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Rhesus monkeys are widely used as an animal model for
human memory, including visual working memory
(VWM). It is, however, unknown whether the same
principles govern VWM in humans and rhesus monkeys.
Here, we tested both species in nearly identical change-
localization paradigms and formally compared the same
set of models of VWM limitations. These models include
the classic item-limit model and recent noise-based
(resource) models, as well as hybrid models that
combine a noise-based representation with an item
limit. By varying the magnitude of the change in addition
to the typical set size manipulation, we were able to
show large differences in goodness of fit among the five
models tested. In spite of quantitative performance
differences between the species, we find that the
variable-precision model—a noise-based model—best
describes the behavior of both species. Adding an item
limit to this model does not help to account for the data.
Our results suggest evolutionary continuity of VWM
across primates and help establish the rhesus monkey as
a model system for studying the neural substrates of
multiple-item VWM.

Introduction

Understanding cognition requires understanding its
limitations. While cognitive limitations have been
extensively characterized in humans, a complete
understanding of their neural basis requires invasive
studies in nonhuman animals. It cannot, however, be
blindly assumed that findings from such studies will

transfer to humans. This important concern can be
partially preempted by demonstrating that the cogni-
tive behavior of humans and of nonhuman animals are
best described by the same models. In other words,
model-defined similarity of human and nonhuman
behavior might help justify claims that invasive studies
in nonhuman animals can teach us about human
cognition.

Here, we pursue this goal as it pertains to visual
working memory (VWM; Luck & Vogel, 2013; Ma,
Husain, & Bays, 2014). VWM is limited in two aspects:
time—how long memories are maintained—and con-
tent—what is remembered and how well. Monkey
studies of VWM have traditionally focused on the
process of maintaining a single memory item over time
(Funahashi, Bruce, & Goldman-Rakic, 1989; Fuster &
Alexander, 1971; Miller, Erickson, & Desimone, 1996).
More recently, they have started to address issues
related to VWM content, in particular the effect of the
number of items in a display (Buschman, Siegel, Roy, &
Miller, 2011; Elmore et al., 2011; Heyselaar, Johnston,
& Paré, 2011; Lara & Wallis, 2012, 2014; Warden &
Miller, 2007). However, these studies did not focus on
formally comparing mathematical models of VWM
limitations. Here, we quantitatively compare multiple
VWMmodels in both humans and monkeys based on a
nearly identical experimental paradigm.

VWM content limitations have traditionally been
described using item-limit models (Awh, Barton, &
Vogel, 2007; Cowan, 2001; Fukuda, Awh, & Vogel,
2010; Luck & Vogel, 1997; Pashler, 1988). According to
these models, only a fixed number of items (the

Citation: Devkar, D. T., Wright, A. A., & Ma, W. J. (2015). The same type of visual working memory limitations in humans and
monkeys. Journal of Vision, 15(16):13, 1–18, doi:10.1167/15.16.13.

Journal of Vision (2015) 15(16):13, 1–18 1

doi: 10 .1167 /15 .16 .13 ISSN 1534-7362 � 2015 ARVOReceived February 11, 2015; published December 31, 2015

Downloaded From: http://jov.arvojournals.org/pdfaccess.ashx?url=/data/Journals/JOV/934737/ on 01/06/2016

mailto:deepna.devkar@nyu.edu
mailto:deepna.devkar@nyu.edu
mailto:anthony.a.wright@uth.tmc.edu
mailto:anthony.a.wright@uth.tmc.edu
mailto:weijima@nyu.edu
mailto:weijima@nyu.edu


capacity) are held in memory with high quality, and no
information is retained about any other items. Re-
cently, an alternative category of models, based on
human behavioral studies, has risen to prominence. In
these ‘‘noise-based’’ or ‘‘resource’’ models, all items are
remembered, but memories are noisy and memory
precision is inversely related to the number of items
(Bays & Husain, 2008; Keshvari, van den Berg, & Ma,
2013; van den Berg, Shin, Chou, George, & Ma, 2012;
Wilken & Ma, 2004).

We tested fixed-capacity models against noise-based
models in parallel in monkeys and in humans. We used
a change localization paradigm that is similar to
paradigms that have been successfully used to compare
VWM models in humans (Keshvari et al., 2012, 2013;
van den Berg et al., 2012). In our experimental design
(Figure 1A), the subject viewed a sample array
consisting of oriented bars, of which only the orienta-
tion was relevant. This display was followed by a 1-s
blank screen, then by a test array consisting of two
oriented bars selected from the sample array but with
one having changed its orientation. The subject
touched the location of the changed bar.

In addition to varying the number of sample items
(set size), we varied the magnitude of the change in
orientation randomly from trial to trial. While fixed-
capacity and noise-based models can equally well
account for observers’ performance as a function of
only set size, we have previously shown that the
parametric variation of the magnitude of change allows
one to effectively distinguish fixed capacity from noise-
based models (Keshvari et al., 2013; van den Berg et al.,
2012).

For each individual monkey and human subject, we
compared four leading models of VWM limitations
(Figure 1B). According to the item-limit (IL) model, a
fixed number of items (the capacity) are kept in

memory with infinite precision, while remaining items
are absent from memory (Cowan, 2001; Luck & Vogel,
1997; Pashler, 1988). The equal-precision (EP) model
postulates that all items are remembered with equal
precision and that precision per item decreases with
increasing set size (Palmer, 1990; Shaw, 1980). De-
creasing precision is associated with increasing noise;
that is, at a larger set size, each item is remembered in a
noisier fashion. The equal-precision-with-fixed-capacity
(EPF) model is a hybrid model that combines elements
of the IL and EP models: Only a fixed number of items
can be remembered, but a fixed precision budget is
distributed across the remembered items (Zhang &
Luck, 2008). For set sizes smaller than or equal to the
capacity, this model predicts that precision will
decrease with increasing set size. The variable-precision
(VP) model is similar to the EP model in that all items
are remembered with finite precision, but precision
varies from item to item and trial to trial (Fougnie,
Suchow, & Alvarez, 2012; Keshvari et al., 2013; van
den Berg et al., 2012).

We also tested a recently proposed hybrid model—
variable precision with fixed capacity (VPF)—that
combines elements of the IL and VP models: Only a
fixed number of items can be remembered, but
precision varies randomly across items and trials (van
den Berg & Ma, 2014). The four finite-precision models
(EP, EPF, VP, and VPF) attribute all (EP and VP) or
some (EPF and VPF) change localization errors to the
difficulty of separating the signal from memory noise.
For these four models, we used Bayesian inference to
model the decision stage; on each trial, the observer
reports the location that has the highest probability of
containing the changed item (see Theory). The IL, EP,
EPF, VP, and VPF models have two, two, three, three,
and four free parameters, respectively.

Figure 1. (A) Trial procedure in the change localization task. Subjects (monkeys and humans) were asked to report which item

changed in orientation between the sample and test displays. (B) Schematic representation of precision (height of fill) of different

items (boxes) in five leading models of VWM, at set sizes 2 and 5, with a hypothetical capacity limit of three for the IL, EPF, and VPF

models. We use open boxes to indicate that in the models with variable precision we do not specify an upper bound to precision.
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Methods: Experiments

Monkeys

Subjects

Three adult male rhesus monkeys (Macaca mulatta;
weights: M1 ¼ 16.5 kg, M2¼ 14.5 kg, M3 ¼ 13.5 kg;
ages: M1 ¼ 17.5 years, M2 ¼ 16.5 years, M3 ¼ 12.5
years) were tested in a change localization experiment
for five days a week. Food and water were regulated
prior to experimental sessions. After completing daily
testing, animals were returned to their caging room,
where they were housed individually and received
primate chow and water to maintain their normal body
weight. All animal procedures were performed in
accordance with the National Institutes of Health
guidelines, approved by the institutional review board
of the University of Texas Health Science Center at
Houston, and supervised by the Institutional Animal
Care and Use Committee.

Apparatus

During experimental sessions, the monkeys were
placed unrestrained in a custom-made aluminum
experimental chamber (47.5 cm wide 3 53.1 cm deep 3
66.3 cm high). An infrared touch screen detected touch
responses to a 17-in. computer monitor. The touch
responses were guided using a Plexiglas template with
six cutouts (each a circle with a diameter of 2.5 cm) that
were arranged on an imaginary circle with a diameter
of 9.0 cm, matching the six possible locations of the
stimuli, and a cutout in the center for touches to a
fixation point. Using a computer-controlled relay
interface (Model P10-12; Metrabyte, Taunton, MA),
correct responses were rewarded with either a banana
pellet or Tang orange drink (M1) or a banana pellet or
cherry Kool-Aid (M2 and M3). The relay interface
controlled the illumination of the chamber using a 25-
W green light bulb located outside of the chamber. The
offset of the green light illuminating the chamber
through a small gap between the touch screen and the
monitor marked the start of the next trial. Throughout
testing, the monkeys were monitored with a video
camera outside the chamber and focused through a
small glass-covered port on the right side of the
chamber. Experimental sessions were designed, oper-
ated, and recorded using a custom program written in
Microsoft Visual Basic 6.0.

Stimuli

Stimuli consisted of 1.8 cm 3 0.4 cm gray bars with
luminosity of 190 cd/m2 displayed on a black back-
ground. Based on the average distance of the monkey

from the screen (approximately 35 cm), the stimuli
subtended a visual angle of approximately 2.98 3 0.658.
Stimuli were presented in six possible locations on the
screen, arranged on an imaginary circle of radius 7.48
(see Apparatus).

Trial procedure

Each trial began with a red fixation point in the
center of the screen. The monkey had to make a one-
touch response to the fixation point, which initiated the
presentation of a sample display. This display con-
tained two or more items (see later), and had a duration
that differed between monkeys and between training
and testing (see later). After a delay of 1000 ms, the test
display was presented, which always consisted of two
items placed at the same locations as two items from
the sample display. One test item had the same
orientation as the corresponding item in the sample
display, and the other test item had a different
orientation. The monkey’s task was to identify which
item had changed and to touch that item. The test
display remained on the screen until response. Correct
responses were rewarded. An intertrial interval of 3 s
followed the response, during which a green light
illuminated the chamber and the screen was dark.

Training

Two of the monkeys that participated in this study
(M2 and M3) had been previously trained in a change-
localization task using clip art images and colored
squares (Elmore et al., 2011). For these two monkeys,
we intermixed trials of oriented bars (new stimuli) with
trials of colored squares for initial task acquisition.
Once the monkeys’ performance on these orientation
trials was similar to their baseline color-trial perfor-
mance, we began training them with only orientation
trials. Since M1 had not been previously trained on this
task, we directly trained him with oriented bars. All
three monkeys were first trained at set sizes 2 and 3,
change magnitudes of 22.58, 458, 67.58, and 908, and a
sample viewing time of 1000 ms. Once overall accuracy
reached approximately 70%, set sizes 4 and 5 and finer
change magnitudes (108 to 908 in 108 increments) were
gradually introduced. Finally, we gradually reduced
sample-viewing times while maintaining approximately
70% accuracy on trials with set size 2. For M1 and M3,
this led to a viewing time of 300 ms, and for M2 to a
viewing time of 600 ms. Total training lasted approx-
imately 8 months.

Testing

The sample display was shown for 300 ms for M1
and M3, and 600 ms for M2. Set size was 2, 3, 4, or 5.
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Set sizes were pseudorandomized within each 192-trial
block (48 trials per set size). The orientations of the
sample items were drawn independently from a discrete
uniform distribution over 18 possible orientations
(�908 to 808 in increments of 108). The orientation of
the changed item in the test display was drawn from the
same distribution, except that the orientations of the
other sample stimuli were excluded. (This exception is
unnecessary and potentially problematic because it
slightly changed the statistics of the task. However,
since at most four out of 18 orientations were excluded,
and observers probably did not notice it, we expect the
impact to be small and we did not model it.) Testing
consisted of 60 sessions, with 192-trial blocks per
session, for a total of 11,520 trials per monkey.

Humans

Subjects

Ten human subjects (eight women, two men) aged
21–33 years (mean age¼ 27.1 years) participated. Each
subject visited the lab for two 1.5-hr sessions and was
compensated $10 per session. Study procedures were
approved by the institutional review board of the
University of Texas Health Science Center at Houston.

Apparatus and stimuli

Subjects were seated in a chair in a small room
equipped with a computer. At the beginning of the
experiment, the distance between the chair and the
screen was adjusted so that the stimuli and display
would subtend approximately the same visual angles as
for the monkeys. Subjects were asked to maintain
approximately the same distance. The monitor and
touch screen were identical to those used for monkeys.
Two 25-W light bulbs were mounted on the wall behind
the subjects to provide feedback. Stimuli were identical
to those used for monkeys.

Trial procedure

The trial procedure was identical to that for the
monkeys, except for the feedback. Feedback consisted
of a green light that was illuminated for 1 s and
accompanied by a tone for correct responses or a red
light illuminated for 1 s for incorrect responses.

Training and testing

Each subject completed two testing sessions, each
consisting of three 192-trial blocks, for a total of 1,152
trials per subject. Subjects were given a 10-min break in
between blocks. Each subject completed eight practice
trials at the beginning of the first session.

Theory

We compared five models of behavior in this task. In
the IL model, noise does not play a role. In the other
four models, noise does play a role, which will require a
model for how subjects integrate information from
noisy measurements.

For simplicity, we mapped orientation space to
the interval [0, 2p) by multiplying all orientations
and orientation-change magnitudes by 2 before
analysis. All equations in this article are consistent
with this convention, but orientations and orienta-
tion changes in the figures are back in actual
orientation space.

IL model

In the IL model (Cowan, 2001; Luck & Vogel, 1997;
Pashler, 1988), observers cannot store more than K
items. When N � K, all items are stored. The
probability of being correct is then 1 � e, where e
accounts for lapses of attention and unintended
responses. When N . K, K randomly selected items
from the sample display are stored. When the test
display appears, there are three scenarios to consider:

� Both test items correspond to stored sample items.
This happens with probability

KðK�1Þ
NðN�1Þ. The proba-

bility of being correct is then 1 � e.
� One test item corresponds to a stored sample item

and the other does not. This happens with

probability 2 KðK�1Þ
NðN�1Þ. The probability of being

correct is then 1 � e.
� Neither test item corresponds to a stored sample

item. This happens with probability
ðN�KÞðN�K�1Þ

NðN�1Þ .

The observer then has to guess about which item
changed, and the probability of being correct is 0.5.

The overall proportion correct is then

p correctð ÞðN;KÞ ¼
KðK� 1Þ
NðN� 1Þ ð1� eÞ þ 2

KðN� KÞ
NðN� 1Þ ð1� eÞ

þ ðN� KÞðN� K� 1Þ
NðN� 1Þ �0:5

¼ 1� e� ðN� KÞðN� K� 1Þ
NðN� 1Þ � ð0:5� eÞ:

Storing all N items (K ¼ N) yields the same
proportion correct, namely 1� e, as storing only N� 1
items, since even if one test item is not stored, the trial
can be answered correctly by using the other test item.
As can be seen from the equation, in the IL model the
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proportion correct depends on set size but not on
change magnitude.

Noise-based models

We now turn to models in which VWM is noisy
(Ma et al., 2014; Wilken & Ma, 2004). We assume
that both orientations in the test display, which we
denote u1 and u2, are known noiselessly to the
observer, because they remain on the screen until the
subject responds. We model the memories of the
orientations in the sample display as noisy. Noise can
stem from encoding (presentation time was limited)
or maintenance of memories; we do not distinguish
between these sources. We model the noisy memory
of the ith item in the sample display, denoted xi (i ¼
1, . . ., N), as following a von Mises distribution (a
circular analog of a Gaussian distribution, used
because orientation space is periodic) centered at the
true stimulus hi with concentration parameter ji:

pðxijhiÞ ¼
1

2pI0ðjiÞ
ejicosðxi�hiÞ;

ð1Þ
where I0 is the modified Bessel function of the first kind
of order 0 (Mardia & Jupp, 1999). The concentration
parameter controls the width of the noise distribution,
and the Bessel function serves as a normalization. We
have postulated previously that the role of precision is
played by the Fisher information in this memory
representation, denoted Ji (Keshvari et al., 2013; van
den Berg et al., 2012). Fisher information determines
the best possible performance of any unbiased estima-
tor through the Cramér–Rao bound (Cover & Thomas,
1991). When the measurement x follows a Gaussian
distribution, Fisher information is equal to inverse
variance, J ¼ 1

r2. When neural variability is Poisson-
like, Fisher information is proportional to the gain of a
population (Seung & Sompolinsky, 1993). Thus, our
choice of using Fisher information for precision is
consistent with an interpretation of neural activity as
‘‘memory resource’’ (Bays, 2014; Ma et al., 2014; van
den Berg et al., 2012). For Equation 1, Fisher
information is related to the concentration parameter
through

Ji ¼ ji
I1ðjiÞ
I0ðjiÞ

; ð2Þ

where I1 is the modified Bessel function of the first kind
of order 1. The relationship between precision and the
concentration parameter is nearly the identity mapping,
and none of our results would qualitatively change if
we were to replace Ji with ji.

In the EP model (Bays & Husain, 2008; Palmer,
1990), the precision of each item is inversely related to
set size through a power law:

Ji ¼
JN¼1

Na
;

where JN¼1 is the precision with which a single item is
stored. The precision of all items in a display is equal.

In the EPF model (also known as slots-plus-resources;
Zhang & Luck, 2008), no more than K items can be
stored. Thus the number of stored items is min(N, K).
The precision of a stored item is inversely related to the
number of stored items through a power law:

Ji ¼
JN¼1

minðN;KÞa :

The precision associated with a nonstored item is
zero. When N � K, the EPF model is equal to the EP
model. The slots-plus-averaging model is very similar
to this model (as was quantitatively shown by van den
Berg, Awh, & Ma, 2014).

In the VP model (Fougnie et al., 2012; Keshvari et
al., 2013; van den Berg et al., 2012), precision exhibits
fluctuations across both space and time. To be
concrete, we assume that the precision values associ-
ated with the N items are drawn independently from a
gamma distribution with mean J̄ and scale parameter s
(a flexible family of distributions on the positive real
line). We further assume that its mean is inversely
related to set size through a power law:

J̄ ¼ J̄N¼1

Na
;

where J̄N¼1 is the mean precision of a single item
(Figure 2).

The VPF model (van den Berg & Ma, 2014) is equal
to the VP model, but the number of stored items is

Figure 2. Illustration of probability density functions over

precision in the VP model for four set sizes. Mean precision,

marked by dashed lines, is inversely related to set size. For the

parameters J̄N¼1, s, and a, we used mean parameter estimates

from humans (Table A1).
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min(N, K); thus, no more than K items can be stored.
The precision of a stored item is again drawn from a
gamma distribution with mean J̄ and scale parameter s,
and the mean is inversely related to the number of
stored items through a power law:

J̄ ¼ J̄N¼1

minðN;KÞa :

The precision associated with a nonstored item is
zero.

The IL, EP, EPF, VP, and VPF models have two,
two, three, three, and four free parameters, respectively.

Decision rules

So far, we have described the encoding stage: how
stimuli give rise to noisy memories. What is also needed
in each of the noise-based models is a description of
how the observer makes the two-alternative change-
localization decision based on the noisy memories and
the test display. We use an ideal (Bayesian) observer to
describe this process. The resulting decision rule is
similar to the ideal-observer models of related N-
alternative change localization and change-detection
tasks (Keshvari et al., 2012, 2013; van den Berg et al.,
2012), but differs in the details.

We begin by describing the decision process for the
EP and VP models. The relevant variables are the
location L of the change (1 or 2), the magnitude D of
the change, the relevant sample orientations h1 and h2
(all other sample items are irrelevant to the decision),
their noisy memories x1 and x2, and the two test
orientations u1 and u2. The ideal observer responds
that the change occurred at location 1 when the log
posterior ratio is positive:

log
I0ðj1Þ
I0ðj2Þ

� �
þ j2cosðx2 � u2Þ

� j1cosðx1 � u1Þ. 0: ð3Þ

The derivation of this decision rule can be found in
Appendix A; we have assumed that the observer knows
the values of j1 and j2 on each trial. The decision rule
is valid for both the VP and EP models. In the VP
model, precision per item is a random variable, and
therefore j1 and j2 will generally not be equal to each
other. However, in the case of the EP model, we have
j1 ¼ j2 and the inequality simplifies to

cosðx2 � u2Þ. cosðx1 � u1Þ ð4Þ
This rule is intuitive: The observer reports that the

change occurred at location 1 when the angular
distance between the noisy memory at location 2 and
the test orientation at location 2 is smaller than the
corresponding distance at location 1 (and thus the

cosine is larger). There is then more evidence that the
change occurred at location 1. One can think of
Equation 3 as a precision-weighted version of Equa-
tion 4.

The EPF model is very similar to the EP model, but
with one difference when N . K. Then, a noisy
measurement has a probability of not being stored.
This is equivalent to setting the concentration param-
eter of the corresponding memory to 0. Thus, we can
immediately obtain the decision rule from the EPF
model by taking special cases of Equation 3:

Report location 1 when:::
cosðx2 � u2Þ. cosðx1 � u1Þ

if both items were stored;
jcosðx1 � u1Þ, logI0ðjÞ if only item 1 was stored;
jcosðx2 � u2Þ, logI0ðjÞ if only item 2 was stored;
:::and guess randomly when neither item was stored:

8>>>>>><
>>>>>>:

ð5Þ
The second and third inequalities may seem coun-

terintuitive, since they only involve one memory.
However, they make sense: Even when the observer has
only the memory corresponding to one of the test
items, the discrepancy between the memory and the test
is still informative about whether or not the change
occurred in that one item.

The VPF model is identical to the VP model when N
� K. When N . K, just as in the EPF model, a noisy
measurement has a probability of not being stored
(precision¼ 0). But unlike in the EPF model, the
concentration parameters j1 and j2 in the VPF model
are independent. With these modifications, we can
again take the special cases of Equation 3 and obtain
the decision rules for the VPF model:

Report location 1 when:::

log
I0ðj1Þ
I0ðj2Þ

 !
þ j2cosðx2 � u2Þ. j1cosðx1 � u1Þ

if both items were stored;
j1cosðx1 � u1Þ, logI0ðj1Þ if only item 1 was stored;
j2cosðx1 � u2Þ. logI0ðj2Þ if only item 2 was stored;
:::and guess randomly when neither item was stored:

8>>>>>>>>><
>>>>>>>>>:

ð6Þ

Model predictions

If we had access to the observer’s noisy memories x1
and x2 on each trial, the models would predict the
observer’s response exactly. Since we do not know x1
and x2, the best we can do is to compute the probability
of being correct for a given stimulus condition. Under
the assumptions in our generative model, the stimulus
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condition is determined completely by set size N and
change magnitude D, and the values of h1 and h2 are
irrelevant. Thus, we are interested in the probability
that the decision rule (Equation 3 for VP, Equation 4
for EP, Equation 5 for EPF, and Equation 6 for VPF)
returns the correct location when the memories x1 and
x2 follow their model-specific distributions given N and
D. Without loss of generality, we compute the
proportion correct by taking h1¼ h2¼ 0 and L¼ 1, so
that u1¼ 0 and u2 ¼ D.

For the EP model, then,

p correctÞðN;DÞ ¼ð

Pr
�

cosx2 . cosðx1 � DÞ;x1; x2 ; VMð0; jÞ
�
;

where VM(l, j) denotes the von Mises distribution
with mean l and concentration parameter j, and we
use the notation Pr(statement involving X; X ;

distribution) to indicate the probability that the
statement is true when X follows the given distribu-
tion.

For the VP model, both the decision rule and the
distributions of x1 and x2 are different:

p correctð ÞðN;DÞ ¼

Pr log
I0ðj1Þ
I0ðj2Þ

� �
þ j2cosx2 . j1cosðx1 ¼ DÞ;

�
x1 ; VMð0; j1Þ;
x2 ; VMð0; j2Þ;

Ji ; GammaðJ̄; sÞ
�
;

where ji is related to Ji through Equation 2.
For the EPF model, the proportion correct is

computed as a sum across the four possibilities for
which items were stored (see Equation 5):

p correctð ÞðN;DÞ

¼ KðK� 1Þ
NðN� 1Þ �Pr

�
cosx2 . cosðx1 � DÞ;

x1;x2 ; VMð0; jÞ
�

þKðN� KÞ
NðN� 1Þ � Pr

�
jcosðx1 � DÞ. logI0ðjÞ;

x1 ; VMð0; jÞ
�

þKðN� KÞ
NðN� 1Þ � Pr

�
jcosx2 , logI0ðjÞ;

x2 ; VMð0; jÞ
�

þðN� KÞðN� K� 1Þ
NðN� 1Þ � 0:5:

For the VPF model, the proportion correct is
computed as a sum across the four possibilities for
which items were stored (see Equation 6):

p correctð ÞðN;DÞ

¼ KðK� 1Þ
NðN� 1Þ � Pr log

I0ðj1Þ
I0ðj2Þ

� �
þ j2cosx2

�
. j1cosðx1 � DÞ;x1 ; VMð0; j1Þ;

x2 ; VMð0;j2Þ; Ji ; GammaðJ̄; sÞ
�

þKðN� KÞ
NðN� 1Þ � Pr

�
jcosðx1 � DÞ. logI0ðjÞ;

x1 ; VMð0;j1Þ; Ji ; GammaðJ̄; sÞ
�

þKðN� KÞ
NðN� 1Þ � Pr

�
jcosx2 , logI0ðjÞ;

x2 ; VMð0;j2Þ;

Ji ; GammaðJ̄; sÞ
�

þðN� KÞðN� K� 1Þ
NðN� 1Þ � 0:5:

Each of these proportions correct was determined
through Monte Carlo simulation. For each (N, D)
combination, we drew 10,000 random samples of x1
and x2 (and in the case of the VP and VPF models, of
J1 and J2 first). For each sample, we evaluated the
decision rule and then computed the proportion of
correct responses across all samples.

Finally, for each model, we discretized parameter
space (Table A1) and calculated a lookup table in
which each entry gave the predicted probability of a
correct response at one (N, D) combination for one
parameter combination.

Methods: Model fitting and model
comparison

Model fitting

Denoting all parameters of a model by a vector t,
the log likelihood of t (the parameter log likelihood)
is

LLðtÞ ¼ logpðdatajmodel; tÞ
¼ log P

ntrials

i¼1
pðcorrectnessijNi;Di; tÞ; ð7Þ
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where the product is over trials (from 1 to ntrials) and
correctnessi is 1 if the subject was correct on the ith
trial and 0 if not. We can rewrite this as

LLðtÞ ¼
Xntrials

i¼1

log pðcorrectnessijNi;Di; tÞ

¼
X
N

X
D

h
nðN;D; correctÞ � logpðcorrectjN;D; tÞ

þnðN;D; incorrectÞ � log
�

1� pðcorrectjN;D; tÞ
�i
ð8Þ

where we grouped trials by set size N, change
magnitude D, and whether the observer was correct
or incorrect, and n(N, D, correct) is the number of
trials with a particular N, D, and correctness.

For each subject data set, we used Equation 8 and
the precomputed lookup table of model predictions
mentioned before to find the log likelihood of each
parameter combination. The parameter combination
on this grid that maximized the log likelihood gave the
estimates of the parameters. The model predictions
corresponding to that parameter combination were
then used to compute the model fits to the psycho-
metric curves. We denote the maximum of the
parameter log likelihood LL(t) by LLmax.

Bayesian model comparison

To compare models, we used Bayesian model
comparison (MacKay, 2003), which should not be
confused with the Bayesian observer model that we
used earlier. Bayesian model comparison is based on
the log marginal likelihood of a model m given the data:
LML(model)¼ log p(datajmodel). The attribute
‘‘marginal’’ refers to an integration (marginalization)
over the parameters:

LMLðmodelÞ ¼ logpðdatajmodelÞ
¼ log

R
pðdatajmodel; tÞpðtjmodelÞ dt

¼ log
R
eLLðtÞpðtjmodelÞ dt:

For the parameter prior p(tjmodel), we chose a
product of uniform distributions (one for each param-
eter), with their domains just covering the grid used for
model predictions and parameter estimation (see
before). We denote the size of the range of the jth
parameter by Rj, where j ¼ 1, . . ., k. We also peak-
normalize the exponential term so as to avoid highly
negative numbers in the exponent, which could cause
numerical underflow; we add a correction to compen-
sate for this. This gives

LMLðmodelÞ ¼

LLmax þ log P
k

j¼1

1

Rj

0
@

1
AR eLLðtÞ�LLmaxdt

0
@

1
A

¼ LLmax þ log
�R

eLLðtÞ�LLmaxdt
�
�
Xk
j¼1

logRj:

Finally, we approximate the integral through a
Riemann sum (grid sum) over the same grid as used for
model predictions and parameter estimation (see
earlier). We denote the grid spacing of the jth
parameter by dtj. This leads to the equation we actually
implemented:

LMLðmodelÞ ¼

LLmax þ log P
k

j¼1
dtj

0
@

1
A X

ton grid

eLLðtÞ�LLmax

0
@

1
A

�
Xk
j¼1

logRj: ð9Þ

The difference of the log marginal likelihood
between two models is also called the log Bayes factor
of those two models (Kass & Raftery, 1995).

Numerical values of the ranges Rj are specified in
Table A1. Our choices for these ranges were initially
guided by parameter estimates from previous publi-
cations (Keshvari et al., 2013; van den Berg et al.,
2012). These ranges worked well for our human data.
In the monkey data, however, we noticed that the
parameter estimates of J̄N¼1 and s tended to be much
smaller that the upper limits of these ranges. Since the
computational time required for numerically evaluat-
ing the parameter likelihood in the Riemann sum is
determined by the number of grid points, we reduced
the ranges for those parameters so that—keeping the
number of grid values within each range constant—we
could obtain a finer resolution for our parameter
estimates. This more efficient use of computational
resources comes at the cost of no longer being able to
interpret the uniform distribution p(tjmodel) as a
prior, because it is now (albeit weakly) informed by
the data. We will comment on the consequences of this
choice in the Results.

Parameter recovery and model recovery

To validate our methods, we applied them to data
sets for which we knew the ground truth, namely
synthetic data sets generated using one of the models.
For each of the five models, we generated 10 synthetic
data sets by independently drawing the parameter
values from uniform distributions on the ranges
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specified in the ‘‘Humans’’ column of Table A1. For
each of these 50 data sets, we fitted all five models and
computed their LMLs. We found that in each of the 50
data sets and for each of the three metrics, the model
that was used to generate the data had the highest
LML. In addition, for the correct model the parameter
estimates were close to the parameters that were used to
generate the synthetic data, with the exception of J̄N¼1
and s in the VP and VPF models. Those parameters
were sometimes both overestimated or both underesti-
mated, indicating that the data were approximately
equally well fitted by a lower J̄N¼1 and a lower s as by a
higher J̄N¼1 and a higher s. We conclude that we can
trust the model comparison results but that the
estimates of J̄N¼1 and s should be taken with a grain of
salt.

Other model comparison metrics

We also used two other model comparison metrics,
which are based not on marginalizing over the
parameters but solely on the maximum of the
parameter log likelihood LLmax, with a correction for
the number k of free parameters in the model. These
metrics are the corrected Akaike information criterion
AICc ¼ AICþ 2kðkþ1Þ

ntrials�k�1 (Akaike, 1974; Hurvich & Tsai,
1989) and the Bayesian information criterion BIC ¼
�2LLmax þ klogntrials (Schwarz, 1978). In order to
make these metrics comparable in magnitude to the
marginal log likelihood LML(model), we report each
of them multiplied by�0.5, so that the leading term is
LLmax: AICc* ¼�0.5AICc and BIC* ¼�0.5BIC.

Bootstrapping

Since we had only three monkey subjects, we used
bootstrapping (Efron, 1993) for each monkey sepa-
rately to estimate the standard errors on all summary
statistics. The original data set for each monkey
consisted of 11,520 rows (each row represented a trial)
and three columns (set size, change magnitude of the
changed item, and whether the trial was correct or
incorrect). We sampled the rows (trials) with replace-
ment from the original data set to create 11,520-trial
bootstrapped data sets. We repeated this process to
create 100 bootstrapped data sets for each monkey. For
each bootstrapped data set, we estimated the param-
eters, computed psychometric curves, calculated R2,
and computed AICc*, BIC*, and LML. The means
each of these was computed by averaging across all
bootstrapped data sets from the same monkey, and the
standard deviations served as estimates of the standard
errors of the means.

Results

Data

For both species, the proportion correct decreased
monotonically as a function of set size, with humans
being substantially more accurate than monkeys
(Figure 3A). A more detailed representation of the data
is provided by the proportion correct as a function of
change magnitude for each of the four set sizes (Figure
3B, C). We found large effects of both set size and
change magnitude on VWM performance in both
species (humans: two-way repeated-measures AN-
OVA)—set size: F(3, 27)¼ 64.05, p , 0.001; change
magnitude: F(8, 72) ¼ 80.36, p , 0.001.

Model fitting

We used maximum-likelihood estimation to fit the
parameters in each model. For humans, we fitted the
data of individual subjects. For each monkey, we fitted
the individual data sets that we sampled using boot-
strapping from the monkey’s raw data (this gives error
bars on parameter estimates). Parameter estimates are
given in Appendix B (Table A1). Model fits to the
monkeys’ actual data (without bootstrapping) are given
in Appendix C.

Model comparison

In spite of the large performance differences
between species, it is possible that the underlying
VWM mechanisms are the same. To test this
possibility, we compared the four leading models of
VWM limitations as well as a new hybrid model (VPF)
for each individual monkey and human. We first used
Bayesian model comparison, a likelihood-based
method that automatically corrects for the number of
free parameters (see Methods: Model fitting and
model comparison). We found that the mean log
marginal likelihoods of the VP and VPF models
exceed those of the EPF, EP, and IL models for both
species (Figure 4; Table 1); the VP and VPF models
are not distinguishable. Moreover, the results are
highly consistent across individual monkey and
human subjects. Model comparison results on the
monkeys’ actual data (without bootstrapping) are
given in Appendix C.

Under Methods: Model fitting and model compar-
ison, we commented on the choices of the parameter
ranges Rj in Equation 9, which for monkey subjects
were (weakly) informed by the data. Fortunately, our
qualitative results are reasonably robust to these
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choices. If we assume that the parameter log likelihood

is zero outside the narrower [0, 30] ranges of the JN¼1
and s parameters in the VP model chosen for monkey

subjects, then the effect of changing these ranges to the

wider [0, 100] ranges we used in humans is to reduce the

VP log marginal likelihoods by�2log(30) �
(�2log(100))¼ 2.4, which would not change the finding

that VP outperforms IL, EP, and EPF. Moreover, the

effect of changing the [0, 30] ranges of the JN¼1 and s
parameters in the VPF model for monkeys to the wider

[0, 200] ranges we chose in humans is to reduce the VPF

log marginal likelihoods by 3.8, which would not

change the finding that VP and VPF are indistin-

guishable. The reason for this robustness against the

choice of parameter ranges arises from the fact that our

differences in log marginal likelihoods are largely
driven by the LLmax term.

Our results for both monkeys and humans also
remain unchanged when we use AICc or BIC as an
alternative model comparison metrics (Table 1). Unlike
the log marginal likelihood, these model comparison
metrics do not depend on parameter ranges. Again, this
consistency follows from the model differences being
dominated by differences in the LLmax term.

Model checking

We substituted the fitted parameters into their
respective models to create fits (predictions) for the
summary statistics in Figure 3. The model fits to the

Figure 3. (A) Proportion correct as a function of set size for humans and three monkeys (M1, M2, M3). (B) Proportion correct as a

function of set size N and change magnitude for M1 (mean 6 standard error of the mean estimated from bootstrapped datasets). (C)

The same as (B) but for humans (mean 6 standard error of the mean across 10 subjects).

Figure 4. Bayesian model comparison for monkeys M1, M2, and M3 and humans, showing the log marginal likelihood of each model

(IL, EP, EPF, VPF) minus that of the VP model (mean 6 standard error of the mean). A value of�x means that the data are ex times

more probable under the VP model. The VP and VPF models account equally well for the data, and much better than the other

models.
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psychometric curve of performance as a function of set
size were good for all models (Figure 5A). The added
manipulation of change magnitude, however, clearly
separates these model fits (Figure 5B and Figure 5C).
The psychometric curves from both species are best
described by the two variable-precision models, VP and
VPF, followed by the EPF model, the EP model, and
the IL model (Table 2).

Comparison between species

Our model comparison suggests that the funda-
mental nature of VWM limitations is the same in both
species (Figure 5), with quantitative differences

reflected only in the parameter values within the same
model (Table A1). For example, mean precision JN¼1
was much lower in monkeys than in humans, which
might reflect attentional differences between the two
species. The exponent a in the relationship between
mean precision and set size was similar across
monkeys and somewhat higher in humans. In both
species, however, the values were more negative than
�1, indicating steep decreases in mean precision as set
size increases. In the VPF model, the number of
remembered items K was fitted as 3.5 in monkeys and
4.1 in humans; while consistent with earlier reports of
K, this parameter should be interpreted with caution:
In light of the finding that the VPF model is
indistinguishable from the VP model, we cannot rule
out the possibility that there is no item limit at all.

Model

AICc*(model) � AICc*(VP) BIC*(model) � BIC*(VP) LML(model) � LML(VP)

Mean Mean Standard error of the mean Mean Standard error of the mean

IL

M1 �125 �122 15 �121 15

M2 �183 �180 18 �180 18

M3 �167 �164 18 �163 18

Humans �47.2 �45.7 6.8 �47.1 6.6

EP

M1 �47.5 �44.8 9.2 �48.9 9.1

M2 �12.8 �10.1 4.6 �12.7 4.8

M3 �30.3 �27.6 7.8 �31.3 8.1

Humans �12.9 �11.4 1.5 �14.4 1.7

EPF

M1 �40.2 �40.2 7.9 �39.0 7.8

M2 �9.3 �9.3 4.4 �6.7 4.6

M3 �24.0 �24.0 6.7 �22.6 6.9

Humans �7.6 �7.6 1.5 �6.2 1.6

VPF

M1 �1.3 �4.18 0.83 1.5 1.5

M2 �2.2 �4.00 0.91 1.20 0.81

M3 �0.56 �3.2 1.5 2.0 1.1

Humans �1.46 �3.00 0.32 �0.57 0.31

Table 1. Model comparison. Notes: For model comparison metrics, we use scaled versions of the AICc and BIC defined by AICc* ¼
�0.5AICc and so on, so that the leading term is the maximum log likelihood LLmax and these measures can be compared directly to
the log marginal likelihood (LML). Values shown are the mean differences in the model comparison metrics between the IL, EP, EPF,
and VPF models on the one hand and the VP model on the other hand. A negative value means that the VP model fits better. The
standard error of the mean is the same between the AICc* and BIC* because these measures differ only in their penalty terms.

M1 M2 M3 Humans

IL 0.402 6 0.041 0.222 6 0.038 0.263 6 0.049 0.228 6 0.048

EP 0.718 6 0.055 0.835 6 0.031 0.817 6 0.035 0.619 6 0.037

EPF 0.755 6 0.046 0.854 6 0.030 0.817 6 0.035 0.714 6 0.043

VP 0.901 6 0.023 0.885 6 0.024 0.891 6 0.020 0.799 6 0.023

VPF 0.902 6 0.022 0.887 6 0.024 0.896 6 0.020 0.803 6 0.023

Table 2. R2 values of the fits of the five models to the full psychometric curves (proportion correct as a function of set size and change
magnitude) of both species. Notes: We note that R2 is a much less principled measure of goodness of fit than AICc, BIC, or LML. If any
conflicts were to exist, the latter three should be preferred. However, results are consistent across measures. See Figure 5B and C.
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Models with lapse rate

We have seen that the EP and EPF models do not
describe the data as well as the VP model. However, it

might be that subjects randomly guess on some fixed
proportion of trials. This would be different from
guessing due to an item limit, because the proportion of
those guesses depends on set size. Therefore, we tested

Figure 5. Model fits. (A) Proportion correct as a function of set size for M1 and humans. Circles and error bars are behavior; shaded

areas are model fits. It is difficult to distinguish among the models based on these psychometric curves. (B) Proportion correct as a

function of set size N and change magnitude, for monkeys (mean 6 standard error of the mean estimated from bootstrapped data

sets). Circles and error bars are behavior; shaded areas are model fits. (C) The same as (B) but for humans (mean 6 standard error of

the mean across subjects). This detailed representation of the data reveals that the VP and VPF models best account for the behavior

of both species.
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the EP and EPF models augmented with a lapse rate
(Table 3). Both in monkeys and in humans, adding a
lapse parameter improves the goodness of fit of the EP
and EPF models. However, in both species, the VP
model outperforms the EP and EPF models with lapse.

Discussion

We tested monkeys and humans in a nearly identical
change localization paradigm and compared five models
of VWM limitations. Like all previous change detection
and change localization studies, both in humans
(Keshvari et al., 2012, 2013; van den Berg et al., 2012;
Wilken & Ma, 2004) and in monkeys (Buschman et al.,
2011; Elmore et al., 2011; Heyselaar et al., 2011; Lara &
Wallis, 2012), we found a decrease in performance with
set size. Following Keshvari et al. (2012, 2013), Lara and
Wallis (2012), and van den Berg et al. (2012), we
systematically varied change magnitude to obtain a
richer description of behavior, which we exploited to
distinguish models that otherwise could not be distin-
guished.

Although change detection and change localization
are classic paradigms in humans, formally comparing
models on data from these paradigms is relatively new
(van den Berg et al., 2012; Wilken & Ma, 2004), and no
previous study has compared models in parallel across
species. We tested the item-limit (IL) model, in which
there is a fixed limit on the number of items that can be
remembered and items are stored in an all-or-none
fashion, as well as noise-based (or resource) models, in
which items are encoded in VWM in a noisy way. The
data from both species were well accounted for by a
noise-based model in which memory precision is
variable across items and trials (VP), but not by a
noise-based model in which memory precision is equal
across items and trials (EP), and not by the classic IL
model. These findings are consistent with earlier ones in
humans (Fougnie et al., 2012; Keshvari et al., 2012,
2013; van den Berg et al., 2012; van den Berg et al.,
2014; van den Berg & Ma, 2014).

We also tested hybrid models that combine the
concepts of noisy storage and an item limit. Adding an

item limit to the EP model (as has been proposed by
Zhang & Luck, 2008, and Anderson, Vogel, & Awh,
2011) helped, but not enough to make it fit as well as
the VP model. Adding an item limit to the VP model
did improve the fit, but not enough to convincingly
exceed the penalty associated with adding an extra
parameter to the model. Thus our model comparison
neither yields any evidence for the existence of an item
limit nor rules it out. This conclusion is consistent with
a recent detailed model comparison on multiple data
sets obtained using a delayed-estimation paradigm (van
den Berg et al., 2014).

The success of the VP model brings to the fore the
question of its mechanistic underpinnings. The essential
components of the model are noisy storage, a decrease
of average precision with increasing set size, and
variability of precision across items and trials around
this average. At the neural level, noisy storage could
take the form of a Poisson-like neural population
responding to the stimulus, in which case precision
might correspond to either the gain or the total spike
count in this population (Ma et al., 2014; van den Berg
et al., 2012). A decrease of gain with set size has been
observed in area LIP (Churchland, Kiani, & Shadlen,
2008) and superior colliculus (Basso & Wurtz, 1998),
and might be implemented using divisive normalization
(Bays, 2014; Ma & Huang, 2009). A Poisson-like
population with gain fixed across items and trials (i.e.,
at a given set size) might already behave like a VP
model (Bays, 2014). In addition, gain itself might be
variable (Goris, Movshon, & Simoncelli, 2014), for
example due to fluctuations in attention (Cohen &
Maunsell, 2010) or to variability in memory decay rates
(Fougnie et al., 2012). Other factors are also expected
to contribute to fluctuations in precision, such as eye
movements, and stimulus-related differences such as
those due to cardinal orientations (Girshick, Landy, &
Simoncelli, 2011) and configural grouping (Brady &
Tenenbaum, 2013). Thus, although much more work is
needed, the VP model is currently supported by a range
of behavioral, physiological, and computational stud-
ies.

In the field of comparative cognition, much research
has been devoted to comparing absolute performance
differences across various species—including pigeons,

AICc*(EPþlapse) �
AICc*(EP)

AICc*(EPþlapse) �
AICc*(VP)

AICc*(EPFþlapse) �
AICc*(EPF)

AICc*(EPFþlapse) �
AICc*(VP)

M1 13.8 6 3.4 �33.6 6 7.3 26.1 6 6.2 �14.2 6 4.5

M2 2.6 6 1.6 �10.2 6 3.7 4.7 6 2.9 �4.5 6 2.8

M3 10.1 6 2.8 �20.2 6 5.9 17.6 6 5.5 �6.5 6 3.8

Humans 2.3 6 1.3 �10.6 6 1.9 0.64 6 0.70 �6.9 6 1.5

Table 3. The EP and EPF models with a lapse rate fit better than the corresponding models without a lapse rate; however, they still
both fit worse than the VP model.

Journal of Vision (2015) 15(16):13, 1–18 Devkar, Wright, & Ma 13

Downloaded From: http://jov.arvojournals.org/pdfaccess.ashx?url=/data/Journals/JOV/934737/ on 01/06/2016



rats, rhesus monkeys, baboons, and humans—on
attention, visual search, spatial navigation, and cate-
gorization tasks (Wasserman & Zentall, 2009). How-
ever, in order to disentangle whether these performance
differences are due to qualitative differences in the
underlying mechanisms (differences in models) or
simply quantitative in nature (differences in parame-
ters), formal model comparison is needed. Here we
have shown that despite interspecies performance
differences, the same model fitted the data from both
species best. This suggests qualitative similarity and
evolutionary continuity of basic VWM mechanisms.
This qualitative similarity supports the use of rhesus
monkeys as a model system for studying the neural
mechanisms of multiple-item VWM.

Keywords: visual working memory, visual short-term
memory, change detection, change localization, capacity,
precision, computational modeling, nonhuman primates
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Appendix A: Derivation of the
decision rule

Step 1: Generative model

Figure A1 shows the relevant variables: the location
L of the change (1 or 2), the magnitude D of the change,
the relevant sample orientations h1 and h2 (all other
sample items are irrelevant to the decision), their noisy
memories x1 and x2, and the two test orientations u1

and u2. Each variable has an associated probability
distribution.

� Since both test locations are equally likely to
contain the change, we have p(L) ¼ 0.5.

� The change magnitude D and each of the sample
orientations have discrete distributions, but we
approximate them by uniform distributions pðDÞ ¼
1

2p and pðh1; h2Þ ¼ 1
2p

� �2
. We chose continuous

uniform distributions rather than discrete distribu-
tions at the 18 presented orientations (or change
magnitudes) because we think that it is unlikely that
an observer learns those exact orientations (or
change magnitudes); the choice of continuous
uniform distributions also allows for a closed form
for the decision rule.

� We assume that the noisy memories x1 and x2 are
conditionally independent given the sample orien-
tations h1 and h2. Formally, p(x1, x2jh1, h2)¼
p(x1jh1)p(x2jh2).

� We assume that p(xijhi) is a von Mises distribution
(Equation 1).

� When the change happens in the first location (L¼
1), then u1¼ h1þ D and u2¼ h2. When the change
happens in the second location (L¼ 2), then u1¼ h1
and u2¼ h2þD. We can formally denote this by (u1,
u2)¼ (h1, h2)þD1L, where 1L is equal to (1, 0) when
L ¼ 1 and (0, 1) when L¼ 2.

Step 2: Inference

Now that we have specified the generative model,
we can do inference. The observer infers L based on
the noisy memories x1 and x2 and the test orienta-
tions u1 and u2; we also assume that the observer
knows the values of j1 and j2. An ideal observer
infers L by computing the posterior distribution over
L, p(Ljx1, x2, u1, u2). Since L is binary, all

information about the posterior is contained in the
log posterior ratio, which can be rewritten using
Bayes’s rule:

log
pðL ¼ 1jx1; x2;u1;u2Þ
pðL ¼ 2jx1; x2;u1;u2Þ
¼ log

pðL ¼ 1Þ
pðL ¼ 2Þ þ log

pðx1; x2;u1;u2jL ¼ 1Þ
pðx1; x2;u1;u2jL ¼ 2Þ

¼ log
pðx1;x2;u1;u2jL ¼ 1Þ
pðx1;x2;u1;u2jL ¼ 2Þ ;

since p(L ¼ 1) ¼ p(L ¼ 2). We evaluate the likelihood
of L¼ 1 (the probability of the memories x1 and x2 if
the change happened at the first location):

pðx1;x2;u1;u2jL ¼ 1Þ
¼
R R R

pðx1jh1Þpðx2jh2Þpðu1;u2jh1; h2;D;L ¼ 1Þ
3 pðDÞdh1dh2dD

¼
Z Z Z

pðx1jh1Þpðx2jh2Þdðu1 � h1 � DÞdðu2 � h2Þ

3
1

2p
dh1dh2dD

¼ 1

2p

R
pðx1jh1 ¼ u1 � DÞpðx2jh2 ¼ u2ÞdD

¼ 1

2p
1

2pI0ðj2Þ
ej2cosðx2�u2Þ

Z
1

2pðj2Þ
ej2cosðx1�u1þDÞdD

¼ 1

2p
1

2pI0ðj2Þ
ej2cosðx2�u2Þ:

Similarly, the likelihood of L¼ 2 (the probability of
the memories if the change happened at the second
location) is

pðx1; x2;u1;u2jL ¼ 2Þ ¼ 1

2p
1

2pI0ðj1Þ
ej1cosðx1�u1Þ:

Combining, we find the log posterior ratio

log
pðL ¼ 1jx1;x2;u1;u2Þ
pðL ¼ 2jx1;x2;u1;u2Þ

Figure A1. Graphical depiction of the generative model on

which the decision rule is based.
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Figure A2. Model fits. Proportion correct as a function of set size N and change magnitude, for monkeys M1, M2, and M3 across

nonbootstrapped data sets. Circles are behavior; solid lines are model fits.

Model Parameter

Monkeys Humans

Tested range M1 M2 M3 Tested range

Min Step Max Mean SEM Mean SEM Mean SEM Min Step Max Mean SEM

IL K 1 1 5 1 0 1 0 1 0 1 1 5 1.50 0.17

e 0 0.003 3 0.248 0.0055 0.269 0.0062 0.249 0.0065 0 0.003 3 0.079 0.011

EP JN¼1 0 0.13 25 3.51 0.78 2.41 0.68 2.71 0.69 0 0.13 25 17.7 2.3

a 0 0.015 3 2.35 0.21 1.98 0.27 1.98 0.26 0 0.015 3 2.07 0.12

EPF K 1 1 5 1 0 1.16 0.79 1.12 0.62 1 1 5 2.20 0.36

JN¼1 0 0.13 25 1.23 0.085 1.12 0.16 1.35 0.31 0 0.13 25 15.3 2.5

a 0 0.015 3 1.35 0.60 1.57 0.74 1.89 0.83 0 0.015 3 1.43 0.25

VP J̄N¼1 0 0.30 30 11.0 1.8 3.82 0.87 7.0 1.8 0 1.01 100 65.8 8.7

s 0.1 0.40 30 24.9 4.4 6.2 2.6 15.7 5.9 0.1 1.11 100 29.3 8.5

a 0 0.03 3 1.47 0.14 1.32 0.14 1.31 0.13 0 0.03 3 1.82 0.13

VPF J̄N¼1 0 0.30 30 10.2 2.7 3.7 1.4 7.7 2.7 0 2.02 200 83.0 17.9

s 0.1 0.40 30 23.8 5.1 5.6 2.8 13.9 5.2 0.1 2.13 200 25.3 5.4

a 0 0.03 3 1.55 0.49 1.47 0.48 1.5 0.41 0 0.061 3 1.97 0.18

K 1 1 5 3.6 1.8 3.4 1.5 3.2 1.1 1 1 5 4.10 0.28

Table A1. Parameter ranges and parameter estimates. Notes: For monkeys, means and standard errors of the mean (SEMs) were
estimated from 100 bootstrapped data sets. For humans, means and standard errors were computed across subjects.
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¼ log

1

2p
1

2pI0ðj2Þ
ej2cosððx2�u2Þ

1

2p
1

2pI0ðj1Þ
ej1cosðx1�u1Þ

¼ log
I0ðj1Þ
I0ðj2Þ

þ j2cosðx2 � u2Þ � j1cosðx1 � u1Þ:

The ideal observer responds that the change
occurred at location 1 when the log posterior ratio is
positive:

log
I0ðj1Þ
I0ðj2Þ

þ j2cosðx2 � u2Þ � j1cosðx1 � u1Þ. 0:

This is Equation 3 in the main text.

Appendix B: Parameter estimates

Table A1 shows our approximations to the maxi-
mum-likelihood estimates of all parameters in all models
in all subjects (but averaged over human subjects).

Appendix C: Model fits to
nonbootstrapped monkey data sets

Figures A2 and A3 show model fits and Bayesian
model comparison on the nonbootstrapped data sets for
each individual monkey. Our results are consistent with
those on bootstrapped datasets.

Figure A3. Bayesian model comparison for monkeys M1, M2, and M3, showing the log marginal likelihood of each model minus that

of the VP model. The VP and VPF models account about equally well for the data, and better than the other models.
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