especially in the homogeneous (ρ = 1) condition.

Post-hoc models
Given how poorly the models fit in the ρ = 1 condition, we examined a post-hoc model in
which mean precision,�J , depends on the correlation condition; we call this the VP5 model.
Such a dependency might be justified if the items are not encoded independently, but as a

Fig 8. Fits of the VP1model to the summary statistics. For caption, see Fig 7.

doi:10.1371/journal.pone.0149402.g008
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configuration [26]. Alternatively, differences in �J might reflect different degrees of suboptimal-
ity in an earlier stage of inference [27]. In spite of these justifications, the VP5 model is ad hoc.

The VP5 model provides substantially better fits to summary statistics (Fig 9), particularly in
the ρ = 1 condition. The VP5 model outperforms all other VP models in AIC: VP1 by 108±25,
VP2 by 185±52, VP3 by 123±34, and VP4 by 58±22 (Fig 10a). Parameter estimates are shown
in Fig 10b. Mean precision, �J , is estimated substantially higher in the ρ = 1 condition than in the
other conditions, suggesting that homogeneous displays are encoded in a fundamentally differ-
ent (more efficient) way than heterogeneous ones. Furthermore, ρassumed follows a similar rela-
tionship as in the VP4 model (Fig 6b). Hence, our conclusion regarding how subjects take
correlations into account in this task does not strongly depend on the model that we fit. More
experiments, potentially with different values of ρ, larger set sizes, and more extensive training
could shed more light on how exactly people misestimate stimulus correlations in visual search.

Discussion
The natural world is full of correlations between stimuli. Therefore, to understand how decisions
are made in natural environments, it is necessary to go beyond independent stimuli typically
used in psychophysics and study whether and how observers take into account stimulus correla-
tions. There has been recent interest in this question. In contour integration, humans seem to be
taking into account natural co-occurrence statistics of line elements [28]. In change detection,
people incorporate knowledge about the large-scale statistical structure of a scene [26, 29]. It has
been proposed that overestimation of correlations can explain set size effects [30][31].

Fig 9. Fits of the VP5model to the summary statistics. For caption, see Fig 7.

doi:10.1371/journal.pone.0149402.g009
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Here, we tested the effect of introducing a nontrivial statistical structure in a visual search task
by asking subjects to detect a vertical target among correlated distractors. Varying the correlation
coefficient of the distractors allowed us to compare several models of human decision-making,
all variants of the optimal-observer model. Within this set of models, we were able to rule out
that the observer used the correct values of the correlations in the decision process. We were also
able to rule out two suboptimal-observer assumptions about the correlations: that stimuli are
uncorrelated, or that the correlations are constant. We found that the best model was the most
flexible one, in which the assumed values of the correlations could differ between all correlation
conditions. A similar conclusion has been reached in a study of human subjects in a reaching
task in a three-dimensional virtual reality environment [32]. In that study, a strong correlation
was induced between two dimensions of a randomly displaced target, which an optimal observer
would learn to take into account. Human subjects did take these correlations into account, but
not perfectly and to a degree that varied considerably between subjects. For later work, it should
be kept in mind that observers might not have properly learned the joint distractor distribution
in our experiment; this could be improved through explicit instructions, more training trials, or
using more than four stimuli (so that observers have a larger sample to estimate the correlation).

Our best-fitting models (VP4 and VP5) suggest that humans take correlations between the
distractors into account when inferring the presence of a target, but in a suboptimal manner.
In particular, people might be assuming that correlations are non-zero even when they are not.
Such an assumption of structure in a visual scene could be sensible in light of the prevalence of
structured scenes in nature. Similar overestimations of low correlations have been reported in
the temporal domain [16–19]. Hence, the suboptimality that we find in our laboratory

Fig 10. AIC model comparison of VPmodels relative to VP5model and parameter estimates of VP5 model. (a) Shown are AIC differences of VP
models relative to VP5 model for each subject (left) and averaged across subjects (right). BIC results are consistent (S1c Fig). (b) ML estimates of �J and
ρassumed from the VP5 model for each subject (colors) and averaged with standard error mean across subjects (black).

doi:10.1371/journal.pone.0149402.g010
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experiment may reflect an optimal adaptation to the natural world. We note, however, that the
assumed correlations seemed to vary between subjects, and were difficult to estimate precisely
from the data (See S1B Appendix). Moreover, it does not seem that people overestimate a cor-
relation of zero by enough to account for set size effects in visual short-term memory, as was
recently proposed [30][31].

Variable-precision models with a standard encoding stage (VP4) fitted the data reasonably
well, except in the ρ = 1 condition. To fit all conditions well, we had to construct an ad-hoc
model (VP5) in which mean precision depends on correlation condition. In this model, mean
precision was estimated higher in the homogeneous (ρ = 1) condition; this might be due to a
texture detection or other gist mechanism that we do not explicitly model. The difference in
mean precision between the homogeneous and the heterogeneous conditions at the surface
seems inconsistent with the result shown in Fig 9a of [11], where we did not find a difference.
However, this might be due to the fact that in that paper, we assumed the optimal model (VP1)
and did not test whether subjects correctly assumed zero correlation.

Of course, the present study is still a far cry from studying the effect of stimulus structure on
decision-making in natural scenes, for several reasons. First, the set size used in our experiment
was small and known to the observer, while natural visual search tasks often involve a large
and unknown number of distractors. Second, our subjects were instructed to maintain fixation,
which rarely happens when performing visual search tasks in daily life. Third, natural search
targets are often defined by a conjunction of features (e.g., “find the red car-shaped object”).
Future work will have to address how well our results generalize to tasks with larger set sizes,
free viewing conditions, and conjunction targets. Finally, natural scene statistics are character-
ized by complex, high-dimensional distributions, making simplified approaches difficult. In
particular, the stimuli that we use do not have the complexity of natural stimuli. In a naturalis-
tic model of simple shapes with occlusion, called the dead-leaves model, analytical expressions
have been derived for the image values given the world states [33]. It would be interesting to
examine to what extent human observers incorporate such statistics in their decision-making.

Supporting Information
S1 Appendix. Optimal decision rule, Model fitting, and model comparison.
(DOCX)

S1 Fig. Bayesian information criterion results parallelling the Akaike information criterion
results in the main text.Higher values mean that the model is worse. (a) Companion to Fig 5.
BIC differences between the EP models and their corresponding VP models for each subject
(left) and averaged over subjects (right). (b) Companion to Fig 6a. BIC differences between the
VP models and the VP4 (most general) model. VP4 outperforms VP1, VP2, and VP3 by 26
±13, 103±38, and 47±16 respectively. (c) Companion to Fig 10a. BIC differences between the
VP models and the VP5 model for each subject (left) and averaged across subjects (right). The
VP5 model outperforms the VP1, VP2, VP3, and VP4 models by 66±25, 142±52, 86±34, and
39±22 respectively.
(TIF)

S2 Fig. Model recovery analysis. Results of model comparisons obtained by comparing the fits
of the four VP models (rows) to data generated by each model (columns). The color and num-
ber in a cell indicate a model’s AIC (a) or BIC (b) value relative to the best fitting model. A
value of zero on the diagonal indicates that the model used to generate the data was correctly
found to be the most likely model to have generated those data.
(TIF)
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S1 Table. Parameter estimates.Means and standard error means of the maximum-likelihood
estimates of all parameters in all models, as well the tested ranges of the parameters.
(DOCX)

S2 Table. Parameter recovery analysis for the VP4 model.Mean, standard error mean, and
95% confidence interval for ρassumed estimates.
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