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In tasks such as visual search and change detection, a key question is how observers integrate noisy mea-
surements from multiple locations to make a decision. Decision rules proposed to model this process
have fallen into two categories: Bayes-optimal (ideal observer) rules and ad-hoc rules. Among the latter,
the maximum-of-outputs (max) rule has been the most prominent. Reviewing recent work and perform-
ing new model comparisons across a range of paradigms, we find that in all cases except for one, the opti-
mal rule describes human data as well as or better than every max rule either previously proposed or
newly introduced here. This casts doubt on the utility of the max rule for understanding perceptual deci-
sion-making.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Since the dawn of psychophysics, its ambition has been to
reveal the workings of the brain’s information-processing machin-
ery by only measuring input–output characteristics. This ambition
is normally pursued by conceptualizing the transformation from
input to output as a concatenation of an encoding stage, in which
the sensory input is internally represented in a noisy fashion,
and a decision stage, in which this internal representation is
mapped to task-relevant output. In the simplest of models of the
simplest of tasks, the internal representation is modeled as a scalar
measurement and the decision stage as the application of a criteri-
on to this measurement. Unfortunately, this most basic form of sig-
nal detection theory has limited mileage when it comes to bridging
the gap between laboratory and real-world tasks. One reason for
this is that real-world decisions often involve integrating informa-
tion from multiple locations – looking for a person in a crowd,
detecting an anomaly in an image, or judging a traffic scene. In
the laboratory, the essence of such tasks can be mimicked by pre-
senting multiple stimuli and asking for a ‘‘global’’ judgment, i.e.
one which requires the observer to take all stimuli into consid-
eration. In such tasks, even if the internal representation of an indi-
vidual stimulus is modeled as a scalar measurement, the internal
representation of the entire stimulus array is a vector, and the deci-
sion stage consists of mapping this vector to task-relevant output.
At least for the past sixty years, in multiple-item tasks requiring
a global judgment, psychophysicists have been searching for map-
pings of this kind that are both mathematically cogent and
adequately describe human behavior. Rules that have been pro-
posed have mostly come in two types: optimal rules and simple
ad-hoc rules. According to optimal (or Bayes-optimal, or ideal-ob-
server, or likelihood ratio) rules (Green & Swets, 1966; Peterson,
Birdsall, & Fox, 1954), observers maximize a utility function by
using knowledge of the statistical process that generated the inter-
nal representations. When the utility function is overall accuracy,
as it often is assumed to be, optimal decision-making reduces to
choosing the option that has the highest posterior probability
given the current sensory observations (MAP estimation). The
notion of an optimal decision rule is general: such a rule can be
derived for any task, without having to make task-specific assump-
tions beyond the formalization of the experimental design.

There are, however, reasons to consider alternatives to optimal
decision rules. First, these rules often take a complicated form,
meaning that evaluating response probabilities under the optimal
model was cumbersome for the digital computers available in
the 1960s (Nolte & Jaarsma, 1967); this is much less of a consid-
eration nowadays. Second, observers might not have knowledge
of all the task statistics that are needed to compute the optimal
rule, or neural implementation of that rule might be infeasible;
these are still valid motivations for considering alternative decision
rules.
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Of all alternatives to optimal decision rules in multiple-item
global judgment tasks, the most prominent might be the maxi-
mum-of-outputs rule, or max rule. This rule dates back to at least
the French–American mathematician Bernard Koopman
(Koopman, 1956; Morse, 1982), who considered the problem of
making N glimpses to determine whether a signal is present, for
example during underwater echo ranging. When time (glimpses)
is translated to space (locations), this problem is equivalent to
detecting whether a signal is either present at all N locations, or
absent at all. Koopman assumed that the observer makes a decision
on every glimpse, and makes an overall decision using an ‘‘or’’
operation, which means that the observer reports ‘‘present’’ if
any of the individual decisions returns ‘‘present’’. Assuming that
every individual ‘‘present’’ decision is made when an underlying
continuous decision variable exceeds one specific criterion, Koop-
man’s decision model is equivalent to one in which the observer
decides that the signal is present if the largest of those decision
variables among all locations exceeds that criterion – hence the
terminology ‘‘max rule’’. Since Koopman, the max rule has been
considered by many greats of signal detection theory (Graham,
Kramer, & Yager, 1987; Green & Swets, 1966; Nolte & Jaarsma,
1967; Palmer, Verghese, & Pavel, 2000; Pelli, 1985; Shaw, 1980;
Swensson & Judy, 1981), although predominantly in a different
context, namely the problem of detecting one signal among N
locations.

When the observer knows the statistics of the sensory observa-
tions used to make the decision, the max rule is not the best strat-
egy either in the N-of-N problem Koopman considered or in his
successors’ one-of-N problem. Moreover, the max model will need
to be modified in ad-hoc ways whenever the task is changes (we
will encounter examples of this). Of course, in spite of this subop-
timality and lack of generalizability, the max model might be a bet-
ter description of human behavior than the optimal model in these
or other tasks. In this paper, we will argue that this does not seem
the case, and that the optimal rule provides an equally good or bet-
ter account of the data than every max rule in almost every experi-
ment examined.

A note on nomenclature might be helpful. In the classification
scheme of (Ma, 2012), we distinguished the notions of Bayesian,
optimal, and probabilistic decision rules in perception. Bayesian
rules are based on posterior distributions, a rule that is optimal
(in a ‘‘relative’’ sense) maximizes performance given sensory noise,
and probabilistic rules take into account the quality of sensory evi-
dence on a trial-to-trial basis. An observer can be Bayesian but not
optimal, for example when they use previously learned priors
rather than the ones appropriate for the experiment. According
to this classification, the optimal rules we will consider are both
Bayesian and probabilistic, whereas the max rules are suboptimal,
non-Bayesian, and in most cases also non-probabilistic.
1.1. Scope

In this paper, we consider visual decision-making tasks that
meet the following criteria.

(1) The observer briefly views either an array of N stimuli, or
two arrays of N stimuli separated in space and/or time.

(2) The observer makes a single categorical judgment about the-
se stimuli.

(3) The categories are defined in terms of a small number of
easily parameterizable features.

(4) All stimuli are relevant to the category decision.
(5) Trials are independent.

We will call these tasks ‘‘feature-based global categorization
tasks’’, although (5) is not captured by that term. This category
class of tasks encompasses many common paradigms, such as:

� Visual search: One or more targets are drawn from a target dis-
tribution, and the remaining items are drawn from a distractor
distribution. Common sub paradigms include:

s Detecting the presence of one or more targets among
distractors.
& Perhaps the most studied task of this type involves a sin-
gle target that takes on one fixed value, and distractors
that are independently drawn from a distractor
distribution.

& Oddity detection: there is a single target whose value var-
ies from trial to trial, and the distractors are identical to
each other (homogeneous distractors) but their common
value is also variable.

& Sameness judgment: on a target-present trial, all items
are targets, and the targets are identical to each other;
on a target-absent trial, the distractors are not identical
to each other.

s Localizing one or more targets that are present among
distractors.

s 2AFC on which of two arrays contained the target.
s Categorizing one or more targets that are present among

distractors.

& Example 1: was the tilted bar among the vertical bars tilt-
ed left or right?

& Example 2: all items are targets, the target orientations
are drawn independently from the same Gaussian distri-
bution, and the observer reports whether the mean of
this distribution was tilted left or right.

� Change detection.

s Detecting the occurrence of one or more changes.
s Localizing one or more changes.
s Categorizing one or more changes.

In this paper, we will not discuss experiments using natural sce-
nes or real-world objects, ones in which only one stimulus is rele-
vant for the decision (such as discrimination at a cued location),
ones in which the stimuli are displayed until the subject makes a
decision, ones involving crowding, and spatial integration tasks
such as judging whether two orientations belong to the same con-
tour (since those rely on categories that are defined not only in
terms of the features of the stimuli, but also their spatial locations).



W.J. Ma et al. / Vision Research 116 (2015) 179–193 181
We do not imply that the models considered here cannot be gener-
alized to those tasks.

1.2. General assumptions and model structure

Human behavior in feature-based global categorization tasks is
typically modeled as consisting of two stages: an encoding stage
and a decision stage. In the encoding stage, stimuli with task-rele-
vant features s = (s1,. . ., sN) (from here on simply referred to as stim-
uli) are generated from the category, T. The category would be
‘‘target present’’ or ‘‘target absent’’ in a detection task, a location in
a localization task, and a category label in a categorization task.
The experimenter controls the joint distribution of stimuli and
category, p(T,s). We assume throughout the paper that each stimu-
lus is internally represented as a noisy measurement, giving rise to
a measurement vector x = (x1,. . ., xN). We further assume that the
noise corrupting the measurements is independent between
locations:

pðxjsÞ ¼
YN

i¼1

pðxijsiÞ: ð1Þ

We will sometimes make specific choices for p(xi|si): when si is a
real-valued variable, that p(xi|si) is Gaussian with mean si and vari-
ance ri

2, and when si is a circular variable (such as orientation), that
p(xi|si) is Von Mises with circular mean si and concentration para-
meter ji. Together, p(T,s) and p(x|s) define the encoding model, also
called generative model.

In the decision stage, the observer maps the measurements x to

a categorical decision, T̂. This mapping is called a decision rule. The
decision rule that is optimal in the sense of maximizing proportion
correct is the maximum-a-posteriori decision rule (Green & Swets,
1966). This rule can be considered a ‘‘default’’ decision rule,
because it is completely determined by the encoding model; no
additional assumptions are needed.
2. Detection of a single target

We first discuss a poster child of visual search research, namely
the detection of a single target among N stimuli (Peterson, Birdsall,
& Fox, 1954). We denote target presence by T = 1 and target absence
by T = 0. We assume that on every trial, the target is present with
probability p1; thus, p(T = 1) = p1 and p(T = 1) = 1 � p1. For some
function d : x # R, a decision rule (optimal or otherwise) is a rule

that states that the observer’s report of T, denoted by T̂ , is 1 when
d > 0 and 0 when d < 0. Formulating the decision rule in terms of a
single inequality is possible only when T is a binary variable.

2.1. Optimal decision rule

The optimal observer has complete knowledge of the statistical
structure of the task and reports that the target is present when the
probability that T = 1 given x exceeds 0.5. This condition is equiva-
lent to d > 0, where d is the log posterior ratio of target presence:

d ¼ log
pðT ¼ 1jxÞ
pðT ¼ 0jxÞ ¼ log

pðT ¼ 1ÞpðxjT ¼ 1Þ
pðT ¼ 0ÞpðxjT ¼ 0Þ

¼ log
p1

1� p1
þ log

pðxjT ¼ 1Þ
pðxjT ¼ 0Þ :

The two probabilities p(x|T) for T = 1 and T = 0 are called the
likelihoods of the hypotheses T = 1 and T = 0, respectively. These
likelihoods can be evaluated using:

pðxjTÞ ¼
Z

pðxjsÞpðsjTÞds;
which holds for both values of T. The N-dimensional integral over
the stimulus vector s is an instance of marginalization: the operation
of averaging over all unknown variables other than the one of inter-
est (these variables are also called nuisance parameters). The log
posterior ratio becomes:

d ¼ log
p1

1� p1
þ log

R
pðxjsÞpðsjT ¼ 1ÞdsR
pðxjsÞpðsjT ¼ 0Þds

: ð2Þ

All knowledge about the task structure enters the decision vari-
able through the two stimulus distributions p(s|T). Now we can use
the knowledge that when the target is present (T = 1), it is present
in only one location, say the Lth one. If, furthermore, each location
has equal probability to contain the target (as we will assume
throughout, since the generalization is easy), then Eq. (2) becomes:

d ¼ log
p1

1� p1
þ log

1
N

PN
L¼1

R
pðxjsÞpðsjL; T ¼ 1ÞdsR

pðxjsÞpðsjT ¼ 0Þds
: ð3Þ

The sum over locations is another instance of marginalization,
where the summation index L labels the hypothesized target loca-
tion. Finally, we could substitute Eq. (1) in Eq. (3) to obtain an
expression that is valid for all tasks in this section.
2.1.1. Independent distractors
Starting from Eq. (3), we consider the subset of tasks for which

the distractors are drawn independently. We introduce the nota-
tion Ti to indicate whether the target is present (1) or absent (0)
at the ith location (i = 1, . . ., N). Distractor independence has two
aspects, which in most experimental designs are simultaneously
realized:

� Target-absent trials: On a target-absent trial, distractor values
are independently drawn from distributions p(si|Ti = 0). In other
words,

pðsjT ¼ 0Þ ¼
YN
i¼1

pðsijTi ¼ 0Þ: ð4Þ

� Target-present trials: On a target-present trial, the target value
is drawn from a distribution p(si|Ti = 1), and distractor values
are again drawn independently from distributions p(si|Ti = 0).
In other words,

pðsjL; T ¼ 1Þ ¼ pðsLjTL ¼ 1ÞPN
i–LpðsijTi ¼ 0Þ: ð5Þ

Using Eqs. (4) and (5), and the assumption of independent measure-
ment noise, Eq. (1), the decision variable in Eq. (3) evaluates to:

d ¼ log
p1

1� p1
þ log

1
N

XN

i¼1

edi

 !
; ð6Þ

where di is the local log likelihood ratio (LLR) of target presence:

di ¼ log
pðxijTi ¼ 1Þ
pðxijTi ¼ 0Þ ¼ log

R
pðxijsiÞpðsijTi ¼ 1ÞdsiR
pðxijsiÞpðsijTi ¼ 0Þdsi

: ð7Þ

To further work out Eq. (7), we will need to make assumptions
about p(si|Ti = 0) and p(si|Ti = 1).

Expressing the decision variable in terms of local LLRs, Eq. (6),
was possible only thanks to the independence of the distractors.
In some single-target detection tasks, distractors are not indepen-
dent, for instance when they are drawn from a discrete set without
replacement, or when they are homogeneous (identical to each
other within a display) but variable across trials. We will discuss
the latter case later in the paper.
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2.2. Max decision rule

This paper focuses on a family of ad-hoc alternatives to the opti-
mal rule, namely maximum-of-output or max rules. Assume that at
the ith location there is a local decision variable di, which is a func-
tion of the local measurement xi only. This di may or may not be
equal to the local log likelihood ratio in Eq. (7). In Koopman’s spirit,
a max rule observer can now be defined as one who reports that
the target is present if at any of the N locations, di exceeds a crite-
rion k. In other words, the max rule observer reports that the target
is absent only if all di are smaller than k:

T̂ ¼ 0 if di < k for all i

T̂ ¼ 1 otherwise

This is equivalent to reporting that the target is present when:

max
i

di > k: ð8Þ

In the max model, the task structure, i.e. the distribution p(s|T),
might influence the decision rule through di. However, the model
does not dictate how di depends either on the task structure, if at
all, or on the measurements; in these senses, the max model is
underdefined.

An important special case of the max rule, Eq. (8), is when di is
equal to the local LLR for independent distractors, Eq. (7). We will
follow the rather unimaginative nomenclature we introduced ear-
lier (Ma et al., 2011) and refer to the resulting rule as the maxd rule.
This rule combines a Bayesian element (the local LLR) with an ad-
hoc operation, and is therefore in a sense a hybrid rule. Most signal
detection theory modelers do not consider this form of max rule.

2.3. Comparing optimal and max decision rules

2.3.1. Fixed target value, fixed distractor value: Peterson, Birdsall, and
Fox (1954), Palmer, Verghese, and Pavel (2000), Ma et al. (2011)
� Detection of a single target.
� Fixed target value.

� Homogeneous distractors with a fixed value.

� Equal reliabilities, assume equal precision.

� Maxx and maxd rules indistinguishable from optimal rule.
As a first concrete case, we consider experiments in which the

target always has the same value sT, a distractor always has the
same value sD, and the reliability of the orientation information
in the image is equal for all locations. Because of this last condition,
the level of measurement noise is assumed equal across locations
as well, with value r. This is a special case of the case of indepen-
dent distractors, since each distractor can be considered as inde-
pendently drawn from a delta distribution. Therefore, Eq. (7) is
valid. Substituting the expressions for the distributions, the local
LLR in Eq. (7) turns out to be monotonic in the measurement xi:

di ¼
sT � sD

r2 xi �
sT þ sD

2

� �
: ð9Þ

Therefore, the optimal decision rule is to report that the target

is present when log p1
1�p1
þ log 1

N

PN
i¼1e

sT�sD
r2 xi�

sTþsD
2ð Þ > 0. To our knowl-

edge, this rule was first worked out 60 years ago by Peterson,
Birdsall, and Fox (1954) in a signal processing context. [To be speci-
fic: in Eq. (162) of their paper, one can make the substitution n = 1
(a single possible target value), and the changes of notation M ? N,

k ? i, N ? r2, sk1 ? sT, and E
N0
! s2

T
2r2 to obtain our likelihood ratio

1
N

PN
i¼1e

sT�sD
r2 xi�

sTþsD
2ð Þ with sD = 0.]
The optimal decision rule involves a rather complicated
inequality in x. A simpler ad-hoc rule is (Nolte & Jaarsma, 1967;
Verghese, 2001):

max
i

xi > k; ð10Þ

which we call the maxx rule. This rule only makes sense when
sT > sD, but without losing generality, we can choose coordinates
such that this is true. For example, when distractors are vertical
orientations (say 0�) and the target is tilted 5�, the max observer
would report that the target is present when the largest of the N
measurements exceeds a criterion.

Eqs. (8) and (10) demonstrate that in the current task, the maxd

rule is equivalent to the maxx rule. Moreover, it has long been
known that the optimal and the maxx models make very similar
predictions in this task (Nolte & Jaarsma, 1967) and both describe
human behavior well (Palmer, Verghese, & Pavel, 2000).

Ma et al. (2011)

� Detection of a single target.
� Fixed target value.

� Homogeneous distractors with a fixed value.

� Unequal reliabilities.

� Optimal rule wins over maxx and maxd rules.
However, it turns out that the three models are highly distin-

guishable once the experiment is set up such that the equal-
noise assumption (ri = r) does not hold, for example by varying
contrast across the stimuli within a search array. Then, Eq. (9) for
the LLR should be replaced by:

di ¼
sT � sD

r2
i

xi �
sT þ sD

2

� �
;

which is different in a subtle but important way: ri depends on i. In
an orientation search task where we varied ri randomly across
locations and trials by manipulating either contrast or shape, we
found that the optimal model outperformed both the maxx and
the maxd models ((Ma et al., 2011); Expts. 1, 1a, 3). The failures of
the maxx model were large, both qualitatively and quantitatively.
The maxd model fared much better, but its log marginal likelihood
was still lower than that of the optimal model by 25.9 ± 2.2,
5.6 ± 0.6, and 5.2 ± 0.8, in different experiments. Typically, log
marginal likelihood differences larger than 3–5 are considered
strong evidence (Jeffreys, 1961).

2.3.2. Fixed target, independent variable distractors: Vincent et al.,
2009
� Detection of a single target.
� Fixed target value.

� Independent, normally distributed distractors.

� Equal reliabilities, assume equal precision.

� Maxx loses; maxd and optimal indistinguishable.
We now move away from the case where the distractor value is
fixed and consider cases where distractor values are drawn inde-
pendently from some distribution that is not a delta function. This
is also called heterogeneous search. Vincent et al. (2009) conducted
a single-target detection task with 4 stimuli, where the target was
always vertical (which we define as 0), and each distractor was
drawn independently from a Gaussian distribution with mean 0
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and variance rD
2. Measurement noise level was assumed equal

across locations. The dependent measure used was the area under
the receiver operating characteristic (AUC).

In this task, unlike in the previous one, it will often happen
that some distractors have smaller values than the target, while
others have larger values. Therefore, we do not expect the maxx

rule to do well, which is indeed what the authors found. They
also claimed that their data supported the optimal decision rule;
however, the model that they called optimal is in fact not
optimal. To understand this, let us examine their explanation
of their model (we modified their notation to make it consistent
with ours):

‘‘Rather than calculating the max of sensory percepts, the poste-
rior probability of each display item is calculated, and the max-
imum of these values is taken (i.e. maximum a posteriori, MAP).
MAPs defines a vector of posterior probabilities observed on sig-
nal trials, MAPs ¼max

i
pðTi ¼ 1jxiÞ, and similarly MAPn for

noise trials, MAPn ¼max
i

pðTi ¼ 0jxiÞ.’’ (Vincent et al., 2009)

This process is depicted in Fig. 1A. In other words, the authors
defined the decision variable dVincent;i ¼ pðTi ¼ 1jxiÞ, and used the
decision rule of reporting target present when max

i
dVincent;i > k

for some criterion k. This is wrong in an instructive way: what they
call the optimal decision variable is the maximum over locations of
the local posterior probabilities of target presence. In reality, the
optimal decision rule is to pick the value of the global target pres-
ence variable, T, that has the highest posterior probability
(Fig. 1B). The maximum in ‘‘MAP’’ is always over the world state of
interest (here T), not over a nuisance parameter such as location.

Incidentally, Vincent et al.’s decision rule reduces to a rule we
already encountered. To see this, we rewrite the local LLR of target
presence, di in Eq. (7), as:
Fig. 1. Detection of a single target among heterogeneous distractors. (A) Model schema
model. (B) Correct schematic of the optimal MAP model. (C) Comparison of maxd and op
noise is the value of rD. AUC is the area under the receiver operating characteristic. Eac
di ¼ log
pðTi ¼ 1jxiÞpðTi ¼ 0Þ
pðTi ¼ 0jxiÞpðTi ¼ 1Þ ¼ log

dVincent;i

1� dVincent;i
þ log

1� 1
2N

1
2N

:

Since this is a monotonically increasing function of dVincent;i, the

decision rule max
i

dVincent;i > k is equivalent to max
i

di >
~k, for

some other criterion ~k. Thus, at least in terms of AUC, Vincent’s rule
is equivalent to the maxd rule. Hence, what their paper showed is
that maxd is superior to maxx and fits human data well.

Since Vincent et al. did not test the actual optimal decision rule,
the question remains whether that rule can also account for their
data. The local LLR is, starting From Eq. (7),

di ¼ log pðxi jsi¼0ÞR
pðxi jsiÞpðsi jTi¼0Þdsi

¼ log
1ffiffiffiffiffiffiffi

2pr2
p e

�
x2
i

2r2

R
1ffiffiffiffiffiffiffi

2pr2
p e

�
ðxi�siÞ

2

2r2 1ffiffiffiffiffiffiffi
2pr2

D

p e
�

s2
i

2r2
D dsi

¼ � x2
i

2
1
r2 � 1

r2þr2
D

� �
þ 1

2 log 1þ r2
D

r2

� �
:

ð11Þ

Substituting this in Eq. (6) together with p1 = 0.5, we obtain the
optimal decision variable.

To obtain the AUC, we simulated the left-hand side of either

decision rule ðlog 1
N

PN
i¼1edi

� �
for the optimal model, and maxidi

for the maxd model) over many trials, both for T = 0 and T = 1. This
resulted in two distributions of the decision variable. We then
computed hit and false-alarm rates for a running criterion on the
decision variable, thus producing a receiver-operating characteris-
tic and an area under it. We then fitted the measurement noise
level r in each model by minimizing the sum of squares between
the empirical and predicted AUC as a function of external noise
level (rD). The optimal model accounts equally well for the empiri-
tic from Fig. 2 of Vincent et al. (2009), describing what they call the optimal MAP
timal decision rules based on the data extracted from Vincent et al. (2009). External
h plot represents one subject.
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cal AUCs as Vincent’s model (Fig. 1C). Thus, at least at the level of
the AUCs, the optimal and maxd decision rules are both good
descriptors of human behavior in this experiment.

2.3.3. Fixed target, independent variable distractors: Navalpakkam
and Itti (2007), Rosenholtz (2001)
Fig
tar
an
(r
� Detection of a single target.
� Fixed target value.

� Independent distractors drawn from a set of discrete

values.

� Equal reliabilities, assume equal precision.

� Maxd and optimal rule both qualitatively consistent with
data.
Navalpakkam and Itti (2007) attempted to predict the relative
difficulties of several orientation search conditions (Fig. 2A). The
target orientation was always 0�. In the ‘‘difficult’’ condition, a dis-
tractor orientation was randomly chosen to be either +5� or �5�
(Fig. 2A). The authors compared this condition to three others
known to be easier for human subjects (Bauer, Jolicoeur, &
Cowan, 1996; D’Zmura, 1991; Duncan & Humphreys, 1989;
Hodsoll & Humphreys, 2001; Rosenholtz, 2001). In the first, a dis-
tractor is always at +5�. In the second, a distractor is at either +5� or
+10�. In the third, a distractor is randomly at either +10� or �10�.

One metric of task difficulty that Navalpakkam and Itti tested is
the signal detection measure of discriminability, d0, between the
measurement distributions in the target-absent and target-present
conditions – the difference between their means divided by the
square root of the average variance. Navalpakkam and Itti rejected
d0 as a suitable metric for task difficulty because of its supposed
failure to predict that any of the three easier conditions is in fact
easier; they instead proposed a different, salience-based metric.

We argue, however, that this failure lies in the choice of a linear
decision variable that is implicit in their definition of d0, and that d0

based on the log posterior ratio of target presence, Eq. (6), accounts
well for the relative difficulties of the search conditions. We take
the target to have value 0, denote the M possible distractor values
by sDj, and consider the case that all distractor values are equally
probable. Then the local LLR from Eq. (7) becomes:
. 2. Heterogeneous search conditions considered by Navalpakkam and Itti. (A) Distribu
get is always vertical, but each distractor is tilted 5� to the right or 5� to the left, with e
y of the other three. (B) Predictions of the optimal model for d0 in each of these four sea
= 3). No effects of distributed attention were taken into account. (C) Same as (B), but
di ¼ log
pðxijsiÞR

pðxijsiÞ 1
M

PM
j¼1d si � sDj

� �
dsi

¼ � x2
i

2r2 � log
1
M

XM

j¼1
e�

xi�sDjð Þ2
2r2

 !
:

When M = 1 (‘‘Easier 1’’ in Fig. 2A), this simplifies to Eq. (9). From di,
we can compute the optimal decision variable d using Eq. (6), again
taking p1 = 0.5. This decision variable is highly nonlinear in x and
thus, its T-conditioned distributions are very different than the
T-conditioned distributions of xi used by Navalpakkam and Itti.
By simulating the decision rule d > 0, we obtained hit rates
H and false-alarm rates F, and then computed discriminability,
d0 = U�1(H) – U�1(F), where U is the cumulative standard normal
distribution. Doing so for each of the four search tasks in Fig. 2A,
we found that the optimal model predicts higher d0 for all tasks that
are easier for humans than the ‘‘difficult’’ task (Fig. 2B). (So will the
maxd rule; to our knowledge, the rules have not been compared in
these search tasks.) The same holds for a localization task (Fig. 2C).
Thus, the search conditions considered by Navalpakkam and Itti, at
least at a qualitative level, do not pose any problems for the optimal
decision rule. A realistic model for set size effects in heterogeneous
search likely also requires incorporating an increase of measure-
ment noise with set size (Mazyar, van den Berg, & Ma, 2012;
Mazyar et al., 2013), for example due to the distribution of atten-
tion, but such an increase will leave the ranking of task difficulty
in Fig. 2B and C intact.

Although human behavior is qualitatively consistent with both
the maxd and the optimal rule, the jury is still out on which model
provides the best quantitative fit to human data under the distrac-
tor distributions in Fig. 2A. A meticulous model comparison
attempt was made by Rosenholtz (2001), who tested subjects in
a 2AFC paradigm, not only on these distributions but also more
complex ones (complex in terms of the number of defining para-
meters). She reported deviations between the optimal model and
the data. It is difficult to determine whether these deviations were
systematic, because few subjects were tested in each experiment.
Moreover, it is not clear how well subjects learned the distractor
distributions and what assumptions they might have made to com-
pensate for incomplete knowledge of the distributions. Neverthe-
less, the deviations from optimality are puzzling and deserve
further examination.
tions of the target and distractor features. The first panel depicts a task in which the
qual probability. According to previous studies, this task is more difficult for than for
rch conditions, for single-target detection and for a fixed level of measurement noise
for proportion correct in single-target localization.
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Duncan and Humphreys (1989) proposed, in the context of
reaction time experiments, that increasing target–distractor simi-
larity and decreasing distractor–distractor similarity both hurt
search performance. These trends are consistent with the predic-
tions from the optimal model (Fig. 2B and C). For example, in
‘‘More Difficult’’, the distractors are less similar to each other than
in ‘‘Easier 1’’, while target–distractor similarity is the same. It
might be interesting to try to express the performance of the opti-
mal observer in terms of Duncan and Humphreys’ two main
explanatory variables.

2.3.4. Fixed target, independent variable distractors: Ma et al. (2011)
� Detection of a single target.
� Fixed target value.

� Independent, uniformly distributed distractors.

� Equal reliabilities, allow for variable precision.

� Optimal rule wins over maxx and maxd rules.
We investigated whether observers take into account variations
in measurement noise both across items and across trials, during
single-target detection with distractors drawn independently from
a uniform distribution ((Ma et al., 2011); Expts. 2, 2a, 4). Like
Vincent et al. (2009), we found that the maxx model could easily
be ruled out. Computing the log marginal likelihood of each model
by summing over model parameters, we found that the maxd mod-
el also lost to the optimal model, by log marginal likelihood differ-
ences of 8.6 ± 0.8, 56 ± 20, and 60 ± 11 in different experiments.
The optimal model was found to be best among 8 models. In par-
ticular, this suggests that observers weight evidence by uncertain-
ty in this form of heterogeneous visual search.

2.3.5. Fixed target, independent variable distractors: Mazyar et al.
(2013)
� Detection of a single target.
� Fixed target value.

� Independent, Von Mises-distributed distractors.

� Equal reliabilities, allow for variable precision.

� Maxd and optimal indistinguishable.
We recently performed an experiment similar to Vincent et al.
(2009), but with the difference that distractors were drawn from
narrower or wider distributions in different conditions (Mazyar
et al., 2013). The feature of interest was orientation, the target
was always vertical, and the distractor distribution was a Von Mis-
es distribution with concentration parameter jD, which could take
values 0 (uniform distribution), 1, and 8. We compared the maxd

and optimal decision rules. When we assume the measurement
at the ith location, xi, to follow a Von Mises distribution around
the corresponding orientation si with concentration parameter ji,
then the local LLR takes the following form:

di ¼
I0 jDð Þeji cos 2xi

I0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2

i þ j2
D þ 2jijD cos 2xi

q� �
(Mazyar et al., 2013), where I0 is the modified Bessel function of the
first kind of order 0 (it arises as the normalization of a Von Mises
distribution). The factors of 2 inside the cosine are due to the nature
of orientation space, which has period p instead of 2p. We modeled
ji as a random variable. This is a form of the variable-precision
model (Van den Berg, Shin, et al., 2012), in which the precision of
the measurement of a stimulus varies across locations and trials,
in part due to fluctuations in attention. In our implementation,
we drew precision Ji from a gamma distribution, and used a mono-
tonic mapping from Ji to ji. We found that the maxd and optimal
decision rules were indistinguishable.

2.3.6. Fixed target, homogeneous variable distractors: Mazyar et al.
(2013)
� Detection of a single target.
� Fixed target value.

� Homogeneous distractors.

� Distractor value Von Mises-distributed.

� Equal reliabilities, allow for variable precision.

� Optimal rule wins over maxx and maxd rules.
In the same paper, we studied a search condition in which the
distractors were not independent ((Mazyar et al., 2013); Expt. 2).
Instead, distractors were all identical to each other on a given trial
(homogeneous), but we randomly drew the common distractor
value on each trial from a Von Mises distribution with mean the
target value, sT, and concentration parameter jD.

In view of the dependence between the distractors, Eqs. (4) and
(5) do not apply in this task and the expression for the optimal
decision variable in terms of local LLRs, Eq. (6), is therefore not
valid. Instead, we have to start over from Eq. (2). On a given trial,
the observer does not know either the location of the target nor
the distractor orientation sD. Therefore, they have to marginalize
(average) over both variables – this is why a sum over locations
and an integral over sD appear:

d ¼ log
p1

1� p1
þ log

R
PN

i¼1pðxijsiÞ
� �

pðsjT ¼ 1ÞdsR
PN

i¼1pðxijsiÞ
� �

pðsjT ¼ 0Þds

¼ log
p1

1� p1
þ log

R R
PN

i¼1pðxijsiÞ
� �

pðsjT ¼ 1; sDÞp sDð ÞdsdsDR R
PN

i¼1pðxijsiÞ
� �

pðsjT ¼ 0; sDÞp sDð ÞdsdsD

¼ log
p1

1� p1
þ log

1
N

PN
i¼1p xijsi ¼ sTð Þ

R
Pj–ipðxjjsj ¼ sDÞ
� �

pðsDÞdsDR
Pipðxijsi ¼ sDÞð ÞpðsDÞdsD

Because of the integral over the shared distractor orientation, sD,
this expression cannot be simplified much further.

To our knowledge, the max model has never been generalized
to this task. One possible choice of max rule is the maxd rule for
the Vincent et al. task, namely to report ‘‘target present’’ when
max

i
di > k, with di given by the equivalent of Eq. (11) for Von Mis-

es-distributed measurements and variable precision,

di ¼ ji cos 2 xi � sTð Þ þ
I0 jC¼1;i
� �

I0 jC¼0ð Þ ;

with,

jC¼1;i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
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 !2

þ
X
j–i

jj sin 2xj

 !2
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(Mazyar et al., 2013). In Eq. (12), all four sums start at j = 0, and we
have defined x0 = sT and j0 = jD. A simpler max rule is to report
‘‘target present’’ when max

i
cos 2ðxi � sTÞ > k, i.e. when any of the

measurements is sufficiently close to the target orientation; we
call this the maxx model. We compared the optimal rule to both
versions of the max rule using the data of the homogeneous condi-
tion in Mazyar et al. (2013). We found that the optimal model pro-
vides a much better fit than maxd and the maxx models, with log
marginal likelihood differences of 54.0 ± 6.4 and 31 ± 10,
respectively.

3. Localization of a single target

Localization of a target among N stimuli has received little
attention compared to target detection, in spite of or perhaps
because of the fact that the optimal decision rules for localization
tasks are very similar to those for detection. We denote by L the
location of the target (L = 1, . . ., N), and by p(s|L) the distribution
of stimuli given target location. The likelihood of target location L
is the probability of the measurements x given the hypothesis that
the target is at that location. The posterior over location is:

pðLjxÞ / pðxjLÞpðLÞ ¼ pðLÞ
Z

pðxjsÞpðsjLÞds: ð13Þ

In a detection task, the optimal strategy involves marginalizing
over L (see Eq. (3)). In a localization task, however, it is to report the
location L for which p(L|x) is highest. If the distractors are indepen-
dent, then the distribution of stimulus set s given target location L
is:

pðsjLÞ ¼ pðsLjTL ¼ 1ÞPN
i–LpðsijTi ¼ 0Þ:

and Eq. (13) becomes

pðLjxÞ/ pðLÞ
Z

PN
i¼1pðxijsiÞ

� �
pðsLjTL ¼1Þ PN

i–LpðsijTi¼0Þ
� �

ds

¼ pðLÞ
Z

pðxLjsLÞpðsLjTL ¼1ÞdsL

� �
PN

i–L

Z
pðxijsiÞpðsijTi ¼0Þdsi

� �
:

/ pðLÞ
R

p xLjsLð ÞpðsLjTL ¼1ÞdsLR
p xLjsLð ÞpðsLjTL¼0ÞdsL

;

ð14Þ
where L-independent factors have been absorbed into the propor-
tionality sign. The optimal decision rule is now to report the loca-
tion for which this quantity is highest:

L̂ ¼ argmax
L

pðLjxÞ: ð15Þ

Two studies that tested this rule (Eckstein et al., 2004; Vincent,
2011) both found that the optimal rule described the data well, but
neither compared it to alternative rules.

Alternative decision rules for the target localization task would

most naturally take the form L̂ ¼ argmaxi di, for some alternative
decision variable di. We are particularly interested in max models,
but the generalization of max models from target detection to tar-
get localization can be approached from at least three views, which
differ in what one considers the essence of a max model:

� The first view is to call the optimal MAP rule, Eq. (15), a form of
max rule, since it contains an ‘‘argmax’’ operation. However,
according to that logic, the optimal MAP model is a max model
for any task, since the argmax of the posterior is always taken.
Therefore, we reject this view.
� The second view is that the maxd model is characterized by

maximizing the local LLR of target presence over locations.
When p(L) is uniform and the distractors are independent, Eq.
(14) states that p(L|x) is proportional to the local LLR, and there-
fore, the maxd model for this task coincides with the optimal
model.
� The third view starts from the basic premise of the max model
for target detection, which is that the observer makes N inde-
pendent decisions di > k, where i = 1, . . ., N. In localization, the
vector of Booleans produced by N independent decisions could
be converted into a location report by randomly choosing a
location for which ‘‘true’’ was returned.

We leave the comparison of these models to further work but
emphasize that the ambiguity in the definition of the max rule
argues against this rule serving as the basis of a general account
of perceptual decision-making.

4. Categorization of a single target

We now consider tasks in which exactly one target is present on
each trial, and the observer categorizes its feature value. For exam-
ple, the target might be the only tilted stimulus among vertical dis-
tractors, and the observer decides whether the tilt is clockwise or
counterclockwise with respect to vertical (Baldassi & Burr, 2000).
We cannot think of a naturalistic example of such tasks, but if that
is not of concern, then they are at least as suitable to study decision
rules as target detection or localization tasks. As an aside, we use
the term ‘‘categorization’’ instead of ‘‘discrimination’’ because the
number of possible responses will typically be smaller (namely
2) than the number of stimulus values.

4.1. Variable target, variable distractors: Baldassi and Verghese (2002)
� Left–right categorization of a single target.
� Independent, normally distributed distractors.

� In EN condition, orientation noise added to each stimulus.

� Equal reliabilities, allow for variable precision.

� Optimal and four max rules indistinguishable, except
that one maxd rule wins in one condition.
Baldassi and Verghese (2002) extended the Baldassi and Burr
task by including a second condition, in which orientation noise
(drawn from a zero-mean Gaussian distribution with standard
deviation rs) was added to every stimulus, including the target.
The target orientation itself was drawn from a different distribu-
tion, which we here approximate as a Gaussian distribution with
mean vertical and standard deviation rT. We denote by C the direc-
tion of tilt of the target: C = �1 means tilted counterclockwise, and
C = 1 clockwise.

The optimal decision variable is the log posterior ratio of target
category,

d ¼ log
pðC ¼ 1jxÞ

pðC ¼ �1jxÞ ¼ log
pðxjC ¼ 1Þ

pðxjC ¼ �1Þ ;

where we have chosen a prior of 0.5 so as to not give the optimal
model an unfair advantage over the max model, which we discuss
below. The log posterior ratio becomes

d ¼ log
1
N

XN

i¼1

edð1Þ
i

 !
� log

1
N

XN

i¼1

edð�1Þ
i

 !
; ð16Þ

where,

dðCÞi ¼ log
R

pðxijsiÞp sijTi ¼ 1;Cð ÞdsiR
p xijsið Þp sijTi ¼ 0ð Þdsi

ð17Þ

is the LLR of the hypothesis that the target is present at the ith loca-
tion and is of class C, versus the hypothesis that the target is absent
at that location. Eqs. (16) and (17) parallel Eqs. (6) and (7) for sin-
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gle-target detection; in particular, Eq. (16) contains marginaliza-
tions over target location, reflecting that the observer does not com-
mit to a single possible target location. The optimal decision rule is
to report ‘‘clockwise’’ when d > 0, or equivalently, when

XN

i¼1

edð1Þ
i >

XN

i¼1

edð�1Þ
i :

Substituting the expressions for the distributions, we find,

dðCÞi ¼
1
2

log
aibi

r2
T

þ bi

2ai
x2

i þ log
1
2
þ C

2
erf xi

ffiffiffiffiffiffiffi
bi

2ai

s0
@

1
A

0
@

1
A ð18Þ

where ai ¼ r2
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, and erf is the error function. The

optimal decision rule becomes
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q
Þ > 0, which

is analogous to a decision rule that Ma and Huang (2009); Eq.
(18) derived for single-change categorization.

4.1.1. Maxx model
Baldassi and Verghese (2002) proposed a maxx rule for single-

target categorization, which they called the ‘‘signed-max rule’’. It
is to report ‘‘rightward’’ when the measurement xi that is largest
in absolute value is positive, in other words, when,

max
L

xL > max
L
ð�xLÞ: ð19Þ

This condition is equivalent to the average of the largest and the
smallest measurement being positive. When N = 1, the maxx rule is
equivalent to the optimal rule: they both reduce to x1 > 0. When
N = 2 and r1 = r2, the max rule is also equivalent to the optimal
rule.

4.1.2. Maxd model
For single-target detection, we discussed a more principled type

of max rule, the maxd rule, which compares the maximum of local
LLRs to a criterion. A maxd rule can also be formulated for single-
target categorization, and has the advantage over the maxx rule
that it is also applicable when categories are not mirror images
of each other. However, because a stimulus can belong to at least
two categories (e.g., target tilted left, target tilted right, distractor),
there are multiple ways to construct a maxd rule. First, by analogy
to single-target detection, a maxd rule can be obtained by replacing
the averaging of evidence over locations in the optimal decision
rule (Eq. (16)) by a maximum operation:

d ¼ log max
i

edð1Þ
i

� �
� log max

i
edð�1Þ

i

� �
;

and then evaluating d > 0, which amounts to reporting C = 1 when

max
i

dð1Þi > max
i

dð�1Þ
i ;

where di
(C) is given by Eq. (18). We call this the maxd1 model. A sec-

ond construction would be to locally compute the LLR for C = 1 ver-
sus C = �1 as if the item at that location were the only item in the

display (this is dð1Þi � dð�1Þ
i ), and then choose the hypothesis with

the largest-magnitude LLR anywhere in the display. This amounts
to reporting C = 1 when

max
i
ðdð1Þi � dð�1Þ

i Þ > max
i
ðdð�1Þ

i � dð1Þi Þ:

This is like the signed-max rule, Eq. (19), but applied to local
posterior ratios rather than to measurements. We call this the
maxd2 model. A third view would prescribe to make an indepen-
dent decision at each location. This amounts to counting for how

many locations dð1Þi > dð�1Þ
i , and deciding on the category that
receives the most ‘‘votes’’, using a coin flip as a tiebreaker. We call
this the maxd3 model. Of these four max models, Baldassi and
Verghese (2002) only fitted the maxx model. Therefore, we con-
ducted our own experiment and fitted the optimal, maxx, and three
maxd models.

4.2. Replication of Baldassi and Verghese’s variable-target, variable-
distractor experiment

We followed the experimental design introduced by Baldassi
and Verghese (2002). Subjects were presented with one or multiple
items, one of which was always the target. The task was to report
whether the target stimulus was oriented to the right or left of
vertical.
4.2.1. Stimuli
Stimuli were displayed on a 21’’ LCD monitor. Subjects were

seated at a viewing distance of approximately 60 cm. Each of
the stimuli was a Gabor patch with a spatial frequency of 2.9
cycles per degree of visual angle, a Gaussian standard deviation
of 0.25 �, and a peak luminance of 64 cd/m2. Background lumi-
nance was 28 cd/m2. Stimuli were presented on an imaginary
circle of radius 5� around the fixation point. First, the target
was placed at a random angle. In trials with distractors (N > 1),
the distractors were placed such that any two adjacent items
were separated by the same angle (180� at N = 2, 90� at N = 4,
and 45� at N = 8).
4.2.2. Conditions
On each trial, set size was 1, 2, 4, or 8, randomly chosen with

equal probabilities. In the no external noise (NEN) condition, all
distractors (non-target items) were vertical (0�), and the target ori-
entation was drawn with equal probabilities from the set ±{0.5, 1,
2, 4, 8}�. In the external noise (EN) condition, mean target orienta-
tion was drawn with equal probabilities from a different set, to
approximately match the overall difficulty of the NEN condition:
±{2, 4, 8, 16, 32}�. In addition, in the EN condition, orientation noise
was added to every item, drawn independently from a normal dis-
tribution with mean 0� and standard deviation rs = 8�. (Baldassi
and Verghese used multiple EN conditions, but we restrict our-
selves to one.)
4.2.3. Procedure
Subjects were asked to fixate at the cross in the center of the

screen. Stimuli were presented for 100 ms. Subjects pressed a
key to report whether the target was tilted to the left or right from
vertical. Trial-to-trial feedback was given by changing the color of
the fixation point to green or red.
4.2.4. Subjects and sessions
Eight subjects participated (3 authors and 5 naïve). All subjects

had normal or corrected-to-normal vision. Each subject completed
a total of 3840 trials over 3 sessions. Each session consisted of 4
blocks of NEN trials, followed by 4 blocks of EN trials. Overall, a
subject completed 96 trials in each combination of external noise
condition (NEN/EN), set size, and target orientation. Informed con-
sent was obtained. The work was carried out in accordance with
the Declaration of Helsinki.
4.2.5. Models
As an encoding model, we used the variable-precision model

(Van den Berg, Shin, et al., 2012), in which precision J ¼ 1=r2 is
drawn from a gamma distribution with mean decreasing with set



Fig. 3. Replication of Baldassi and Verghese’s target categorization task, with model fits. We used two search conditions: without (NEN) and with external noise (EN). Circles
and error bars: mean and s.e.m. of data. Shaded areas: mean and s.e.m. of model fit. The first four models all fit qualitatively well. Numbers: root-mean-square differences
between data and model, averaged over set sizes, target tilts, and subjects.
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size in power law fashion: �J ¼ �J1N�a, and scale parameter s. (Nei-
ther the gamma distribution nor the power law have normative
underpinnings.) We tested the maxx, maxd, and optimal decision
rules. The optimal and maxd decision rules all use Eq. (18), but in
the NEN condition with rs ¼ 0. The maxx decision rule is always
Eq. (19). The models had three free parameters: �J1, a, and s. We fit-
ted parameters by maximizing the parameter likelihood (comput-
ed from all individual trials) using a customized genetic algorithm,
separately for the NEN and EN conditions.
4.2.6. Results
Fig. 3 shows the fits of the five models. Besides the maxd3 mod-

el, all provide reasonably good fits to the summary statistics. The
maximum log likelihood of the optimal model minus that of the
maxx, maxd1, maxd2, and maxd3 models is �1.6 ± 2.4, �1.0 ± 1.4,
�6.8 ± 1.7, and 200 ± 32, respectively; each model has the same
number of parameters so no corrections are needed. This means
that the maxd3 model is a very poor model, the maxd2 model fits
best, and the remaining three models are approximately equally
good.

The performance advantage of the maxd2 model, which turns
out to come exclusively from the EN condition, is an anomaly
among the results reported in this paper, which generally point
to max models fitting no better than the optimal model. We can
think of three possible sources of this discrepancy:

� Stochastic variation. While a log likelihood difference of 6.8 is
not small, it should be kept in mind that we have been looking
for any instance among many experiments in which any max
model can outperform the optimal model. Thus, a multiple-
comparisons correction of some sort might be necessary.
� Incomplete or imperfect learning. In order to be optimal in this

task, an observer needs to learn both the target distribution and
the external noise distribution. All other tasks discussed in this
paper required learning a single stimulus distribution. Learning
two distributions might be difficult based on the samples
provided.
� Our conclusion does not hold as generally as we claim, and the

EN condition in this task is one case in which people do prefer a
particular max rule over being optimal.

Further work is needed to distinguish these possibilities. This
could include a replication in which observers are trained more
extensively on the two noise distributions.
4.3. Variable target, homogeneous variable distractors: Shen and Ma
(2015)
� Left–right categorization of single target.

� Homogeneous distractors.

� Normally distributed distractor value.

� Equal reliabilities, assume equal precision.

� Optimal wins over maxx.
In a recent study, we attempted to qualitatively distinguish the

optimal rule from several suboptimal rules (Shen & Ma, 2015). In
this experiment, the observer viewed four orientations, three of
which were identical to each other (the distractors); the fourth
item was defined as the target (Fig. 4A). The target orientation
and the common distractor orientation were drawn from the same
Gaussian distribution around vertical (Fig. 4B). The psychometric
surface as a function of target and distractor quantile shows an
interesting pattern (Fig. 4C).

We derived the optimal decision rule along the same lines as
for Mazyar et al.’s homogeneous-distractor task. The only differ-
ence is that in the earlier task, the target orientation was always
vertical, whereas here, it was drawn from the same distribution
as the distractor orientation. We denote by C the direction of tilt
of the target (±1). We obtained the likelihood of C by marginaliz-
ing over target location, target orientation, and distractor orienta-
tion. For C = 1,

pðxjC ¼ 1Þ ¼
XN

i¼1

Z 1

0

Z 1

�1
pðxijsTÞpðsTÞ Pj–ipðxjjsDÞ

� �
pðsDÞdsTdsD:

Like in Mazyar et al.’s homogeneous-distractor task, because the
distractors are linked to each other, the decision rule is not defined in
terms of local LLRs, and therefore it is difficult to define the maxd

model. However, Baldassi and Verghese’s signed max rule (a maxx

model), which would return the sign of the most tilted stimulus, is
reasonable in this task and will perform above chance: the observer
would tend to be correct when target and distractor have the same
sign (50% of trials), and when the target is more tilted than the dis-
tractor (another 25% of trials). Both the optimal and the signed-
max model had two free parameters: measurement noise r and a
lapse rate. (Strictly speaking, in the optimal model, a nonzero lapse
rate violates optimality; however, we can think of the model as a
two-process model: either the observer guesses, or is optimal.)
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Fig. 4. Single-target categorization task by Shen and Ma. (A) Trial procedure. Each display contains four items, of which three have a common orientation; these are the
distractors. Subjects report whether the fourth item (the target) is tilted to the left or to the right with respect to vertical. (B) On each trial, the target orientation and the
common distractor orientation are independently drawn from the same Gaussian distribution with a mean of 0� (vertical) and a standard deviation of 9.06�. For plotting, we
divide orientations into 9 quantiles. (C) Proportion of reporting ‘‘right’’ as a function of target and distractor orientation, averaged over 10 subjects. (D) Model fits to the data in
(C). (E) Proportion of reporting ‘‘right’’ as a function of target orientation (left column) and distractor orientation (right column). Circles and error bars: mean and s.e.m. of
data. Shaded areas: mean and s.e.m. of model fit. Numbers above plots in (D) and (E) represent root-mean-square differences between data and model, averaged over
subjects. The model fits are based on the stimuli actually presented in the experiment; therefore, apparent discontinuities are due to stimulus variability, rather than
simulation noise.
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We found that the maxx model provided a qualitatively poor fit
to the data, while the optimal model provided an excellent fit
(Fig. 4D and E).
5. Detecting, localizing, or discriminating a single change

Change detection, localization, and categorization are very simi-
lar to target detection, localization, and categorization. There are
two displays, a sample display and a test display, and the observer
detects, localizes, or categorizes a change of one or more stimuli
between the two displays. The changing item plays the role of
the target in a single-target search task, and the non-changing
items play the role of homogeneous distractors. In change
detection and categorization with a single change, when the
sample display contains N stimuli, the test display can in
principle contain any number of stimuli, but in practice, experi-
menters have used 1, 2, or N stimuli. In change localization, of
course, the number of stimuli has to be greater than 1, and in prac-
tice it is either 2 or N.

We will first consider a paradigm in which the test display con-
tains N items, and the non-changing items (which we will call dis-
tractors) are drawn independently of each other. This task is
common in studies of working memory (Luck & Vogel, 1997;
Pashler, 1988). In earlier work, we proposed the maximum-
absolute-differences rule to describe human decision-making in
this task (Wilken & Ma, 2004): the observer makes N noisy mea-
surements x1, . . ., xN in the sample display, N noisy measurements
y1, . . ., yN in the test display, takes at each location the distance
(absolute difference) between the sample measurement and the
test measurement, and reports that a change occurred if the largest
of these absolute differences across the display exceeds a criterion.
This is equivalent to:

max
i
jyi � xij > k: ð20Þ

This rule, which is the change detection equivalent of the
maxx rule encountered for fixed-target, fixed-distractor target
detection, Eq. (10), fitted human receiver-operating characteris-
tics well, in color, orientation, and spatial frequency change
detection (Wilken & Ma, 2004). In that study however, we fitted
aggregate rather than individual data, and did not test the
optimal rule.

Keshvari, Van den Berg, and Ma (2012)

� Detection of a single change.
� Independent, uniformly distributed distractors.

� Unequal reliabilities.

� Optimal rule wins over maxx and maxd rules.
In a more detailed and rigorous study, we compared the optimal
rule and the max rule in Eq. (20), while also considering model
variants along different dimensions: we tested equal versus vari-
able precision, and considered different assumptions that obser-
vers might be making about precision (Keshvari, Van den Berg, &
Ma, 2012). We systematically varied the magnitude of change, so
as to have a richer data set to fit. Analogous to the search study dis-



Fig. 5. Detection of a single change. (A) Trial procedure. Stimuli were ellipses, and the reliability of their orientation information was controlled by elongation. Set size was
always 4. (B) Generative model (see text). (C) Model comparison for proportion of ‘‘change’’ reports as a function of the number of high-certainty stimuli, NH (left column), and
as a function of the magnitude of change, for different values of NH. Circles and error bars: mean and s.e.m. of data. Shaded areas: mean and s.e.m. of model fit. The number in
each plot is the R2 of the fit. All panels were adapted from Keshvari, Van den Berg, and Ma (2012).
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cussed earlier (Ma et al., 2011), we also varied stimulus reliability
through shape, unpredictably across locations and trials (Fig. 5A).
The generative model (Fig. 5B) shows the statistical dependencies
between variables. The relevant variables are change occurrence,
T (0 or 1), magnitude of change, D, the vector of change magni-
tudes at all locations, D, the vectors of stimulus orientations in
the first and second displays, h and u = h + D, and the vectors of
corresponding measurements, x and y. The optimal decision vari-
able is:

d ¼ log
pchange

1� pchange
þ log

1
N

XN

i¼1

edi

 !
;

where pchange is the prior probability of a change. This is equivalent
to Eq. (6) for search. The local LLR is (Keshvari, Van den Berg, & Ma,
2012)

di ¼ log
R

p xi; yijDi ¼ Dð ÞpðDÞdD
p xi; yijDi ¼ 0ð Þ ; ð21Þ

which would be analogous to a search task in which the target value
is variable from trial to trial (compare Eq. (17) with p(si|Ti=0) a delta
function). The maxd rule is maxi di > k. It turns out that the maxx

rule, Eq. (20), can be obtained by taking the maxd rule and assuming
that the observer does not use any knowledge of sensory/memory
noise but instead assumes a single level of noise.

Fig. 5C shows a comparison between the three models. The
maxx rule fares very poorly. The maxd model fits the data subtly
worse than the optimal model (compare the top and bottom panels
in the left column of Fig. 5C), and formal model comparison shows
that the log marginal likelihood of the maxd model is 15.4 ± 7.3
lower than that of the optimal model (Keshvari, Van den Berg, &
Ma, 2012).

In localization tasks, there is always at least one change, and
observers report the locations of the perceived changes. When
we otherwise keep the same assumptions as above, the optimal
rule is to report the location i for which di in Eq. (21) is largest. This
is the analogue of Eq. (15) for visual search. We found that the opti-
mal rule could well describe human change localization judgments
(Van den Berg, Shin, et al., 2012), but we did not test alternative
rules.
6. Multiple targets

So far, we have discussed global, feature-based categorization
for a single target. What if there are multiple targets? For
concreteness, we consider detection: the observer reports whether
or not any targets were present. Just like the optimal observer in a
single-target task marginalized over all possible target locations
(sum over i in Eq. (6)), the optimal observer in a multiple-target
task would marginalize over possible configurations of targets. For
example, when the observer knows that on a target-present trial,
3 of 6 stimuli are targets, they will have to consider for every sub-
set of 3 of 6 measurements the possibility that this subset was the
target set. To model such scenarios, we introduce the target con-
figuration vector T, which indicates for each location whether a
target is present (entry is 1) or absent (entry is 0) at that location.
We assume independent targets and independent distractors. The
optimal decision variable is then:



Fig. 6. Network for optimal visual search (Ma et al., 2011). (A) A three-layer feedforward firing-rate network. In each layer, a population of neurons encodes the likelihood
function over a variable: r over stimulus orientation, R over local target presence, and Rglobal over global target presence. Operations can be linear, quadratic, and divisive
normalization. (B) After training, this network can accurately estimate the posterior probability that a target is present in a scene, even when sensory noise (here contrast)
varies unpredictably across items and trials. Removing the divisive normalization does not allow for accurate estimation, even after relearning. Adapted from Ma et al. (2011).

W.J. Ma et al. / Vision Research 116 (2015) 179–193 191
d ¼ log
p1

1� p1
þ log

pðxjT ¼ 1Þ
pðxjT ¼ 0Þ

¼ log
p1

1� p1
þ log

P
TpðTjT ¼ 1ÞpðxjTÞ

pðxjT ¼ 0Þ

¼ log
p1

1� p1

þ log
P

TpðTjT ¼ 1Þ Pi:Ti¼1pðxijTi ¼ 1Þ
� �

Pi:Ti¼0pðxijTi ¼ 0Þ
� �

Pip xijTi ¼ 0ð Þ

¼ log
p1

1� p1
þ log

X
T

pðTjT ¼ 1ÞPi:Ti¼1
pðxijTi ¼ 1Þ
pðxijTi ¼ 0Þ

 !

Here, p(T|T = 1) indicates how often each target configuration occurs
on a target-present trial. When the number of targets is Ntargets, the

number of configurations that must be considered is
N

Ntargets

� �
; in

other words, a combinatorial explosion might occur. It is unknown
whether the brain can effectively approximate a sum of potentially
so many terms.

Change detection with multiple targets and multiple distractors
was examined by Wilken and Ma (2004). We found that a model in
which the decision variable is the sum of local absolute differences
fitted the data well, but we did not test the optimal model.

Palmer, Verghese, and Pavel, (2000)

� Detection of all items changing.
� Identical changes.

� Equal reliabilities, assume equal precision.

� Optimal rule wins over maxx rule.
A special case of change detection with multiple targets is when
all items are targets. Then, the optimal decision variable when tar-
gets are independent of each other and distractors are independent
of each other becomes:

d ¼ log
p1

1� p1
þ
XN

i¼1

log
pðxijTi ¼ 1Þ
pðxijTi ¼ 0Þ :

In other words, the optimal decision variable is expressed as a
sum of local LLRs. This is an example of a sum rule (Graham,
Kramer, & Yager, 1987; Green & Swets, 1966). Verghese and Stone
conducted a speed change discrimination task in which all stimuli
on target-present trials were targets (Ntargets = N) (Verghese &
Stone, 1995); a careful re-analysis revealed that the sum rule
(hence the optimal rule) described their data better than a maxx

rule (Palmer, Verghese, & Pavel, 2000).
� Target detection when all items are targets.
� Homogeneous targets.

� Target value uniformly distributed.

� Independent distractors normally distributed around a

uniformly distributed mean.

� Equal reliabilities, assume equal precision.

� Optimal rule wins over maxx rule.
Finally, we consider another example of Ntargets = N, but with
targets not independent of each other and distractors not indepen-
dent of each other. On a target-present trial, all targets are identical
to each other and the target value is drawn from a distribution
p(sT). On a target-absent trial, distractors are drawn from a multi-
variate distribution p(sD). The task has now become a sameness
judgment task: are all stimuli the same (targets present) or are
they all different (targets absent)? The optimal decision variable
becomes:

d ¼ log
p1

1� p1
þ log

R
PN

i¼1pðxijsi ¼ sTÞ
� �

p sTð ÞdsTR
PN

i¼1pðxijsi ¼ sD;iÞ
� �

p sDð ÞdsD

:

A maxx model might prescribe that the observer responds that
the stimuli are the same when the largest absolute difference
between any two measurements is smaller than a criterion k,

max
i;j
jxi � xjj < k

(Van den Berg, Vogel, et al., 2012). We tested the optimal model
against this maxx model in an orientation sameness judgment task
where noise level was varied randomly across stimuli. We found
that the log marginal likelihood of the optimal model was higher
by 24.7 ± 4.6. When we did not vary reliability, the optimal and
maxx models were indistinguishable (orientation: optimal won
by 5.1 ± 2.5; color: optimal won by 0.8 ± 2.3) (Van den Berg,
Vogel, et al., 2012).

7. Neural implementation

So far, we have only considered psychophysical evidence. Of
course, a behavioral model also needs a neural implementation.
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One has been suggested for the max model, in the task of detecting
a target of fixed value among homogeneous distractors also of
fixed value (Verghese, 2001). In its simplest form, this implemen-
tation relies on N neurons, each with their receptive field at the
location of one of the stimuli in the search display. The activity
of one of these neurons is meant to signal the amount of evidence
that a target is present in its receptive field. In the decision stage,
an output neuron takes the maximum of the activities of these N
neurons, and produces a ‘‘target present’’ decision when this max-
imum exceeds a threshold level.

At first glance, this model seems to be supported by the pres-
ence of neurons in inferotemporal cortex whose response to mul-
tiple stimuli can be described as the maximum of their responses
to the individual stimuli (Riesenhuber & Poggio, 1999). Upon closer
look however, this support is tenuous. First, the maximum of
responses to individual stimuli is not the same as the maximum
of the activity of the afferent neurons. Second, the task was a pas-
sive fixation task, so the only relevance to the neural implementa-
tion of global categorization might be that a max operation might
exist in cortex. Third, other studies have argued instead for linear
(Zoccolan, Cox, & DiCarlo, 2005) or other nonlinear (Britten &
Heuer, 1999) functions for describing the response of a neuron to
multiple stimuli. Thus, neural evidence in support of the max mod-
el for visual search is scarce.

Another problem with the proposal outlined in Verghese (2001)
is its lack of generality. Identifying neural activity at a location with
the amount of evidence for target presence at that location only
makes sense in very specific cases, such as a target of fixed value
among homogeneous distractors also of fixed value, with equal
and constant sensory noise levels (first part of section 2.3.1). For
heterogeneous distractors, variable targets, or unequal sensory
noise levels, the relation between evidence and activity is much
more complicated (Ma, 2010).

This leaves the question of whether the optimal rule can be
computed by neural circuits using plausible operations. This ques-
tion was explored for single-target detection in the presence of
fixed distractors or variable distractors (Ma et al., 2011). We used
a neural coding framework known as probabilistic population cod-
ing, according to which a sensory neural population encodes a like-
lihood function over a stimulus on each trial. We used this form of
code to construct a neural network whose output can, on each trial,
represent a good approximation the posterior probability of target
presence, and therefore can also behave in a near-optimal manner
(Fig. 6). The resulting network contained linear, quadratic, and
divisive normalization operations, all of which have been widely
observed in cortex. This is a first indication that the apparent com-
plexity of optimal decision rules does not preclude a plausible neu-
ral implementation. In particular, these types of networks could be
an alternative to max-based networks such as those proposed by
Riesenhuber and Poggio (2000).
8. Conclusion

Although it is not always easy to distinguish the optimal deci-
sion rule from max decision rules, in cases where a clear winner
emerged, that winner was the optimal rule – with one exception,
in which the generative model was the most complex of all tasks
examined here. Varying reliability across the stimuli within a dis-
play seems to be a useful manipulation for distinguishing the mod-
els. This is because those variations affect the optimal and max
decision rules in different ways. Reliability is also expected to vary
in natural vision, due to variations in depth, eccentricity, occluder
transparency, etc.

We can conclude that there is, at present, little evidence that
the brain makes global decisions either by combining the binary
outcomes of local decisions or by applying some sort of max opera-
tion. More broadly, our results can be construed as a rebuke of the
common preference of signal detection theory modelers for simple
ad-hoc rules over – usually more complex – optimal rules. (Empiri-
cal evidence aside, an epistemological argument can be made in
favor of optimal decision rules. The optimal rule can always be
derived directly from the generative model of a task, based on
the goal of maximizing accuracy. By contrast, as we have seen,
there are often multiple choices for how to construct a max rule
for a given task. This ambiguity reduces the ability of max models
to pass for a principled account of perceptual decision-making.)
We believe that any future study involving a feature-based global
categorization task should test the optimal decision rule in addi-
tion to ad-hoc decision rules. Moreover, in doing so, researchers
should take care to derive the correct form of the optimal rule.

Our conclusions do come with some caveats. The generality of
our findings can be questioned given that some subparadigms
within the domain of feature-based global categorization remain
largely unexplored. In particular, more psychophysics and model
comparison are needed for single-target localization, multiple-tar-
get search of any kind (detection, localization, or categorization),
and oddity detection. Furthermore, recall that Koopman (1956)
was concerned with multiple glimpses over time, not multiple
stimuli within a single display; this might change the conclusion.

Finally, we have argued that at present, the plausibility of neu-
ral implementation cannot be used as an argument to arbitrate
between decision rules. Instead, we believe that the outcome of
model comparison at the behavioral level should guide the inves-
tigation of the neural basis of decision rules, and therefore that
optimal, not max models, should be used as the starting point to
create neural models.
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